
Hydrothermal synthesis and structural investigation of a new polymorph form of NdBO3 Related Articles Additional information on AIP Conf. Proc

Hydrothermal synthesis and structural investigation of a new polymorph form of NdBO3

Berna Tekin and Halil Güler

Citation: AIP Conf. Proc. 1476, 356 (2012); doi: 10.1063/1.4751627

View online: http://dx.doi.org/10.1063/1.4751627

View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1476&Issue=1

Published by the American Institute of Physics.

Related Articles

Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments Appl. Phys. Lett. 102, 061906 (2013)

Communication: Designed diamond ground state via optimized isotropic monotonic pair potentials J. Chem. Phys. 138, 061101 (2013)

Search for long-range ferromagnetism: Charge-spin co-doped Ba1-x-yLax+yTi1-xMxO3 (M = Cr, Fe, and Co) J. Appl. Phys. 113, 063902 (2013)

Structure and multiferroic properties of Bi(1-x)DyxFe0.90Mg0.05Ti0.05O3 solid solution J. Appl. Phys. 113, 054102 (2013)

First-principles study of the structural, electronic, and optical properties of Y-doped SrSi2 J. Appl. Phys. 113, 043515 (2013)

Additional information on AIP Conf. Proc.

Journal Homepage: http://proceedings.aip.org/

Journal Information: http://proceedings.aip.org/about/about the proceedings

Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS Information for Authors: http://proceedings.aip.org/authors/information_for_authors

ADVERTISEMENT

Submit Now

Explore AIP's new open-access journal

- Article-level metrics now available
- Join the conversation!
 Rate & comment on articles

Hydrothermal Synthesis and Structural Investigation of a New Polymorph Form of NdBO₃

Berna Tekin^a and Halil Güler^a

^aDepartment of Chemistry, Science Faculty Balikesir University, 10145, Balikesir, Turkey

Abstract. The present work deals with the hydrothermal synthesis of a new polymorph form of neodymium orthoborate, NdBO3. It was obtained by dissolving 0.1875g B2O3 in 20 ml distilled water and later added to 1.8125 g Nd2O3 and the mixture was transferred to a teflon autoclave. The hydrothermal reaction was performed at 230 °C for 72 h. Characterizations of the sample were carried out by using X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermal Analysis (DTA/TG) techniques. NdBO3 was crystallized in monoclinic system and unit cell parameters were calculated as a=11.726(1) Å, b= 6.759(2) Å, c= 9.909(4) Å, β = 114.50(0)°, and space group of C2/c. It was confirmed that NdBO3 was isostructural with the form of Er doped YBO3 (a=11.3138(3) Å, b=6.5403(2) Å, c= 9.5499(2) Å and β = 112.902(1)°) at room temperature. The other significant invention of NdBO3 was thermally stable up to 700 °C, but if the specimen was heated at 780 °C for 4 h, the monoclinic crystal structure was transformed to the aragonite form of NdBO3 (ICDD 12-756).

Keywords: Hydrothermal synthesis, solid state reactions, x-ray powder diffraction

PACS: 61.66.Fn

INTRODUCTION

Since the rare earth orthoborates had some extraordinary optical properties, a great deal of interest has been paid to these types of materials. This quenching phenomenon occurs when active ions get separated from anions like PO₄, WO₄ and BO₃, which are big enough. Boron atoms show high structural complexity with the linkage of planar BO₃ and nonplanar BO₄ groups in the crystal systems [1-2].

Initially a scientific group designed and synthesized a new type $NdBO_3$ with a vaterite form which was obtained from using hydrothermal method by mixing the Nd_2O_3 and B_2O_3 compounds with known stoichiometry at 200 °C for one day [3]. The crystal system was characterized by XRD technique and found as hexagonal with the cell parameters a= 3.9008(8) Å and c= 9.0196(6) Å and space group P63/mmc.

Lin et al., [4] in another investigation, studied Er doped YBO₃ which was synthesized by solid-state reaction at 1100° C for 10 h. The powder crystals were analyzed at room temperature and found as monoclinic system with the cell parameters a= 11.3138(3) Å, b= 6.5403(2) Å, c= 9.5499(2) Å and β = $112.902(1)^{\circ}$. The space group was determined as C2/c. The same powder crystals were also characterized by neutron diffraction technique at 1000 °C. The high temperature monoclinic polymorph form was indexed as a= 12.2019(3) Å, b= 7.0671(2) Å, c= 9.3424(2) Å and β = $115.347(1)^{\circ}$ with the space group C2/c. In this study, a major evidence discovered was that the boron atoms were tetrahedrally coordinated at room

2nd International Advances in Applied Physics and Materials Science Congress AIP Conf. Proc. 1476, 356-360 (2012); doi: 10.1063/1.4751627 © 2012 American Institute of Physics 978-0-7354-1085-5/\$30.00

temperature crystal form (labelled also at low temperature form), whereas at high temperature, all boron atoms were found in a triangular coordination [4].

EXPERIMENTAL

Synthesis

The hydrothermal solution was prepared by dissolving $0.1875 \text{ g B}_2\text{O}_3$ in 20 ml distilled water and later added to $1.8125 \text{ g Nd}_2\text{O}_3$. Then, the homogeneous mixture had been transferred into autoclave. The top of the autoclave had been closed firmly and kept in the oven at 230 °C for 72 h. In order to remove the impurities, the product had been washed in hot distilled water and then dried in the oven at 60 °C for 4 h. NdBO₃ was obtained in 97 % yield (1.0609 g) as lilac-colored.

Characterization

The initial reagents of Nd_2O_3 and B_2O_3 have high analytical purity. Hydrothermal reactions have been done in an oven, BINDER ED 53/E2, raised up to maximum 300 °C by using stainless-steel autoclaves covered with teflon in its internal surface and having 45 ml internal volume. The XRD analyses have been done by using an X-ray powder diffractometer of RIGAKU Dmax 2200, works with CuK_α = 1.54059Å, 30 mA, 40 kV radiation. The infrared spectrum had been taken by using a FTIR spectrophotometer of the PERKIN ELMER BX-2, which work in the 4000-400 cm⁻¹ ray range. The thermo gravimetric and differential thermal analysis of the product have been obtained between 20-1200 °C, in the nitrogen atmosphere and with instrument of PERKIN ELMER/DIAMOND TG/DTA, has a 10 °C/minute calibration. The refined unit cell parameters have been calculated with the POWD program (an interactive program for interpreting and indexing powder diffraction data) written down by E. Wu [5].

RESULTS AND DISCUSSION

The formation mechanism of NdBO₃ in the hydrothermal synthesis is described by Ma et al. [3] as B_2O_3 molecules are dispersed into water by formation of H_3BO_3 at relatively low temperature (< 170°C). Later, bulk Nd_2O_3 entirely turns into to nanosize $Nd(OH)_3$. Finally, the interaction of nanoparticles $Nd(OH)_3$ with H_3BO_3 results from the formation of $NdBO_3$.

The XRD pattern of synthesized NdBO₃ was given in "Fig. 1". All peaks "TABLE 1" were indexed in monoclinic system in unit cell parameters a= 11.726(1) Å, b= 6.759(2) Å, c= 9.909(4) Å, β = 114.50(0)°, and space group C2/c. The results justified that crystal form of NdBO₃ was isostructural with the Er doped YBO₃ (a=11.3138(3) Å, b=6.5403(2) Å, c=9.5499(2) Å and β =112.902(1)°) at room temperature form which was previously reported by Lin et al. [4]. Since the half-diameter of Nd⁺³ ion (r=1.04 Å) is bigger than Y⁺³ ion (r=0.92 Å), the unit cell parameters are slightly enlarged [6].

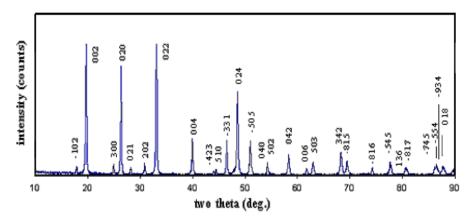


FIGURE 1. XRD Patterns of NdBO₃.

TABLE 2. XRD Data of NdBO₃.

No	2θ	I/I_0	d _(obs.) (Å)	d _(cal.) (Å)	hkl	Difference (10 ⁻⁴)
1	17.879	5	4.9571	4.9545	-102	0.2
2	19.680	91	4.5074	4.5086	002	0.2
3	24.959	7	3.5647	3.5568	300	2.1
4	26.360	77	3.3783	3.3796	020	0.4
5	28.181	5	3.1640	3.1646	021	0.2
6	30.858	8	2.8954	2.9012	202	2.9
7	33.099	100	2.7043	2.7042	022	0.1
8	36.160	1	2.4821	2.4813	410	0.6
9	39.959	27	2.2544	2.2543	004	0.1
10	43.923	3	2.0597	2.0614	-423	2.3
11	44.478	4	2.0353	2.0350	510	0.3
12	46.501	27	1.9514	1.9519	-331	0.8
13	47.902	4	1.8975	1.8956	-215	3.2
14	48.499	63	1.8755	1.8754	024	0.2
15	50.960	26	1.7906	1.7916	-505	2.0
16	54.240	9	1.6898	1.6898	040	0.0
17	54.642	2	1.6783	1.6784	502	0.4
18	58.259	14	1.5824	1.5823	042	0.3
19	61.676	4	1.5027	1.5029	006	0.6
20	62.959	8	1.4751	1.4751	503	0.0
21	68.200	18	1.3740	1.3734	342	2.8
22	69.422	10	1.3527	1.3525	-815	1.0
23	74.179	5	1.2773	1.2772	-816	0.3
24	77.581	10	1.2296	1.2293	-545	2.0
25	80.271	2	1.1950	1.1950	136	0.1
26	80.542	6	1.1917	1.1919	-817	1.4
27	80.801	4	1.1885	1.1885	425	0.1
28	86.139	5	1.1276	1.1277	-745	0.6
29	86.539	6	1.1238	1.1243	-554	3.8
30	86.733	1	1.1218	1.1216	-934	1.5
31	87.701	6	1.1119	1.1118	018	0.9
32	87.919	2	1.1097	1.1097	416	0.1
33	89.600	3	1.0932	1.0932	822	0.1

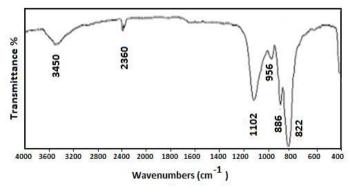


FIGURE 2. FTIR Spectrums of NdBO₃ at Room Temperature.

Since the boron may be present in both triangular (BO₃) and/or tetrahedral (BO₄) coordination in borate compounds, infrared spectrum could easily determine boron coordination. Specifically, trigonally coordinated boron exhibits strong and broad B-O stretching absorption bands in the 1300-1100 cm⁻¹ region and tetrahedral boron in the 1100-800 cm⁻¹ region. In the present work, no peaks in the 1300-1100 cm⁻¹ region were observed but the peaks were seen in the 1100-800 cm⁻¹ region. In this respect, boron atoms in the crystal structure were coordinated tetrahedrally instead of trigonally [7-9] "Fig. 2".

The DTA/TG analysis demonstrates that there is no significant mass loss between 20 and 1200 °C. As it can be seen at the graphics "Fig. 3", the crystal structure is stable up to 700 °C. But above this temperature, it is pointed out that there exists an exothermic peak at 762 °C. At that temperature a phase transformation was observed. In order to determine this phase, the sample was heated at 780 °C for 4h. The XRD data has been demonstrated that NdBO₃ with monoclinic structure that turns into the arragonite form (NdBO₃ ICDD12-756) by this heating process "Fig. 4".

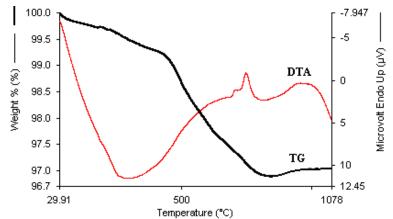


FIGURE 3. The Simultaneous DTA/TG Curves of NdBO₃

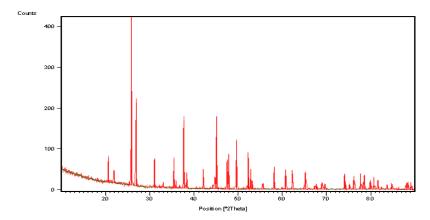


FIGURE 4. XRD Pattern of heated NdBO₃ Compound (Arragonite Form).

CONCLUSION

A new polymorph form of NdBO₃ has been obtained for the first time by hydrothermal synthesis technique. The product was obtained in 97 % yield as lilaccoloured. The crystal structure of NdBO₃ was found as monoclinic with the unit cell parameters a=11.726(1), b= 6.759(2) Å c= 9.909(4) Å and β = 114.50(0) °, space group C2/c. It was confirmed that NdBO₃ was isostructural with the Er doped YBO₃ (a=11.3138(3) Å, b=6.5403(2) Å, c= 9.5499(2) Å and β = 112.902(1)°) at room temperature form. The other significant invention of NdBO₃ was thermally stable up to 700 °C , but if the specimen was heated at 780 °C for 4 h, the monoclinic crystal structure was transformed to the aragonite form of NdBO₃ (ICDD 12-756).

ACKNOWLEDGEMENT

Authors would like to thank to Balikesir University Research Project Foundation (Fund contract no.: 2004-22) and TUBITAK (TBAG-HD/37 105T050) for financial support.

REFERENCES

- 1. M.Th. Cohen-Adad, O. Aloui-Lebbou, C. Goutaudier, G. Panczer, C. Dujardin, C. Pedrini, P. Florian, D. Massiot, F. Gerard, C. Kappenstein, *J. Solid State Chem.* **154**, 204-213 (2000).
- 2. S.R. Chinn, H.Y.P. Hong, Opt. Commun. 18, 87-88 (1976).
- 3. J. Ma, Q. Wu, Y. Ding, Y. Chen, Crys. Growth Design 22, 1553-1560 (2007).
- 4. J. Lin, D. Spheptyakov, Y. Wang, P. Allenspach, Chem. Mater. 16, 2418-2424 (2004).
- 5. E. Wu, J. Appl. Crystallogr. 22, 506-510 (1989).
- 6. M.H. Battley, Mineralogy for Students, Edinburgh, Oliver and Boyd, 1972, pp 13.
- 7. S. D. Ross, Spectrochim. Acta 28A, 1775-1785 (1972).
- 8. Y. Shi, J. Liang, J. Solid State Chem. 135, 43-51 (1998).
- 9. J. Yongzhang, G. Shiyang, X. Shuping, L. Jun, Spectrochimica Acta A56, 1291-1297 (2000).