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Abstract. We study quasi-Einstein warped product manifolds for arbitrary dimen-
sion n > 3.
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1. Introduction

A Riemannian manifold (M, g), (n > 2), is said to be an Einstein manifold
if its Ricci tensor S satisfies the condition S = g, where T denotes the
scalar curvature of M. A quasi-Einstein manifold was introduced by CHAKI
and MAITY in [1]. A non-flat Riemannian manifold (M,g), (n > 2), is
defined to be a quasi-Finstein manifold if the condition

(1) S(X,Y) = ag(X,Y) + BAX)A(Y)

is fulfilled on M, where oo and § are scalar functions on M with 8 # 0 and
A is a non-zero 1-form such that

(2) 9(X,U) = A(X),

for every vector field X ; U € x(M) being a unit vector field, x(M) is the
space of vector fields on M. If B = 0, then the manifold reduces to an
Einstein manifold.

By a contraction from the equation (1), it can be easily seen that 7 =
an + 3, where 7 is the scalar curvature of M.
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354 SIBEL SULAR and CIHAN OZGUR 2

Quasi-Einstein manifolds arose during the study of exact solutions of the
Einstein field equations as well as during considerations of quasi-umbilical
hypersurfaces. For instance, the Robertson-Walker space-times are quasi-
Einstein manifolds. For more information about quasi-Einstein manifolds
see [4], [5], [6] and [8].

In [2], CHEN and YANO introduced the notion of a Riemannian manifold
(M, g) of a quasi-constant sectional curvature as a Riemannian manifold
with the curvature tensor satisfies the condition

R(XaY727W) = a[g(Y,Z)g(X,W)—g(X,Z)g(Y,W)]
(3) +olg(X, Wn(Y)n(Z) — g(X, Z)n(Y )n(W)
+9(Y, Z)n(X)n(W) — g(Y, W)n(X)n(Z)],

where a and b are scalar functions with b # 0, where 1 is a 1-form denoted
by g(X,FE) = n(X), E is a unit vector field. It can be shown that, if the
curvature tensor R is of the form (3), then the manifold is conformally flat.
By a contraction from the equation (3), it can be easily seen that every
Riemannian manifold of a quasi-constant sectional curvature is a quasi-
Einstein manifold.

Let M be an m-dimensional, m > 3, Riemannian manifold and p € M.
Denote by K (m) or K(u,v) the sectional curvature of M associated with a
plane section m C T, M, where {u,v} is an orthonormal basis of 7. For any
n-dimensional subspace L C T,,M, 2 < n < m, its scalar curvature 7(L) is
denoted in [3] by 7(L) = 23, <, K(€i A ej), where {e1,...,e,} is any
orthonormal basis of L. When L = T},M, then the scalar curvature 7(L) is
just the scalar curvature 7(p) of M at p.

2. Warped product manifolds

Let (B, g,) and (F, g,) be two Riemannian manifolds and f is a positive
differentiable function on B. Consider the product manifold B x F with
its projections w : BX FF — B and 0 : B x F — F. The warped product
B x [ F' is the manifold B x F' with the Riemannian structure such that

1X]12 = |7 (X)|1> + f2(x(p)) [|lo*(X)||?, for any vector field X on M. Thus
we have
(4) 9=95+ 9

holds on M. The function f is called the warping function of the warped
product [10].
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3 ON QUASI-EINSTEIN WARPED PRODUCTS 355

Since B x; F' is a warped product, then we have VxZ = VzX =
(X In f)Z for unit vector fields X, Z on B and F, respectively. Hence, we
find K(X ANZ) = g(VzVxX —VxVzX,Z)= (1/H{(VxX)f — X2f}. If
we chose a local orthonormal frame ey, ..., e, such that ey, ..., e,, are tangent
to B and ey, 41, ..., en, are tangent to F', then we have

(5) Aff =Y K(ej Aes),
=1

for each s =ny +1,...,n [10].
We need the following two lemmas from [10], for later use :

Lemma 2.1. Let M = B x F' be a warped product, with Riemannian
curvature tensor MR. Given fields X,Y,Z on B and U,V,W on F, then:

Lemma 2.2. Let M = B x; I be a warped product, with Ricci tensor
MgS . Given fields X,Y on B and V,W on F, then:

(1) MS(X,Y) =P S(X,Y) - $H/(X,Y), where d = dim F,
(2) MS(X,V) =0,

(3) MS(V,W) =F S(V,W) = g(V,W) [ + (d = DI where Af
is the Laplacian of f on B.

Moreover, the scalar curvature ™7 of the manifold M satisfies the con-
dition
17 2d d(d—1)
(6) Mr_Bry — 71— Af—-——— —
f? S f?
where B7 and ¥'r are scalar curvatures of B and F, respectively.
In [7], GEBAROWSKI studied Einstein warped product manifolds and
proved the following three theorems:

lgrad 1,
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356 SIBEL SULAR and CIHAN OZGUR 4

Theorem 2.3. Let (M,g) be a warped product I x; F, dimI = 1,
dimF =n—1 (n>3). Then (M,g) is an Einstein manifold if and only if
F is Einstein with constant scalar curvature ¥'1 in the case n =3 and f is
given by one of the following formulae, for any real number b,

%K sinh? M (a >0),
) = K(t+b)* (a=0),
. —a(t+b
—%Ksm2 7\/72( +b) (a <0),

or K >0, f2(t) = bexp (at) (a #0), for K =0, f2(t :—éKcosh2M,
f a 2

(a > 0), for K <0, where a is the constant appearing after first integration
of the equation ¢"e? +2K =0 and K = (71_11;7(2_2)

Theorem 2.4. Let (M, g) be a warped product B x¢ F' of a complete
connected r-dimensional (1<r<n) Riemannian manifold B and (n — r)-di-
mensional Riemannian manifold F. If (M,g) is a space of constant sec-

: : : 1
tional curvature K > 0, then B is a sphere of radius T

Theorem 2.5. Let (M,g) be a warped product B x ¢ I of a complete
connected (n—1)-dimensional Riemannian manifold B and one-dimensional
Riemannian manifold I. If (M, g) is an Einstein manifold with scalar curva-
ture M7 > 0 and the Hessian of f is proportional to the metric tensor gg,
then

N[

(1) (B, gB) is an (n—1)-dimensional sphere of radius p = ((niﬁﬁ)* .

(2) (M,g) is a space of constant sectional curvature K = T

Motivated by the above study by GEBAROWSKI, in the present paper

our aim is to generalize Theorem 2.3, Theorem 2.4 and Theorem 2.5 for
quasi-Einstein manifolds.

3. Quasi-Einstein warped products

In this section, we consider quasi-Einstein warped product manifolds and
prove some results concerning these type manifolds.
Now, let begin with the following theorem:

Theorem 3.1. Let (M, g) be a warped product Ix ;F, dim I = 1,dim F' =
n—1(n > 3), where Uex(M). If (M,g) is a quasi-Einstein manifold with
associated scalars o and 3, then F' is a quasi-Einstein manifold.
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Proof. Denote by (dt)? the metric on I. Taking f = exp{%} and
making use of the Lemma 2.2, we can write

7) s () =~ @)

ot’ ot 4

and
®)  MSWW) =" SVW) — etl2q” + (n - D(d ), (V. V),

for all vector fields V, W on F.
Since M is quasi-Einstein, from (1) we have

o (G- e (3)a(5)
and
(10) MGV, W) = ag(V,W) + BA(V)A(W).

Decomposing the vector field U uniquely into its components U, and U,, on
I and F, respectively, we can write U = U, 4+ U,,. Since dim ] = 1, we can
take U, = u% which gives us U = ,u% + U,., where p is a function on M.
Then we can write

a A(2) - a(20) <

On the other hand, by the use of (4) and (11), the equations (9) and (10)
reduce to

(12) Mg (;,i) =a+u%p
and
(13) MS(V,W) = aelg, (V,W) + BA(V)A(W).

Comparing the right hand sides of the equations (7) and (12) we get

(n—1)

(14) at p?f = ———124"+ (¢)’).
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358 SIBEL SULAR and CIHAN OZGUR 6

Similarly, comparing the right hand sides of (8) and (13) we obtain
1
PV W) = 2e? [2¢" + (n = 1)(d)* + o] g, (V. W) + BA(V)A(W),

which implies that F' is a quasi-Einstein manifold. This completes the proof
of the theorem. O

Theorem 3.2. Let (M,g) be a warped product B x¢ F of a complete
connected r-dimensional (1 < r < n) Riemannian manifold B and (n —r)-
dimensional Riemannian manifold F.

(1) If (M, g) is a space of quasi-constant sectional curvature, the Hessian
of f is proportional to the metric tensor g, and the associated vector
field E is a general vector field on M or E € x(B), then B is a
2-dimensional Finstein manifold.

(2) If (M,g) is a space of quasi-constant sectional curvature and the asso-
ciated vector field E € x(F'), then B is an Einstein manifold.

Proof. Assume that M is a space of quasi-constant sectional curvature.
Then from the equation (3) we can write

MRX,Y,Z,W) = alg(Y,Z)g(X, W) — g(X, Z)g(Y,W)]
(15) +0[g(X, Win(Y')n(Z) — g(X, Z)n(Y)n(W)
+9(Y, Z)n(X)n(W) — g(Y, W)n(X)n(Z)],

for all vector fields X, Y, Z, W on B.
Decomposing the vector field E uniquely into its components E, and
E, on B and F, respectively, we have

(16) E=E,+E,.

By making use of (4) and (16), we can write

(17) nY)=g(Y,E)=g(Y,E) = g5 (Y, Ep).

In view of Lemma 2.1 and by the use of (4) and (17), we obtain

BR(X7 Y, Z, W) = a[gB(Y> Z)gB (Xa W) - gB(X7 Z)gB (K W)]
(18) + b[gB(X7 W)QB(K EB)gB(Z’ EB) - gB(X’ Z)QB(K EB)gB(VVa EB)
+gB(K Z)gB(X7 EB)gB(VV’ EB) *93(}/’ W)gB(X7 EB)gB(Z’ EB)]‘
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7 ON QUASI-EINSTEIN WARPED PRODUCTS 359

By a contraction from the last equation over X and W and making use of
the equation (17) again, we get

(19) PS(Y,2) = [a(r — 1) + by, (Ey, By)lgs(Y, Z) + b(r — 2)n(Y)n(Z),

which shows us B is a quasi-Einstein manifold. Contracting from (19) over
Y and Z, it can be easily seen that

(20) Br = (r = Dlar +2bg, (E,, Ey)l.
Since M is a space of quasi-constant sectional curvature, in view of (5) and
(18) we get
Af ar+bgy(Ey Ep)
f 2 '

On the other hand, since the Hessian of f is proportional to the metric
tensor g,, it can be written as follows

Af

R

(21)

(22) HI(X,Y) = (X,Y).

Then, by the use of (20) and (21) in (22) we obtain H (X, Y)+K fg,(X,Y)
- _B,

= 0, where K = r l)bggr((ffi?’g) holds on B. So by OBATA’s theorem

[9], B is isometric to the sphere of radius LK in the (r 4+ 1)-dimensional

Euclidean space. This gives us B is an Einstein manifold. Since b # 0 this
implies that » = 2. Hence B is a 2-dimensional Einstein manifold.

Assume that the associated vector field £ € x(B). Then in view of
Lemma 2.1 and by making use of (4) and (15) we can write

BR(X7 Y,Z, W) = a[gB(Y’ Z)gB(X’ W) - gB(X’ Z)gB(K W)]
(23)  +0lg (X, W)gp (Y, E)gp(Z, E) = 95(X, Z)g5 (Y, E)g, (W, E)
+QB(K Z)QB(X7E)QB(VV7E) _gB(Y7W)gB(X7E)gB(Z7E)]‘

By a contraction from the last equation over X and W, we obtain
(24)  PS(Y.Z) = [a(r — 1) +blg, (Y, Z) + b(r — 2)9, (Y, E)g,, (2, E),

which gives us B is a quasi-Einstein manifold.
By a contraction from (24) over Y and Z, we get

(25) Br = (r — 1)[ar + 20].
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360 SIBEL SULAR and CIHAN OZGUR 8

Since M is a space of quasi-constant sectional curvature, in view of (5) and
(23) we have

g_ar—i—b

(26) 7 5

On the other hand, since the Hessian of f is proportional to the metric
tensor g, it can be written as follows

(27) HI(X,Y) = ggB (X,Y).

Then, by the use of (25) and (26) in (27) we obtain H/ (X, Y)+K fg,(X,Y) =

0, where K = % holds on B. So by OBATA’s theorem [9], B is iso-
1

metric to the sphere of radius TR in the (r + 1)-dimensional Euclidean
space. This shows us B is an Einstein manifold. Since b # 0 this implies
that r = 2. Hence B is a 2-dimensional Einstein manifold.

Assume that the associated vector field £ € x(F), then the equation
(15) reduces to

MR(X’Y7 Z, W) = a[g(Y, Z)Q(X7 W) - g(X, Z)Q(K W)}

In view of Lemma 2.1 and by the use of (4), the above equation can be
written as follows

BR(Xa Y, Z, W) = a[gB(Y7 Z)gB(Xv W) _gB(X? Z)gs(}/v W)}

By a contraction from the above equation over X and W, we get 2S(Y, Z) =
a(r — 1)g, (Y, Z), which implies that B is an Einstein manifold with the
scalar curvature 7 = ar(r — 1). Hence, the proof of the theorem is
completed. O

Theorem 3.3. Let (M,g) be a warped product B xy I of a complete
connected (n—1)-dimensional Riemannian manifold B and one-dimensional
Riemannian manifold I. If (M, g) is a quasi-Einstein manifold with con-
stant associated scalars « and B, U € x(M) and the Hessian of f is pro-

portional to the metric tensor g,, then (B,g,) is an (n — 1)-dimensional
n—1

h di = .
sphere of radius p Joria
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9 ON QUASI-EINSTEIN WARPED PRODUCTS 361

Proof. Assume that M is a warped product manifold. Then by the use
of the Lemma 2.2 we can write

(28) EﬂXquMSL&Y)+}HNXﬁq

for any vector fields X,Y on B. On the other hand, since M is quasi-
FEinstein we have

(29) MS(X,Y) = ag(X,Y) + BA(X)A(Y).

Decomposing the vector field U uniquely into its components U, and U, on
B and I, respectively, we get

(30) U=U,+U,.

In view of (2), (4), (29) and (30) the equation (28) can be written as
1
PS(XY) = agy(X,Y) + By, (X,Up)g5 (V. Up) + FH (X,Y).

By a contraction from the above equation over X and Y, we find

(31) BT:a(n—l)jLBgB(UB,UB)—I—Aff.

On the other hand, we know from the equation (29) that
(32) Mz = an+ Bg,(U,,U,).

By the use of (32) in (31) we getBr =" 7 —a + %. In view of Lemma 2.2
we also know that

M A
(33) T _af
n f
. . B_ _ (n—l)M
The last two equations give us °7 = *~— 7 — a. On the other hand,

n
since the Hessian of f is proportional to the metric tensor g,, we can write

HI(X,)Y) = %93 (X,Y). As a consequence of the equation (33) we have

AL - —n(nl_l)M 7f, which implies that
Hf(XY)+BT+O‘f (X,Y)=0
’ (n—12/ s\ ) =5

Brought to you by | Balikesir Universitesi
Authenticated
Download Date | 8/15/19 12:24 PM



362 SIBEL SULAR and CIHAN OZGUR 10

So B is isometric to the (n — 1)-dimensional sphere of radius B"T_Jrla

OBATA [9]). Thus our theorem is proved. O

(see
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