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Abstract

We consider a contact CR-warped product submanifold M = M�×f M⊥ of a trans-Sasakian generalized

Sasakian space form �M(f1, f2, f3) . We show that M is a contact CR-product under certain conditions.
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1. Introduction

The notion of a CR-warped product manifold was introduced by B. Y. Chen (see [6] and [7]). He
established a sharp relationship between the warping function f of a warped product CR-submanifold of a
Kaehler manifold and the squared norm of the second fundamental form. Later, I. Hasegawa and I. Mihai found
a similar inequality for contact CR-warped product submanifolds of Sasakian manifolds in [8]. Moreover, I.

Mihai [11] improved the same inequality for contact CR-warped products in Sasakian space forms and he gave
some applications. A classification of contact CR-warped products in spheres, which satisfy the equality case,
identically, was also given.

Furthermore, in [2], K. Arslan, R. Ezentaş, I. Mihai and C. Murathan considered contact CR-warped
product submanifolds in Kenmotsu space forms and they obtained sharp estimates for the squared norm of
the second fundamental form in terms of the warping function for contact CR-warped products isometrically
immersed in Kenmotsu space forms.

Recently, in [3], M. Atçeken studied on the contact CR-warped product submanifolds of a cosymplectic
space form and obtained a necessary and sufficient condition for a contact CR-product.

Motivated by the studies of the above authors, in the present study, we consider contact CR-warped
product submanifolds of a trans-Sasakian generalized Sasakian space forms and obtain a necessary and sufficient
condition for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space form
to be a contact CR-product.

The paper is organized as follows: In Section 2, we give a brief information about almost contact
metric manifolds. Moreover, in this section the definitions of a generalized Sasakian space form and a contact
CR-warped product submanifold are given. In Section 3, warped product manifolds are introduced. In the
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last section, we establish a sharp relationship between the warping function f and the squared norm of the
second fundamental form σ of a contact CR-warped product submanifold of a trans-Sasakian manifold and give
characterizations for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space
form to be a contact CR-product submanifold.

2. Preliminaries

An odd-dimensional Riemannian manifold M̃ is called an almost contact metric manifold if there exist

on M̃ a (1, 1)-tensor field ϕ , a vector field ξ (called a structure vector field), a 1-form η and the Riemannian

metric g on M̃ such that

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η(ξ) = 1, η ◦ ϕ = 0, (1)

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), (2)

η(X) = g(X, ξ), g(ϕX, Y ) = −g(X, ϕY ), (3)

for all vector fields on M̃ [4].

Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X, Y ) = g(X, ϕY ) is called

the fundamental 2-form of M̃ .

On the other hand, the almost contact metric structure of M̃ is said to be normal if [ϕ, ϕ](X, Y ) =

−2dη(X, Y )ξ for any X, Y on M̃ , where [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ , given by

[ϕ, ϕ](X, Y ) = ϕ2[X, Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ] − ϕ[X, ϕY ].

A normal contact metric manifold is called a Sasakian manifold [4]. It is easy to see that an almost contact
metric manifold is Sasakian if and only if

(∇̃Xϕ)Y = g(X, Y )ξ − η(Y )X,

for any X, Y on M̃ .

In [13], A. Oubiña introduced the notion of a trans-Sasakian manifold. An almost contact metric manifold

M̃ is said to be a trans-Sasakian manifold if there exist two functions α and β on M̃ such that

(∇̃Xϕ)Y = α[g(X, Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX], (4)

for all vector fields on M̃ . If β = 0 (resp. α = 0), then M̃ is said to be an α -Sasakian manifold (resp.

β -Kenmotsu manifold). Sasakian manifolds (resp. Kenmotsu manifolds) appear as examples of α -Sasakian

manifolds (resp. β -Kenmotsu manifolds), with α = 1 (resp. β = 1).

From the above equation, for a trans-Sasakian manifold we also have

∇̃Xξ = −αϕX + β[X − η(X)ξ]. (5)
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A plane section in the tangent space TxM̃ at x ∈ M̃ is called a ϕ-section if it is spanned by a vector X

orthogonal to ξ and ϕX. The sectional curvature K(X ∧ϕX) with respect to a ϕ-section denoted by a vector
X is called a ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is a Sasakian
space form [4] and its Riemannian curvature tensor is given by

R̃(X, Y )Z =
1
4
(c + 3){g(Y, Z)X − g(X, Z)Y }

+
1
4
(c − 1){η(X)η(Z)Y − η(Y )η(Z)X (6)

+g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ}.

Given an almost contact metric manifold M̃ , it is said to be a generalized Sasakian space form [1] if there

exist three functions f1, f2 and f3 on M̃ such that

R̃(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }

+f2{g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ} (7)

+f3{η(X)η(Z)Y − η(Y )η(Z)X

+g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ},

for any vector fields X, Y, Z on M̃ , where R̃ denotes the curvature tensor of M̃ . If f1 = c+3
4

, f2 = f3 = c−1
4

,

then M̃ is a Sasakian space form [4], if f1 = c−3
4 , f2 = f3 = c+1

4 , then M̃ is a Kenmotsu space form [9], if

f1 = f2 = f3 = c
4 , then M̃ is a cosymplectic space form [10].

Let f : M −→ M̃ be an isometric immersion of an n-dimensional Riemannian manifold M into an

(n + d)-dimensional Riemannian manifold M̃ . We denote by ∇ and ∇̃ the Levi-Civita connections of M and

M̃ , respectively. Then we have the Gauss and Weingarten formulas

∇̃XY = ∇XY + σ(X, Y ) (8)

and

∇̃XN = −ANX + ∇⊥
XN, (9)

where ∇⊥ denotes the normal connection on T⊥M of M and AN is the shape operator of M , for X, Y ∈ χ(M)
and a normal vector field N on M . We call σ the second fundamental form of the submanifold M . If σ = 0
then the submanifold is said to be totally geodesic. The second fundamental form σ and AN are related by

g(ANX, Y ) = g(σ(X, Y ), N),

for any vector fields X, Y tangent to M .

The equation of Gauss and Codazzi are defined by

(R̃(X, Y )Z)� = R(X, Y )Z + Aσ(X,Z)Y − Aσ(Y,Z)X (10)
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and

(R̃(X, Y )Z)⊥ = (∇Xσ)(Y, Z) − (∇Y σ)(X, Z), (11)

for all vector fields X, Y, Z on M̃ , where (R̃(X, Y )Z)� and (R̃(X, Y )Z)⊥ denote the tangent and normal

components of R̃(X, Y )Z , respectively.

Moreover, the first derivative ∇σ of the second fundamental form σ is given by

(∇Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z) − σ(∇XY, Z) − σ(Y,∇XZ), (12)

where ∇ is called the van der Waerden-Bortolotti connection of M [5].

An m-dimensional Riemannian submanifold M of a trans-Sasakian manifold M̃ , where ξ is tangent to
M , is called a contact CR-submanifold if it admits an invariant distribution D whose orthogonal complementary

distribution D⊥ is anti-invariant, that is

TM = D ⊕ D⊥ ⊕ sp{ξ}

with ϕDx ⊆ Dx and ϕD⊥
x ⊆ T⊥

x M for each x ∈ M , where sp{ξ} denotes 1-dimensional distribution which is
spanned by ξ .

Let us denote the orthogonal complementary of ϕD⊥ in T⊥M by υ . Then we have

T⊥M = ϕD⊥ ⊕ υ.

It is obvious that ϕυ = υ .
For any vector field X tangent to M , we can write

ϕX = TX + NX,

where TX (resp. NX ) denotes tangential (resp. normal) component of ϕX .

Similarly, for any vector field N normal to M , we put

ϕN = BN + CN,

where BN (resp. CN ) denotes the tangential (resp. normal) component of ϕN .

3. Warped product manifolds

Let (B, g
B
) and (F, g

F
) be two Riemannian manifolds and f is a positive differentiable function on B .

Consider the product manifold B × F with its projections π : B × F → B and σ : B × F → F . The warped
product B ×f F is the manifold B × F with the Riemannian structure such that

‖X‖2 = ‖π∗(X)‖2 + f2(π(p)) ‖σ∗(X)‖2
,

for any vector field X on M . Thus we have

g = g
B

+ f2g
F
, (13)

holds on M . The function f is called the warping function of the warped product [12].

We need the following lemma from [12], for later use :
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Lemma 3.1 Let us consider M = B ×f F and denote by ∇ , B∇ and F∇ the Riemannian connections on

M , B and F , respectively. If X, Y are vector fields on B and V, W on F , then:

(i) ∇XY is the lift of B∇XY,

(ii) ∇XV = ∇V X = (Xf/f)V,

(iii) The component of ∇V W normal to the fibers is −(g(V, W )/f)gradf,

(iv) The component of ∇V W tangent to the fibers is the lift of F∇V W.

Let we chose a local orthonormal frame e1, ..., en such that e1, ..., en1 are tangent to B and en1+1, ..., en

are tangent to F . The gradient and Hessian form of f are defined by

X(f) = g(gradf, X) (14)

and
Hf(X, Y ) = X(Y (f)) − (∇XY )f = g(∇Xgradf, Y ), (15)

for any vector fields X, Y on M , respectively.

Moreover, the Laplacian of f is given by

Δf =
n∑

i=1

{(∇eiei)f − ei(ei(f))} = −
n∑

i=1

g(∇eigradf, ei), (16)

(see [12]).

From the Green Theory for compact orientable Riemannian manifolds without boundary, it is well-known
that ∫

M

ΔfdV = 0, (17)

where dV denotes the volume element of M .

4. Contact CR-warped product submanifolds

In this section, we establish a sharp relationship between the warping function f and the squared norm of
the second fundamental form σ of a contact CR-warped product submanifold of a trans-Sasakian manifold and
give characterizations for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian
space form to be a contact CR-product submanifold.

Now, let’s begin with the following lemma.

Lemma 4.1 Let M = M� ×f M⊥ be a contact CR-warped product submanifold of a trans-Sasakian manifold

M̃ . Then we have
g(σ(ϕX, Y ), ϕY ) = X(ln f)g(Y, Y ), (18)

g(σ(X, Y ), ϕY ) = −ϕX(ln f)g(Y, Y ) (19)

and
g(σ(ϕX, Z), ϕY ) = 0, (20)

for any vector fields X, Z on M� and Y on M⊥ .
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Proof. Assume that M is a contact CR-warped product submanifold of a trans-Sasakian manifold M̃ . From
the Gauss formula we can write

∇̃Y ϕX = ∇Y ϕX + σ(ϕX, Y ), (21)

for vector fields X on M� and Y on M⊥ . Taking the inner product of the above equation with ϕY we get

g(σ(ϕX, Y ), ϕY ) = g(∇̃Y ϕX, ϕY ). (22)

Since M̃ is a trans-Sasakian manifold, from (4) we have

(∇̃Y ϕ)X = α[g(X, Y )ξ − η(X)Y ] + β[g(ϕY, X)ξ − η(X)ϕY ]. (23)

By the use of M is a contact CR-warped product submanifold, the equation (23) reduces to

(∇̃Y ϕ)X = 0,

which implies that

∇̃Y ϕX = ϕ∇̃Y X. (24)

In view of (24) in (22), we obtain

g(σ(ϕX, Y ), ϕY ) = g(ϕ∇̃Y X, ϕY ).

Using (2), the last equation turns into

g(σ(ϕX, Y ), ϕY ) = g(∇̃Y X, Y ).

By making use of the Gauss equation again, we get

g(σ(ϕX, Y ), ϕY ) = g(∇Y X, Y ).

Since ∇XY −∇Y X = [X, Y ] = 0 for vector fields X on M� and Y on M⊥ , from [12], the above equation can
be written as

g(σ(ϕX, Y ), ϕY ) = g(∇XY, Y ). (25)

So by virtue of the Lemma 3.1, (25) gives us (18).

Similarly by the use of the Gauss formula we can write

g(σ(X, Y ), ϕY ) = g(∇̃Y X, ϕY ).

From (3), the last equation shows us

g(σ(X, Y ), ϕY ) = −g(ϕ∇̃Y X, Y ).

In view of (24), we get

g(σ(X, Y ), ϕY ) = −g(∇̃Y ϕX, Y ).

Then, by the use of the Gauss formula and Lemma 3.1 we obtain (19).
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Similar to the proof of (18) and (19) we can easily show that

g(σ(ϕX, Z), ϕY ) = g(∇ZX, Y ),

for any vector fields X, Z on M� and Y on M⊥ . Since M� is totally geodesic in M , the above equation gives
us (20). Hence, we finish the proof of the lemma. �

Lemma 4.2 Let M = M� ×f M⊥ be a contact CR-warped product submanifold of a trans-Sasakian manifold

M̃ . Then we have

g(σ(ϕX, Y ), ϕσ(X, Y )) = ‖σ(X, Y )‖2 − [ϕX(ln f)]2 ‖Y ‖2
, (26)

for any vector fields X on M� and Y on M⊥ .

Proof. Taking the inner product of (21) with ϕσ(X, Y ) we get

g(σ(ϕX, Y ), ϕσ(X, Y )) = g(∇̃Y ϕX −∇Y ϕX, ϕσ(X, Y )),

for any vector fields X on M� and Y on M⊥ .

Since the ambient space M̃ is trans-Sasakian, by the use of (24) and Lemma 3.1 we find

g(σ(ϕX, Y ), ϕσ(X, Y )) = g(ϕ∇̃Y X, ϕσ(X, Y )) − g(ϕX(ln f)Y, ϕσ(X, Y )). (27)

In view of (2) and (3), the equation (27) reduces to

g(σ(ϕX, Y ), ϕσ(X, Y )) = g(∇̃Y X, σ(X, Y )) + ϕX(ln f)g(ϕY, σ(X, Y )).

Then, from the Gauss formula and the equation (19) we obtain

g(σ(ϕX, Y ), ϕσ(X, Y )) = g(σ(X, Y ), σ(X, Y )) − [ϕX(ln f)]2g(Y, Y ),

which gives us (26). Thus, the proof of the lemma is completed. �

Lemma 4.3 Let M = M�×f M⊥ be a contact CR-warped product submanifold of a trans-Sasakian generalized

Sasakian space form M̃(f1, f2, f3) . Then we have

2 ‖σ(X, Y )‖2 = {H ln f(X, X) + H ln f (ϕX, ϕX) (28)

+2[ϕX(ln f)]2 + 2f2 ‖X‖2} ‖Y ‖2
,

for any vector fields X on M� and Y on M⊥ .

Proof. In view of the equation (11), we can write

g(R̃(X, ϕX)Y, ϕY ) = g((∇Xσ)(ϕX, Y ) − (∇ϕXσ)(X, Y ), ϕY ), (29)
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for any vector fields X on M� and Y on M⊥ . Then, by the use of (12) the equation (29) reduces to

g(R̃(X, ϕX)Y, ϕY ) = g(∇⊥
Xσ(ϕX, Y ) − σ(∇XϕX, Y ) − σ(∇XY, ϕX), ϕY )

−g(∇⊥
ϕXσ(X, Y ) + σ(∇ϕXX, Y ) + σ(∇ϕXY, X), ϕY ).

By making use of the Weingarten formula in the above equation, we get

g(R̃(X, ϕX)Y, ϕY ) = g(∇̃Xσ(ϕX, Y ), ϕY ) − g(σ(∇XϕX, Y ), ϕY )

−g(σ(∇XY, ϕX), ϕY ) − g(∇̃ϕXσ(X, Y ), ϕY )

+g(σ(∇ϕXX, Y ), ϕY ) + g(σ(∇ϕXY, X), ϕY ).

By virtue of the properties of the Levi-Civita connection ∇̃, the above equation can be written as follows

g(R̃(X, ϕX)Y, ϕY ) = X[g(σ(ϕX, Y ), ϕY )] − g(σ(ϕX, Y ), ∇̃XϕY )

−g(σ(∇XϕX, Y ), ϕY ) − g(σ(∇XY, ϕX), ϕY )

−ϕX[g(σ(X, Y ), ϕY )] + g(σ(X, Y ), ∇̃ϕXϕY )

+g(σ(∇ϕXX, Y ), ϕY ) + g(σ(∇ϕXY, X), ϕY ).

Then, in view of Lemma 3.1, Lemma 4.1 and (24), the last equation turns into

g(R̃(X, ϕX)Y, ϕY ) = X[X(ln f)g(Y, Y )] − g(σ(ϕX, Y ), ϕ∇̃XY )

+ϕ∇XϕX(ln f)g(Y, Y ) − X(ln f)g(σ(ϕX, Y ), ϕY )

+ϕX[ϕX(ln f)g(Y, Y )] + g(σ(X, Y ), ϕ∇̃ϕXY )

−ϕ∇ϕXX(ln f)g(Y, Y ) + ϕX(ln f)g(σ(X, Y ), ϕY ). (30)

Taking into account of the covariant derivative and the Gauss formula in (30) we obtain

g(R̃(X, ϕX)Y, ϕY ) = X(X(ln f))g(Y, Y ) + 2X(ln f)g(∇XY, Y )

−g(σ(ϕX, Y ), ϕ∇XY ) − g(σ(ϕX, Y ), ϕσ(X, Y ))

+ϕ∇XϕX(ln f)g(Y, Y ) − X(ln f)g(σ(ϕX, Y ), ϕY )

+ϕX(ϕX(ln f))g(Y, Y ) + 2ϕX(ln f)g(∇ϕXY, Y )

+g(σ(X, Y ), ϕ∇ϕXY ) + g(σ(X, Y ), ϕσ(X, Y ))

−ϕ∇ϕXX(ln f)g(Y, Y ) + ϕX(ln f)g(σ(X, Y ), ϕY ).

By the use of Lemma 3.1, Lemma 4.1 and Lemma 4.2 in the above equation we get

g(R̃(X, ϕX)Y, ϕY ) = {X(X(ln f)) + ϕ∇XϕX(ln f)

−ϕ∇ϕXX(ln f) + ϕX(ϕX(ln f))

+2[ϕX(ln f)]2}g(Y, Y ) − 2 ‖σ(X, Y )‖2
. (31)
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Since M� is totally geodesic in M and it is an invariant submanifold of a trans-Sasakian manifold M̃ , from
(4) we have

ϕ∇XϕX = −∇XX (32)

and
ϕ∇ϕXX = ∇ϕXϕX + βg(X, X)ξ. (33)

By making use of (32) and (33) in (31), we obtain

g(R̃(X, ϕX)Y, ϕY ) = {X(X(ln f)) −∇XX(ln f) −∇ϕXϕX(ln f)

−βg(X, X)ξ(ln f) + ϕX(ϕX(ln f))

+2[ϕX(ln f)]2}g(Y, Y ) − 2 ‖σ(X, Y )‖2
.

Since ξ(ln f) = 0, the above equation reduces to

g(R̃(X, ϕX)Y, ϕY ) = {X(X(ln f)) −∇XX(ln f)

+ϕX(ϕX(ln f)) −∇ϕXϕX(ln f)

+2[ϕX(ln f)]2}g(Y, Y ) − 2 ‖σ(X, Y )‖2
,

which gives us

g(R̃(X, ϕX)Y, ϕY ) = {H ln f(X, X) + H ln f(ϕX, ϕX) (34)

+2[ϕX(ln f)]2}g(Y, Y ) − 2 ‖σ(X, Y )‖2
.

On the other hand, since M̃ is a generalized Sasakian space form, in view of (7) we get

g(R̃(X, ϕX)Y, ϕY ) = −2f2g(X, X)g(Y, Y ). (35)

Hence, comparing the right hand sides of the equations (34) and (35) we can write

2 ‖σ(X, Y )‖2 = {H ln f (X, X) + H ln f(ϕX, ϕX)

+2[ϕX(ln f)]2 + 2f2g(X, X)}g(Y, Y ).

Thus, the proof of the lemma is completed. �

Theorem 4.4 Let M = M� ×f M⊥ be a compact contact CR-warped product submanifold of a trans-Sasakian

generalized Sasakian space form M̃(f1, f2, f3) . Then M is a contact CR-product if

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2 ≥ f2 · p · q,

where συ denotes the component of σ in υ , (2p + 1)-dim(TM�) and q -dim(TM⊥) .
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Proof. Let {e0 = f, e1, e2, ..., ep, ϕe1, ϕe2, ..., ϕep, e
1, e2, ..., eq} be an orthonormal basis of χ(M) such

that e0, e1, e2, ..., ep, ϕe1, ϕe2, ..., ϕep are tangent to M� and e1, e2, ..., eq are tangent to M⊥ . Similarly, let

{ϕe1, ϕe2, ..., ϕeq, N1, N2, ..., N2r} be an orthonormal basis of χ⊥(M) such that ϕe1, ϕe2, ..., ϕeq are tangent to

ϕ(T (M⊥)) and N1, N2, ..., N2r are tangent to χ(υ).

In view of (16), we can write

Δ lnf = −
p∑

i=1

g(∇eigrad ln f, ei) −
p∑

i=1

g(∇ϕeigrad ln f, ϕei)

−
q∑

j=1

g(∇ejgrad lnf, ej) − g(∇ξgrad lnf, ξ).

Since M̃ is trans-Sasakian, the induced connection is Levi-Civita and gradf ∈ χ(M�) we have g(∇ξgrad lnf, ξ) =

0. Hence, by the use of (15), the above equation can be written as

Δ lnf = −
p∑

i=1

{H ln f(ei, ei) + H ln f (ϕei, ϕei)} −
q∑

j=1

g(∇ej grad lnf, ej).

Then, similar to the proof of the Theorem 3.4 in [3] we get

Δ lnf = −
p∑

i=1

{H ln f(ei, ei) + H ln f (ϕei, ϕei)}

−
q∑

j=1

{
ej

(
g(gradf, ej)

f

)
− 1

f
g(∇ej ej, gradf)

}
.

By the use of Lemma 3.1, since gradf ∈ χ(M�), we obtain

Δ lnf = −
p∑

i=1

{H ln f(ei, ei) + H ln f (ϕei, ϕei)} − q ‖grad ln f‖2
. (36)

On the other hand, taking X = ei and Y = ej in (28), where 1 ≤ i ≤ p and 1 ≤ j ≤ q , we can write

2
p∑

i=1

q∑
j=1

∥∥σ(ei, e
j)

∥∥2
= q{

p∑
i=1

{H ln f(ei, ei) + H ln f (ϕei, ϕei) (37)

+2
p∑

i=1

[ϕei(lnf)]2 + 2f2 · p}.

Comparing the equations (36) and (37), it can be easily seen that

−Δ lnf =
2
q

p∑
i=1

q∑
j=1

∥∥σ(ei, e
j)

∥∥2 − 2
p∑

i=1

[ϕei(ln f)]2 + q ‖grad lnf‖2 − 2f2 · p. (38)
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Furthermore, we can write the second fundamental form σ as follows

σ(ei, e
j) =

q∑
k=1

g(σ(ei, e
j), ϕek)ϕek +

2r∑
l=1

g(σ(ei, e
j), Nl)Nl ,

for each 1 ≤ i ≤ p and 1 ≤ j ≤ q . Taking the inner product of the above equation with σ(ei, e
j) we get

p∑
i=1

q∑
j=1

g(σ(ei, e
j), σ(ei, e

j)) =
p∑

i=1

q∑
j,k=1

g(σ(ei, e
j), ϕek)2 +

p∑
i=1

q∑
j=1

2r∑
l=1

g(σ(ei, e
j), Nl)2.

Then by making use of Lemma 4.1, the last equation turns into

p∑
i=1

q∑
j=1

∥∥σ(ei, e
j)

∥∥2
= q

p∑
i=1

[ϕei(ln f)]2 +
p∑

i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
. (39)

So, comparing the equations (38) and (39) we obtain

−Δ ln f =
2
q

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
+ q ‖grad lnf‖2 − 2f2 · p.

Since M is a compact submanifold, by virtue of (17) we can write

∫
M

⎧⎨
⎩

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
+

q2

2
‖grad lnf‖2 − f2 · p · q

⎫⎬
⎭ dV = 0. (40)

If
p∑

i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2 ≥ f2 · p · q,

then (40) gives us gradf = 0, which means that f is a constant on M . So, M is a contact CR-product. Hence,
we finish the proof of the theorem. �

Proposition 4.5 Let M = M� ×f M⊥ be a compact contact CR-warped product submanifold of a trans-

Sasakian generalized Sasakian space form M̃(f1, f2, f3) . Then M is a contact CR-product if and only if

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
= f2 · p · q. (41)

Proof. Assume that M is a compact contact CR-warped product submanifold of trans-Sasakian generalized

Sasakian space form M̃ satisfying
p∑

i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
= f2 · p · q.
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Then, from (40) it is easy to see that f is a constant on M , which implies that M is a contact CR-product.

Conversely, if M is a contact CR-product, then f is a constant on M . So we get

g(σ(X, Y ), ϕY ) = −ϕX(ln f)g(Y, Y ) = 0,

for any vector fields X on M� and Y on M⊥ . So, the last equation can be written as

g(ϕσ(X, Y ), Y ) = 0,

which gives us Bσ(X, Y ) = 0, i. e. σ(X, Y ) ∈ χ(υ). Hence, we obtain (41). �

As a consequence of the above proposition, we can give the following corollaries.

Corollary 4.6 [8] Let M = M� ×f M⊥ be a compact contact CR-warped product submanifold of a Sasakian

space form M̃(c) . Then M is a contact CR-product if and only if

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
=

(c − 1)
4

p.q.

Corollary 4.7 [2] Let M = M� ×f M⊥ be a compact contact CR-warped product submanifold of a Kenmotsu

space form M̃(c) . Then M is a contact CR-product if and only if

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
=

(c + 1)
4

p.q.

Corollary 4.8 [3] Let M = M�×f M⊥ be a compact contact CR-warped product submanifold of a cosymplectic

space form M̃(c) . Then M is a contact CR-product if and only if

p∑
i=1

q∑
j=1

∥∥συ(ei, e
j)

∥∥2
=

c

4
p.q.
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