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Melatonin Modulates the Immune System Response 
and Inflammation in Diabetic Rats Experimentally-
Induced by Alloxan

(IL-1β) and tumor necrosis factor-α (TNF-α), pro-
mote the destruction of pancreatic endocrine 
islets via islet-infiltrating immune cells [5].
It has been demonstrated that many functional 
abnormalities associated with diabetes can par-
tially contribute to failure in appropriate inflam-
matory responses. Some researchers have 
suggested the concurrent occurrence of allergic 
disorders in T1DM [6]. In addition, it has been 
proposed that mast cells and eosinophil accumu-
lation are decreased in the pleural cavity due to 
allergic reactions in diabetes mellitus patients 
[7]. Mast cells (MCs) have central effector and 
regulatory roles in inflammatory diseases (auto-
immunity, allergic diseases, and parasitic infec-
tions) [8]. They are located in many tissues in the 
body, such as the airways, skin, gastrointestinal 
tract, and lymphoid tissues, and have the ability 
to release proinflammatory and immunoregula-
tory mediators [6]. The autoimmune response 
against islet β cells is believed to result from a 
disorder of immunoregulation. Macrophages 

Introduction
▼
Diabetes mellitus (DM) is characterized by high 
blood glucose, polyuria, polydipsia, and polypha-
gia accompanied by insulin secretion from pan-
creatic β cells that are insufficient to maintain 
blood glucose homeostasis [1]. DM is divided 
into 2 etiopathogenic groups. Type 1 diabetes 
mellitus (T1DM) is defined in the first category 
and is caused by the autoimmune destruction of 
β cells. Type 2 diabetes mellitus (T2DM) is pro-
duced by conditions that reduce insulin sensitiv-
ity and negatively affect β-cell activities [1, 2]. 
DM results in hyperglycemia, neuropathy, 
nephropathy, and retinopathy due to insulin defi-
ciency or resistance and high blood glucose [2]. 
There is also some evidence suggesting that dia-
betics have a deficiency in inflammatory control 
[3]. Cytokines are chemical substances that have 
an important role in the immune response of 
many diseases, including type 1 diabetes [4]. Pro-
inflammatory cytokines, such as interleukin-1β 
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Abstract
▼
Diabetes mellitus (DM) is a metabolic disease, 
which causes an increase in the proinflammatory 
cytokines tumor necrosis factor-α (TNF-α) and 
interleukin 1β (IL-1β), and also proliferation of 
monocyte chemotactic protein. In the present 
study, the potential effects of melatonin on pro-
inflammatory cytokines, hematological values, 
and lymphoid tissues were investigated in dia-
betic rats. In the study, 36 male rats were ran-
domly divided into 4 groups as follows: Control, 
Mel (melatonin), DM, and DM-Mel. For 15 days, 
an isotonic saline solution was given to the Con-
trol and DM groups; melatonin was administered 
to the Mel and DM-Mel groups intraperitoneally. 
At the end of the study, all animals were sacri-
ficed by drawing the blood from their hearts 

under deep anesthesia. Samples of the spleen, 
thymus, and lymph nodes were fixed in 10 % for-
maldehyde for histologic analysis. Increases in 
proinflammatory serum cytokine concentra-
tions, mast cells, and total white blood cell counts 
as well as tissue destruction in the lymphoid 
organs were determined in the DM group via bio-
chemical, hematological, and histologic analyses. 
However, the findings for the DM-Mel group 
revealed decreases in serum IL-1β concentration 
and mast cell densities, and destructions in lym-
phoid tissues by the melatonin administration. 
The present study suggests that melatonin treat-
ment may control immune system regulation 
and inhibit the production of proinflammatory 
cytokines and tissue mast cell accumulation by 
preventing the destruction of lymphoid organs in 
the diabetic process.
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produce proinflammatory cytokines (IL-1β and TNF-α). IFNγ 
exert their cytotoxicity on β cells in large part by inducing the 
formation of oxygen free radicals, nitric oxide, and peroxynitrite 
in the β cells themselves [9]. TNF-α has an important key role in 
the pathogenesis of T2DM [10]. It has been shown that TNF-α 
induces insulin resistance to attenuate insulin receptor signaling 
and inhibit the activity of this hormone in animal experiments 
and cell cultures [11, 12]. Eosinophils play an important role in 
allergic diseases due to MC activation, and they release other 
inflammatory mediators. Moreover, functional abnormalities of 
neutrophils, such as phagocytic activity and chemotaxis, have 
been reported in diabetic patients [7].
Researchers have reported an immune deficiency probably asso-
ciated with a reduction in insulin secretion that occurs during 
the diabetic process [13]. In contrast, other researchers have 
found a direct correlation between hyperglycemia and infection 
incidence in diabetic patients. Later, still other researchers have 
reported the effects of platelet activating factor (PAF), leukot-
riene B (LTB), and some cytokines related with this concept 
[14, 15]. However, the underlying mechanisms between diabetes 
mellitus and defects in the immune response have not yet been 
determined.
Melatonin (Mel) is a powerful antioxidant agent, and its actions 
are mediated through receptor-mediated and independent 
mechanisms [16, 17]. Melatonin has been used for the treatment 
of some diseases related with oxidative stress [18–20]. In par-
ticular, the immune-modulatory effects of melatonin have been 
investigated in many studies and have shown its ability to con-
trol the immune response [17, 20, 21]. Additionally, bioregula-
tory effects of melatonin on peripheral organs such as skin were 
suggested by contributing to the melatoninergic antioxidative 
system of the skin [22–24].
The hypothesis of the present study on immune regulatory 
effects control is to find out whether melatonin coordinates 
inflammation and prevents the destruction of lymphoid tissues 
in diabetic rats. The aims of the study are to investigate the dia-
betic effects and the potential protective effects of melatonin on 
the immune system by means of hematologic values, inflamma-
tory cytokines, and MC activation as well as histopathologic 
alterations in the spleen, thymus, and lymph nodes of rats with 
experimentally induced diabetes.

Material and Methods
▼
Animal housing and experimental design
Thirty-six male Sprague-Dawley rats weighing 180–200 g were 
used in the study. The experiments were conducted according to 
the ethical norms approved by the Local Ethics Committee of 
Ataturk University for Animal Experiments (Decision No. 
HADYEK 2013-58). All animals were housed under standard 
laboratory conditions (light period from 06:00 AM to 7:00 PM, 
21 ± 2 °C, and relative humidity: 58 %). The rats were given water 
and fed a regular rat diet. All rats were divided into 4 groups as 
described below:
▶	 The Control (C) group consisted of 9 animals who were not 

given any treatment throughout the study.
▶	 The Melatonin (Mel) group included 9 animals who were 

given the melatonin treatment intraperitoneally (IP) at a dose 
of 10 mg/kg − 1 per day for 15 days.

▶	 The Diabetic (DM) group encompassed 9 animals who had 
been subjected to diabetes with an alloxan injection. After 

diabetes mellitus had developed, placebo treatment with 
intraperitoneal 0.5 ml isotonic saline solution (0.09 % NaCl) 
per day was started and given for 15 days.

▶	 The Diabetic-Melatonin (DM-Mel) group consisted of 9 ani-
mals who developed diabetes following an alloxan injection. 
After the diabetes mellitus became evident, melatonin treat-
ment was started and given intraperitoneally at a dose of 
10 mg kg − 1 per day for 15 days.

Melatonin preparation and administration
Melatonin (Sigma Chemical Co. St. Louis, MO, USA) was freshly 
dissolved in a saline-ethanol (0.01 %) mixture and was adminis-
tered IP at a daily dose of 10 mg/kg body weight according to 
previous animal studies [20, 25, 26]. Melatonin or the vehicle 
alone was administered at night for 15 consecutive days.

Diabetic procedure
For the DM and DM-Mel groups, experimental diabetes was 
induced by a single intraperitoneal injection of alloxan monohy-
drate (Sigma Co., USA) at a dose of 120 mg/kg − 1 body weight dis-
solved in normal saline. To verify diabetes, blood glucose 
concentrations were measured using blood samples collected 
from the tail vein with a glucometer and test strips (Accu-Check 
Active®) at the first hour (before the initiation of trials) and 2 
weeks later. The animals were then left alone for 2 weeks to 
allow for the stabilization of their blood glucose concentrations. 
On day 14, the animals with a fasting blood glucose level higher 
than 220 mg/dl were considered diabetic and were therefore 
included in the study.

Blood collection and tissue removing procedure
After 15 days of melatonin treatment (at the end of the study), 
rats in all the groups were anesthetized with xylazine hydro-
chloride (10 mg/kg −1) (Rompun, Bayer, Turkey) and ketamine 
hydrochloride (40 mg/kg −1) (Ketalar, Pfizer, Turkey). Blood sam-
ples were individually collected from the heart of each rat, and 
then the animals were euthanized with an intracardiac thiopen-
tal sodium (Pentothal Sodium, Abbott) injection. The lymphoid 
tissues (spleen, thymus, and lymph nodes) of the euthanized 
rats were removed for histologic analysis and placed in 10 % neu-
tral formaldehyde solution.

Hematologic and biochemical analysis
The collected blood samples were centrifuged at 1 500 g for 
10 min within 1 h after collection to obtain sera samples. The 
sera were stored in the freezer at  − 80 °C before they were ana-
lyzed. For the hematologic analysis, complete blood counts, 
white blood cells (WBC), neutrophils (Neut), lymphocytes (Lym), 
and monocytes (Mon) in the blood samples with ethylenediami-
netetraacetic acid (EDTA) were performed with a blood counter 
(Abacus Junior Vet5, Diatron, Austria).

Interleukin 1 beta (IL-1β) and tumor necrosis factor 
alpha (TNF-α) analysis
Serum IL-1β and TNF-α concentrations were measured using 
rat-specific sandwich enzyme-linked immunosorbent assay 
(ELISA) IL-1β and TNF-α immunoassay kits (Invitrogen, CA, USA). 
Analyses were performed according to the manufacturers’ 
instructions. Briefly, monoclonal antibody specific for rat IL-1β 
and TNF-α were coated onto the wells of the micro plates. The 
samples, including standards of known rat IL-1β and TNF-α con-
tents, control specimens, and sera samples were pipetted into 
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these wells and then incubated for the first incubation to allow 
the antibodies to bind to the antigens for rat IL-1β and TNF-α. 
After washing, a biotinylated monoclonal antibody specific for 
rat IL-1β and TNF-α was added. During the second incubation, 
the antibodies that were bound to the immobilized rat IL-1β and 
TNF-α were captured. After removal of excess second antibody, 
streptavidin-peroxidase (enzyme) was added. This enzyme 
bound to the biotinylated antibody was added to complete the 
4-member sandwich. After a third incubation and washing to 
remove any remaining unbound enzyme, a substrate solution 
was added, which is acted upon by the bound enzyme to pro-
duce a color. The intensity of this colored product is directly pro-
portional to the concentration of rat IL-1β and TNF-α present in 
the original specimen. At the end of the course, the well plates 
were read at 450 nm via an ELISA plate reader (Bio-Tek, μQuant, 
USA). The absorbance of the samples was estimated with formulas 
that used standard graphics. All results are presented as pg/ml.

Light microscopic analysis
After the rats were sacrificed, their spleen, thymus, and lymph 
nodes were fixed in 10 % neutral buffered formaldehyde for 72 h. 
The fixed tissues were then dehydrated and embedded in paraf-
fin, and serial sections were cut using a Leica RM2125RT 
microtome (Leica Microsystems, Wetzlar, Germany). Subse-
quently, we obtained a total of 20 serial and 4 randomly selected 
slides for each animal. Four sections were used for the determi-
nation of mast cells with enzyme histochemical esterase stain-
ing, and 4 sections were stained with Crossman-modified 
Mallory’s triple staining for histopathological analysis. The his-
tological inflammation activity and tissue alterations for all 
groups were evaluated by high-power light microscope (Nikon 
Eclipse 50i).

Histopathologic evaluation procedure
The histopathologist microscopically examined the samples 
stained with Crossman-modified Mallory’s triple sections in a 
blinded fashion. Recording results were evaluated by examining 
10 different areas with 20 × objective for following lymphoid 
organs of each rat. The spleen, thymus, and lymph node-injury 
criteria were as follows: condensed cell density, parenchymal 
and capsular fibrosis, and apoptotic cell density for the spleen; 
cortex/medulla ratio, apoptotic cell density, and enlargement in 
cords for thymus; and condensed cell density, enlargement in 
cords, and polymorphonuclear cell (PMNL) densities for the 
lymph nodes. Each criterion was scored as follows:  − , normal;   
+ , minimal change;  +  + , mild change; and  +  +  + , severe change. 
The lymphoid tissues of all rats in the groups were calculated by 
examining 4 histologic sections for each rat.

Stereologic calculation procedure for MC densities
For the stereologic estimation, serial sections of the spleen, thy-
mus, and lymph nodes were examined by the stereologic frac-
tionator method, which utilizes random, systematic sampling to 
provide unbiased and quantitative data. This technique provides 
quantitative information about 3-dimensional material from 
measurements conducted with 2-dimensional planar sections 
of the material. In all tissues of each group, the numerical densi-
ties of MCs were estimated via the stereologic fractionator 
method. Stereological analyses were performed at a stereology 
workstation consisting of a modified light microscope, a motor-
ized specimen stage for automatic sampling, a CCD color video 
camera, and stereology software. The unbiased counting frame 

fractionator combination is a stereological method for counting 
cells in the tissue sections [27, 28]. In this study, unbiased count-
ing frame and fractionator methods were used to estimate the 
numerical density of enzyme-histochemically stained MCs in 
the spleen, thymus, and lymph nodes. Each microscope slide 
was sampled using the fractionator principle of the stereology 
software. Cells were counted using a 40 ×  Leica Plan Apo objec-
tive (NA = 1.40), which allowed accurate recognition. Each MC 
was counted via the stereology software according to the unbi-
ased counting frame. The numerical densities of the MCs were 
estimated according to the formula given below:
Nd = TM/CFA × NSS,
where Nd is the MC numerical density, TM is total markers, CFA 
is the counting frame area (XY) (μm2), and NSS is the number of 
sampling sites.

Statistical analysis
The statistical evaluation of present study was performed using 
the Statistical Package for the Social Sciences (SPSS) Version 17.0 
(IBM Inc. NY, USA). The comparisons of the groups according to 
hematologic values, cytokine concentrations, and stereological 
data were analyzed by one-way ANOVA followed by Duncan post 
hoc test (p < 0.05). All values are expressed as mean ± standard 
deviation.

Results
▼
Hematologic values
In the hematologic analysis of white blood cell parameters, there 
was a significant increase in the WBC counts of the DM group 
compared with the Control group (p < 0.05). Additionally, the 
Neut counts of the DM group tended to be increased compared 
with the Control group (p < 0.05). At the same time, WBC, Mon, 
and Neut counts were significantly decreased in the DM-Mel 
group when compared with the DM group (p < 0.05), and there 
were no significant difference in Lym counts compared with the 
Control group (p > 0.05). Additionally, the parameters for WBCs, 
Mons, and Neuts significantly decreased in the Mel group 
(p < 0.05), and the Lym count decreased insignificantly compared 
with the Control group (p > 0.05). The comparisons of WBC, Lym, 
Mon, and Neut parameters are summarized in  ●▶  Fig. 1.

Serum cytokine concentration
Serum IL-1β and TNF-α analyses revealed an increase in the con-
centrations of the DM group compared with the Control group. 
However, the IL-1β concentration slightly decreased in the DM-
Mel group compared with the DM group (p > 0.05), but TNF-α 
concentration did not change in the DM-Mel group (p > 0.05). In 
addition, there was little increase in the levels of IL-1β and 
TNF-α concentrations in the Mel group (p > 0.05). The IL-1β and 
TNF-α concentrations and the statistical comparisons among 
the groups are presented in  ●▶  Fig. 2.

Histopathologic findings
In the histopathologic analysis of the spleen and thymus for all 
groups, the animals in the Control and Mel groups had normal 
parenchyma and stroma. Additionally, sections from the DM 
group had severely condensed cells and fibrotic parenchyma and 
capsules. Conversely, the DM-Mel group showed less fibrosis 
and fewer condensed cells compared with the DM group  
( ●▶  Table 1 and  ●▶  Fig. 3).
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Histopathologic analysis of the lymph nodes revealed normal 
histologic features in the control group section, and similarly 
normal histologic structures were observed in lymph node tis-
sues of the animals in the Mel group except for the negligible 
dilatation of the medullary sinuses. Histopathologic analysis of 
DM group specimens also showed severely condensed cells, 
enlargement of the tertiary cortical nodules and medullary 
cords, and large numbers of free macrophages in the medullary 
sinuses; however, these pathologies were lessened by the mela-
tonin treatment ( ●▶  Fig. 3). Histopathologic grades of all groups 
are presented in  ●▶  Table 1.

Stereologic estimation of MC density
Enzyme histochemical esterase staining for MCs revealed that 
the highest MC density of the spleen was found in rats of the DM 
group, but rats in the DM-Mel group had a lower MC density 
(p < 0.05). The rats in the control and Mel groups had lower MCs 
numbers in their spleen tissue (p > 0.05).
Stereologic estimation of thymus MC densities indicated a sig-
nificant decrease in MC densities of the Mel group compared 
with other groups (p < 0.05). MC densities of the DM and DM-
Mel groups increased compared with the control group, and 
there was no statistically significant difference (p > 0.05).
Estimation of MC densities of lymph node tissue revealed an 
inhibitory effect of melatonin on MC distribution. A larger num-
ber of MC was observed in the Control and DM groups compared 
with the other groups (p < 0.05). Dramatically, the lowest num-
ber of MCs was observed in the DM-Mel groups. Stereologic esti-
mation of MC numbers per 10 000 μm2 area and comparisons 
among groups are presented in  ●▶  Fig. 4, 5.

Discussion
▼
Evidence of immune response alterations in diabetes has been 
reported in several studies [3, 9] regarding pathologic immune 
activity and inflammatory cell accumulations. According to 
some researchers [20, 29, 30], diabetes mellitus is similar to 
some organ-specific autoimmune diseases in that it results from 
a dysregulation of immune responses. The present study was 
designed to investigate the potential regulatory effects of mela-
tonin on the immune system, including cytokine activation, 
hematologic parameters, mast cell activation, and destruction of 
lymphoid organs in rats with experimentally induced diabetes.

Fig. 1  Illustration of mean values of white cells 
parameters in the blood for all groups. (Color 
figure available online only).

Fig. 2  Illustration of serum cytokine levels for all groups. (Color figure 
available online only).
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Hematologic parameters such as the neutrophil count are an 
indicator of injurious stimuli and are mostly part of an inflam-
matory response. In the present study, leukocytosis and elevated 
neutrophil counts were detected in the hematologic profile of 
the Diabetic group, while melatonin treatment induced a signifi-
cant decrease in WBC counts. The increase in WBC counts of dia-
betes was associated with the pathophysiology of the diabetic 
process [31], whereas melatonin treatment can attenuate the 

hematologic parameters against the diabetic injury [17, 32, 33]. 
These results are in agreement with previous studies, which 
have suggested a decrease in the total leukocyte count following 
melatonin treatment [34, 35]. The underlying mechanism of this 
melatonin-induced decrease in WBC count has not been clari-
fied. However, some mechanisms are responsible for this action. 
The first possible mechanism is that melatonin may have inhib-
ited hematopoiesis in either the bone marrow [35] or lymphatic 

Table 1  Semi-quantitative analysis of the histopathological grades of the spleen, thymus, and lymph node tissues for all groups.

Groups Spleen Thymus Lymph

Condensed 

cell density

Parenchymal and 

capsular fibrosis

Cortex/medulla 

ratio

Enlargement in 

cords

Condensed cell 

density

Enlargement in 

cords

PMNL 

density

Control – – 0.399 – – – –
Mel –  +  0.475 – –  +  –
DM  +  +  +   +  +  0.491  +  +  +   +  +   +  +  +   +  + 
DM-Mel  +   +  0.396  +  +   +   +   + 
Each criterion was scored as:  − ; normal,  + ; minimal change,  +  + ; mild change, and  +  +  + , severe change

Fig. 3  Illustration of spleen, thymus, and lymph node tissues for all groups. CV: Central vein; WP: White pulp; RP: Red pulp; Cx: Cortex; MD: Medulla;  
Lf: Lymph follicle; Cr: Lymphatic cords. Arrows: condensed cells, Crossman-modified Mallory’s triple staining. (Color figure available online only).
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tissue [36] by direct action to the production of leukocytes [37]. 
The other possible mechanism is that melatonin may protect 
hematopoietic systems by scavenging free radicals due to its 
antioxidant features [17]. The present research showed that 
melatonin treatment significantly decreased leukocytogenesis 
in diabetic patients.
It is important to identify the pathogenic relationship between 
diabetes mellitus and cytokine activation. There is evidence that 

the cytotoxic actions of IL-1, TNF-α, and IFN-γ have been 
detected in islets cells of diabetic patients [9]. Increased inflam-
mation and MC infiltration had an essential role in obesity and 
its associated complications. Shi and Shi have suggested that 
MCs may interact with inflammatory and noninflammatory cells 
by releasing inflammatory mediators [30]. However, inflamma-
tory mediators originate from many cells such as macrophages 
and adipocytes. Additionally, it is reported that the expression of 

Fig. 4  Illustration of esterase positive mast cells (MCs) in the spleen, thymus, and lymph node of all groups, esterase enzyme staining. (Color figure 
available online only).

Fig. 5  Illustration of stereologic estimation of 
esterase positive mast cell density per 10 000 μm2 
areas in the spleen, thymus, and lymph node 
tissues of rats for all groups.
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TNF-α by adipocytes provokes obesity and can lead to insulin 
resistance by interfering with insulin receptor tyrosine kinase 
activity [3] and polymorphisms in the promoters of TNF-α and 
IL-6, which were found to be associated with diabetes [11]. Pre-
vious studies have reported direct evidence for the process of 
such a cytokine immunoregulatory balance in the avoidance of 
autoimmune diabetes [3, 38]. However, Rodriguez-Reynoso et al. 
reported the inhibitor effect of melatonin on TNF-α level 
depends on the energetic status of the liver [39]. Furthermore, 
numerous studies have shown the immune-modulatory action 
of melatonin in many diseases, including diabetes [17, 20]. The 
findings of the present study revealed increased cytokine activa-
tions in the diabetic process and the treatment with melatonin 
slightly modulate the immune response of diabetes due to the 
possible immunomodulatory action of melatonin.
Mast cells have been reported to be potent effector cells in many 
autoimmune diseases, such as systemic lupus erythematous, 
multiple sclerosis, and T1DM [40]. MCs settle in connective tis-
sues throughout the body, including the lymphoid organs [41], 
which are derived from hematopoietic CD34 +  stem cells. MCs 
can produce many immune mediator substances and cell signal-
ing molecules that are responsible for coordinating immune 
responses during inflammation [8]. Also, there is an interaction 
between MCs and T cells in T cell-related immune activation 
[42]. Previous studies have reported both an increase [43] and a 
decrease [7] in MC densities in diabetes mellitus, and these 
changes were associated with diabetes type, complications of 
diabetes, and applied diabetic agents [30]. Cikler et al. reported 
that melatonin treatment can decrease mast cells in the dermis 
in water avoidance stress-induced rats [44]. A decrease in mela-
tonin levels has also been observed in many diseases, including 
Alzheimer’s disease, a periodontitis rat model, and a diabetes rat 
model [25, 45], all of which would be logically related with direct 
or indirect inhibitory action of melatonin on mast cells. The 
findings of the present study are in agreement with the litera-
ture in that there were higher densities of MCs in the all-lym-
phoid organs. These results revealed the role of MCs in diabetic 
inflammation by T-cell mediated response; however, their role in 
diabetes progression remains unclear.
The histopathologic results of the present investigation revealed 
that melatonin treatment protects the lymphoid organs (lymph 
node, spleen, and thymus) from diabetic effects. Many studies 
have indicated that melatonin can decrease the free radical load 
via the underlying mechanism by which melatonin exerts its 
immune-potentiating action [19, 46, 47]. Melatonin MT1 and 
MT2 receptors are located on lymphoid organs, including the 
thymus and the spleen [47, 48], as well as the bursa of Fabricious 
in bird species, which suggests that melatonin might have a 
physiological process of lymphocyte regulation and immune 
response [48]. Also, the immunomodulatory action of melatonin 
has been summarized in many reviews regarding its importance 
from a systemic point of view as well as for its possible thera-
peutic relevance to cell protection and mitochondrial function 
[32, 49, 50]. These studies are in agreement with our study and 
have supported that the diabetic process may lead to pathologic 
processes by several mechanism, whereas melatonin treatment 
enhanced the cell defense due to its ability to restore antioxi-
dants. Additionally, melatonin decreased the proliferation of 
splenocytes and type 1 helper cells [17].
In conclusion, the characteristics of immune response and MC-
mediated activation in diabetic pathogenesis underline the 

mechanisms by which this inflammation contributes to many 
tissues, including lymphoid organs. In addition, melatonin could 
be a candidate for the design of novel therapies to moderate dia-
betic inflammation through its immune-modulatory and/or 
antioxidant properties.
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