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Abstract

Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study,
we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the cur-
vature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We
also consider the condition eC � S ¼ 0 on a super quasi-Einstein manifold, where eC and S denote the quasi-conformal
curvature tensor and Ricci tensor of the manifold, respectively.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of a quasi-Einstein manifold was introduced by Chaki and Maity in [1]. A non-flat semi-Riemannian
manifold (Mn,g), (n P 3), is called quasi-Einstein if its Ricci tensor S is not identically zero and satisfies the condition
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SðX ; Y Þ ¼ agðX ; Y Þ þ bAðX ÞAðY Þ; ð1Þ
where a, b are scalars of which b 5 0, A is non-zero 1-form such that
gðX ;UÞ ¼ AðX Þ 8X
and U is a unit vector field. In such a case a, b are called associated scalars. A is called the associated 1-form and U is
called the generator of the manifold. For more details about quasi-Einstein manifolds see also [4,9].

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations. There are many
studies about Einstein field equations. For example, in [8], El Naschie turned the tables on the theory of elementary
particles and showed that we could derive the expectation number of elementary particles of the standard model using
Einstein’s unified field equation or more precisely his somewhat forgotten strength criteria directly and without resort-
ing to quantum field theory [6]. In [7], possible connections between Gödel’s classical solution of Einstein’s field equa-
tions and E-infinity were discussed.

As a generalization of a quasi-Einstein manifold, in [2], Chaki introduced the notion of a generalized quasi-Einstein
manifold. A non-flat semi-Riemannian manifold (Mn,g), (n P 3), is called generalized quasi-Einstein if its Ricci tensor S

is not identically zero and satisfies the condition
SðX ; Y Þ ¼ agðX ; Y Þ þ bAðX ÞAðY Þ þ c AðX ÞBðY Þ þ AðY ÞBðX Þ½ �; ð2Þ
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where a, b, c are scalars of which b 5 0, c 5 0, A, B are two non-zero 1-forms such that
gðX ;UÞ ¼ AðX Þ; gðX ; V Þ ¼ BðX Þ 8X
and U, V are two unit vector fields perpendicular to each other. In such a case a, b, c are called associated scalars. A, B

are called the associated 1-forms and U, V are called the generators of the manifold. It is found that a perfect fluid space-
time of general relativity is a four-dimensional semi-Riemannian quasi-Einstein manifold whose associated scalars are
(r/2) + kp and k(q + p), where k is the gravitational constant, q and p are the energy density and the isotropic pressure
of the fluid and r is the scalar curvature, the generator of the manifold being the unit timelike velocity vector field of the
fluid. The importance of a generalized quasi-Einstein manifold lies in the fact that such a four-dimensional semi-Rie-
mannian manifold is relevant to the study of a general relativistic fluid space-time admitting heat flux (see [2,10,12]).
The global properties of such a space-time are under investigation. Study of space-times admitting fluid viscosity
and electromagnetic fields require further generalization of the Ricci tensor and is under process. In this study, we shall
study super quasi-Einstein manifolds which has another generalization of Ricci tensor.

In Cosmology, the reason for studying various types of space-time models is mainly for the purpose of repre-
senting the different phases in the evolution of the universe. The evolution of the universe to its present state can
be divided into three phases. The initial phase just after the big bang when the effects of both viscosity and heat
flux were quite pronounced. The intermediate phase when the effect of viscosity was no longer significant but the
heat flux was still not negligible. The final phase, which extends to the present state of the universe when both the
effects of viscosity and the heat flux have become negligible and the matter content of the universe may be assumed
to be a perfect fluid. The importance of the study of the generalized quasi-Einstein and quasi-Einstein manifolds
lies in the fact that these space-time manifolds represent the second and the third phase, respectively in the evo-
lution of the universe [10].

In [3], Chaki introduced the notion of a super quasi-Einstein manifold, which is another generalization of a quasi-
Einstein manifold. A non-flat semi-Riemannian manifold (Mn,g), (n P 3), is called super quasi-Einstein if its Ricci ten-
sor S is not identically zero and satisfies the condition
SðX ; Y Þ ¼ agðX ; Y Þ þ bAðX ÞAðY Þ þ c½AðX ÞBðY Þ þ AðY ÞBðX Þ� þ dDðX ; Y Þ; ð3Þ
where a, b, c, d are scalars of which b 5 0, c 5 0, d 5 0, A, B are two non-zero 1-forms such that
gðX ;UÞ ¼ AðX Þ; gðX ; V Þ ¼ BðX Þ 8X ð4Þ
and U, V are mutually orthogonal unit vector fields, D is a symmetric (0,2)-tensor with zero trace which satisfies the
condition
DðX ;UÞ ¼ 0 8X : ð5Þ
In such a case a, b, c, d are called associated scalars. A, B are called the associated main and auxiliary 1-forms and U, V

are called the main and auxiliary generators of the manifold. D is called the associated tensor of the manifold. From (3),
by a contraction, one can easily obtain that the scalar curvature r of Mn is
r ¼ naþ b: ð6Þ
In [3] (see proof of Theorem 3), Chaki gave the following nice example of a super quasi-Einstein manifold.

Example 1.1. Let (M4,g) be a viscous fluid space-time admitting heat flux and satisfying Einstein’s equation without
cosmological constant. Let U be the unit timelike velocity vector field of the fluid, V be the heat flux vector field and D

be the anisotropic pressure tensor of the fluid. Then
gðU ;UÞ ¼ �1; gðV ; V Þ ¼ 1; gðU ; V Þ ¼ 0; ð7Þ
DðX ; Y Þ ¼ DðY ;X Þ; traceD ¼ 0; ð8Þ
DðX ;UÞ ¼ 0; 8X : ð9Þ
Let
gðX ;UÞ ¼ AðX Þ; gðX ; V Þ ¼ BðX Þ; 8X : ð10Þ
Further, let T be the (0,2)-type energy momentum tensor describing the matter distribution of such a fluid. Then
T ðX ; Y Þ ¼ ðrþ pÞAðX ÞAðY Þ þ pgðX ; Y Þ þ AðX ÞBðY Þ þ AðY ÞBðX Þ þ DðX ; Y Þ; ð11Þ
where r, p denote the density and isotropic pressure and D denotes the anisotropic pressure tensor of the fluid. It is
known that [11] Einstein’s equation without cosmological constant can be written as follows:
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SðX ; Y Þ � 1

2
rgðX ; Y Þ ¼ kT ðX ; Y Þ; ð12Þ
where k is the gravitational constant and T is the energy momentum tensor of type (0,2). In the present case (12) can be
written as follows:
SðX ; Y Þ � 1

2
rgðX ; Y Þ ¼ k½ðrþ pÞAðX ÞAðY Þ þ pgðX ; Y Þ þ AðX ÞBðY Þ þ AðY ÞBðX Þ þ DðX ; Y Þ�:
So
SðX ; Y Þ ¼ kp þ 1

2
r

� �
gðX ; Y Þ þ kðrþ pÞAðX ÞAðY Þ þ k½AðX ÞBðY Þ þ AðY ÞBðX Þ� þ kDðX ; Y Þ:
Hence the space-time under consideration is a super quasi-Einstein manifold with kp þ 1
2
r; kðrþ pÞ; k; k as associated

scalars, A and B as associated 1-forms, U, V as generators and D as the associated symmetric (0,2)-tensor.

In this study, we consider Ricci-pseudosymmetric and quasi-conformally flat super quasi-Einstein manifolds. We
also consider the condition eC � S ¼ 0 on a super quasi-Einstein manifold, where eC denotes the quasi-conformal curva-
ture tensor of the manifold. The paper is organized as follows: In Section 2, we find the curvature characterizations of
Ricci-pseudosymmetric super quasi-Einstein manifolds. In Section 3, we obtain the necessary condition for a super
quasi-Einstein manifold to be quasi-conformally flat. In the final section, we find the characterization of the curvature
tensor of a super-quasi Einstein manifold satisfying the condition eC � S ¼ 0.
2. Ricci-pseudosymmetric super quasi-Einstein manifolds

An n-dimensional semi-Riemannian manifold (Mn,g) is called Ricci-pseudosymmetric [5] if the tensors R Æ S and
Q(g,S) are linearly dependent, where
ðRðX ; Y Þ � SÞðZ;W Þ ¼ �SðRðX ; Y ÞZ;W Þ � SðZ;RðX ; Y ÞW Þ; ð13Þ
Qðg; SÞðZ;W ; X ; Y Þ ¼ �SððX ^ Y ÞZ;W Þ � SðZ; ðX ^ Y ÞW Þ ð14Þ
and
ðX ^ Y ÞZ ¼ gðY ; ZÞX � gðX ; ZÞY ð15Þ
for vector fields X, Y, Z, W on Mn, R denotes the curvature tensor of Mn.
The condition of Ricci-pseudosymmetry is equivalent to
ðRðX ; Y Þ � SÞðZ;W Þ ¼ LSQðg; SÞðZ;W ; X ; Y Þ ð16Þ
holding on the set
U S ¼ x 2 M : S–
r
n

g at x
n o
where LS is some function on US. If R Æ S = 0 then Mn is called Ricci-semisymmetric. Every Ricci-semisymmetric
manifold is Ricci-pseudosymmetric but the converse is not true [5].

Now we consider a Ricci-pseudosymmetric super quasi-Einstein manifold.
So we have the following theorem.

Theorem 2.1. Let (Mn,g), (n P 3), be a super quasi-Einstein manifold. If Mn is Ricci-pseudosymmetric then the following

conditions hold on Mn:
RðX ; Y ;U ; V Þ ¼ LSfAðY ÞBðX Þ � AðX ÞBðY Þg; ð17Þ
DðRðX ; Y ÞU ; V Þ ¼ LSfAðY ÞDðX ; V Þ � AðX ÞDðY ; V Þg ð18Þ
and
DðRðX ; Y ÞV ; V Þ ¼ LSfBðY ÞDðX ; V Þ � BðX ÞDðY ; V Þg ð19Þ
for all vector fields X, Y on Mn, where U, V are the generators of the manifold Mn.
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Proof. Assume that Mn is Ricci-pseudosymmetric. Then by the use of (13)–(16) we can write
SðRðX ; Y ÞZ;W Þ þ SðZ;RðX ; Y ÞW Þ ¼ LSfgðY ; ZÞSðX ;W Þ � gðX ; ZÞSðY ;W Þ þ gðY ;W ÞSðX ; ZÞ
� gðX ;W ÞSðY ; ZÞg: ð20Þ
Since Mn is also super quasi-Einstein, using the well-known properties of the curvature tensor R we get
b½AðRðX ; Y ÞZÞAðW Þ þ AðZÞAðRðX ; Y ÞW Þ� þ c½AðRðX ; Y ÞZÞBðW Þ þ AðW ÞBðRðX ; Y ÞZÞ þ AðZÞBðRðX ; Y ÞW Þ
þ AðRðX ; Y ÞW ÞBðZÞ� þ d½DðRðX ; Y ÞZ;W Þ þ DðZ;RðX ; Y ÞW Þ�
¼ LSfb½gðY ; ZÞAðX ÞAðW Þ � gðX ; ZÞAðY ÞAðW Þ þ gðY ;W ÞAðX ÞAðZÞ � gðX ;W ÞAðY ÞAðZÞ�
þ c½gðY ; ZÞAðX ÞBðW Þ þ gðY ; ZÞAðW ÞBðX Þ � gðX ; ZÞAðY ÞBðW Þ � gðX ; ZÞAðW ÞBðY Þ
þ gðY ;W ÞAðX ÞBðZÞ þ gðY ;W ÞAðZÞBðX Þ � gðX ;W ÞAðY ÞBðZÞ � gðX ;W ÞAðZÞBðY Þ�
þ d½gðY ; ZÞDðX ;W Þ � gðX ; ZÞDðY ;W Þ þ gðY ;W ÞDðX ; ZÞ � gðX ;W ÞDðY ; ZÞ�g: ð21Þ
Taking Z = U and W = V in (21), in view of (4) and (5), we obtain
0 ¼ b½RðX ; Y ; V ;UÞ � LSfAðX ÞBðY Þ � AðY ÞBðX Þg� þ d½DðRðX ; Y ÞU ; V Þ � LSfAðY ÞDðX ; V Þ
� AðX ÞDðY ; V Þg�: ð22Þ
Taking Z = W = U in (21) we get
c½RðX ; Y ;U ; V Þ � LSfAðY ÞBðX Þ � AðX ÞBðY Þg� ¼ 0:
Since c 5 0 we have
RðX ; Y ;U ; V Þ � LSfAðY ÞBðX Þ � AðX ÞBðY Þg ¼ 0; ð23Þ
which gives us (17). Similarly, taking Z = W = V in (21) we get
0 ¼ c½RðX ; Y ; V ;UÞ � LSfAðX ÞBðY Þ � AðY ÞBðX Þg� þ d½DðRðX ; Y ÞV ; V Þ � LSfBðY ÞDðX ; V Þ
� BðX ÞDðY ; V Þg�: ð24Þ
Since d 5 0, from (22) and (23) we have (18). So using (23) and (24) we obtain (19). Our theorem is thus proved. h
3. Quasi-conformally flat super quasi-Einstein manifolds

The quasi-conformal curvature tensor was defined by Yano and Sawaki (see [13]) as
eCðX ; Y ÞZ ¼ kRðX ; Y ÞZ þ lfSðY ; ZÞX � SðX ; ZÞY þ gðY ; ZÞQX � gðX ; ZÞQY g

� r
n

k
n� 1

þ 2l

� �
½gðY ; ZÞX � gðX ; ZÞY �; ð25Þ
where k and l are nonzero constants, Q is the Ricci operator defined by S(X,Y) = g(QX,Y). An n-dimensional semi-
Riemannian manifold (Mn,g), n > 3, is called quasi-conformally flat if eC ¼ 0. If k = 1 and l ¼ � 1

n�2
, then the quasi-con-

formal curvature tensor is reduced to the conformal curvature tensor. In [3], Chaki studied conformally flat super
quasi-Einstein manifolds. In the present section, we study quasi-conformally flat super quasi-Einstein manifolds.

Let us define
gðlX ; Y Þ ¼ DðX ; Y Þ: ð26Þ

Now we can state the following theorem:

Theorem 3.1. Let (Mn,g) (n > 3) be a super quasi-Einstein manifold. If Mn is quasi-conformally flat then the curvature

tensor R of Mn satisfies the following property:
RðX ; Y ÞZ ¼ aðn� 2Þ � b
ðn� 1Þðn� 2Þ

� �
½gðY ; ZÞX � gðX ; ZÞY � þ c

2� n
½gðX ; ZÞBðY Þ � gðY ; ZÞBðX Þ�U

þ d
2� n

½DðX ; ZÞY � DðY ; ZÞX þ gðX ; ZÞlY � gðY ; ZÞlX � ð27Þ
for all vector fields X ; Y ; Z 2 U? on Mn.
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Proof. Since Mn is quasi-conformally flat eC ¼ 0. Then from (25) we have
kRðX ; Y ; Z;W Þ ¼ l½SðX ; ZÞgðY ;W Þ � SðY ; ZÞgðX ;W Þ þ gðX ; ZÞSðY ;W Þ � gðY ; ZÞSðX ;W Þ�

þ r
n

k
n� 1

þ 2l

� �
½gðY ; ZÞgðX ;W Þ � gðX ; ZÞgðY ;W Þ� ð28Þ
for all vector fields X, Y, Z, W on Mn. Since Mn is super quasi-Einstein k + (n � 2)l = 0. Because when
k + (n � 2)l 5 0 for a quasi-conformally flat manifold one can easily see that Mn becomes an Einstein manifold. So
in view of (2) and (28), we can write� �� �
kRðX ; Y ; Z;W Þ ¼ �2alþ rl
n

2� n
n� 1

þ 2 ½gðY ; ZÞgðX ;W Þ � gðX ; ZÞgðY ;W Þ� þ bl½gðY ;W ÞAðX ÞAðZÞ

þ gðX ; ZÞAðY ÞAðW Þ � gðX ;W ÞAðY ÞAðZÞ � gðY ; ZÞAðX ÞAðW Þ� þ cl½gðY ;W ÞðAðX ÞBðZÞ
þ AðZÞBðX ÞÞ þ gðX ; ZÞðAðY ÞBðW Þ þ AðW ÞBðY ÞÞ � gðX ;W ÞðAðY ÞBðZÞ þ AðZÞBðY ÞÞ
� gðY ; ZÞðAðX ÞBðW Þ þ AðW ÞBðX ÞÞ� þ dl½gðY ;W ÞDðX ; ZÞ þ gðX ; ZÞDðY ;W Þ
� gðX ;W ÞDðY ; ZÞ � gðY ; ZÞDðX ;W Þ�: ð29Þ
Let U? denote the (n � 1)-dimensional distribution orthogonal to U in a quasi conformally flat super quasi-Einstein
manifold Mn. Then g (X,U) = 0 if and only if X 2 U?. Hence from (29), when X ; Y ; Z 2 U? we have (27). This com-
pletes the proof of the theorem. h
4. Super quasi-Einstein manifolds satisfying the condition eC � S ¼ 0

In this section, we consider super quasi-Einstein manifolds (Mn,g), (n > 3), satisfying the condition
ðeCðX ; Y Þ � SÞðZ;W Þ ¼ �SðeCðX ; Y ÞZ;W Þ � SðZ; eCðX ; Y ÞW Þ ¼ 0
for all vector fields X, Y, Z, W on Mn.
Then we have the following theorem:

Theorem 4.1. Let (Mn,g) (n > 3) be a super quasi-Einstein manifold. If the condition eC � S ¼ 0 holds on Mn then the

curvature tensor R of Mn satisfies the following property:� �� �

kRðX ; Y ;U ; V Þ ¼ naþ b

n
k

n� 1
þ 2l � lð2aþ bÞ fAðY ÞBðX Þ � AðX ÞBðY Þg � dlfDðX ; V ÞAðY Þ

� DðY ; V ÞAðX Þg ð30Þ

for all vector fields X, Y on Mn, where U, V are the generators of the manifold Mn.

Proof. Since the condition eC � S ¼ 0 holds on Mn we have
SðeCðX ; Y ÞZ;W Þ þ SðZ; eCðX ; Y ÞW Þ ¼ 0:
Since Mn is super quasi-Einstein, using (3) and the well-known properties of the quasi-conformal curvature tensor we
get
0 ¼ b½AðeCðX ; Y ÞZÞAðW Þ þ AðZÞAðeCðX ; Y ÞW Þ� þ c½AðeCðX ; Y ÞZÞBðW Þ þ AðW ÞBðeCðX ; Y ÞZÞ
þ AðZÞBðeCðX ; Y ÞW Þ þ AðeCðX ; Y ÞW ÞBðZÞ� þ d½DðeCðX ; Y ÞZ;W Þ þ DðZ; eCðX ; Y ÞW Þ�: ð31Þ
Taking Z = W = U in (31) and using (5) we have
BðeCðX ; Y ÞUÞ ¼ eCðX ; Y ;U ; V Þ ¼ 0:
Since c 5 0 by the use of (3) and (6) we obtain (30). Hence we get the result as required. h
5. Conclusions

Study of space-times admitting fluid viscosity and electromagnetic fields require some generalizations of Einstein man-
ifolds and is under process. The first generalization of an Einstein manifold is a quasi-Einstein manifold. Quasi-Einstein
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manifolds arose during the study of exact solutions of the Einstein field equations. Another generalization of an Einstein
manifold is a generalized quasi-Einstein manifold. The importance of a generalized quasi-Einstein manifold is presented
in the introduction. In the present paper, we consider a super quasi-Einstein manifold, which is another generalization of
an Einstein manifold. A physical example of a super quasi-Einstein manifold is given in the introduction. We consider
Ricci-pseudosymmetric and quasi-conformally flat super quasi-Einstein manifolds. We also consider super quasi-Einstein
manifolds satisfying the condition eC � S ¼ 0.
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