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In this work, the EC-GA method, a hybrid 4D-QSAR approach that combines
the electron conformational (EC) and genetic algorithm optimization (GA)
methods, was applied in order to explain pharmacophore (Pha) and predict anti-
HIV-1 activity by studying 115 compounds in the class of 1-[(2-hydroxyethoxy)-
methyl]-6-(phenylthio) thymine (HEPT) derivatives as non-nucleoside reverse
transcriptase inhibitors (NNRTIs). The series of NNRTIs were partitioned into
four training and test sets from which corresponding quantitative structure—
activity relationship (QSAR) models were constructed. Analysis of the four
QSAR models suggests that the three models generated from the training and test
sets used in previous works yielded comparable results with those of previous
studies. Model 4, the data set of which was partitioned randomly into two
training and test sets with 11 descriptors, including electronical and geometrical
parameters, showed good statistics both in the regression (12, =0.867,
12, =0.923) and cross-validation (¢*=0.811, ¢>,; =0.909, ¢>., —0.909) for the
training set of 80 compounds and the test set of 27 compounds. The prediction
of the anti-HIV-1 activity of HEPT compounds by means of the EC-GA method
allowed for a quantitatively consistent QSAR model. In addition, eight novel
compounds never tested experimentally have been designed theoretically using
model 4.
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1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a fatal disorder for which no completely
successful chemotherapy has been developed so far. AIDS is the result of a chronic
persistent infection by the human retrovirus, human immunodeficiency virus (HIV) [1].
Reverse transcriptase (RT) is a key enzyme which is responsible for the process of HIV-1
replication. Recently, different types of studies have been conducted to achieve a better
understanding of the mechanisms of HIV-1 replication, and several classes of compounds
have been synthesized and tested as highly specific inhibitors of HIV-1 for AIDS therapy
[2-5]. One of the most potent, selective and widespread inhibitors displaying high
activity against HIV-1 reverse transcriptase (HIV-1RT) is 1-[(2-hydroxyethoxy)-methyl]-6-
(phenylthio) thymine (HEPT). It was first synthesized by Tanaka et al. [2-5] as a
non-nucleoside reverse transcriptase inhibitor (NNRTI) that is necessary for the
catalytic formation of proviral DNA from viral RNA [6-8]. HEPT derivatives, whose
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the basic skeleton is shown in Table 1, have potent anti-HIV-1 activity at nanomolar
concentration [5].

Quantitative structure—activity relationship (QSAR) modelling methods provide an
effective means for investigating the relationship between the chemical structure of
molecules and their biological action, during the development of novel drug candidates
[9-11]. QSAR methods describe the mathematical relationship between the structural
descriptors and biological activity of chemical compounds. Significant developments have
occurred over the last two decades in these methods [12], with the aim of obtaining a fuller
understanding of the relationship between biological activity and the structure of
compounds. Recently, higher-dimensional QSAR techniques have been developed, such as
3D-QSAR and nD-QSAR methods. The primary goal of these techniques is to establish a
correlation between biological activities of a series of compounds with the structural
properties of each molecule, such as steric demand, lipophilicity and electrostatic
interactions. The main differences between these techniques are the types of the structural
parameters used within the mathematical approaches developed to predict biological
activity. Since it is known that the three-dimensional features of molecules govern
biological activity, 3D-QSAR methods are especially informative in demonstrating a 3D
model of how structural changes affect biological activities. An advantage of the 3D-
QSAR method is that it takes into account the 3D structures of molecules and is applicable
to sets of structurally varied compounds. However, each compound is represented by a
single bioactive conformation in 3D-QSAR methods; the other molecule conformers are
not analysed, and the lowest energy of the conformation is used to generate the QSAR
model.

The four-dimensional quantitative structure—activity relationship (4D-QSAR)
approach, which includes the concepts of conformational flexibility and alignment
freedom, was developed by Hopfinger et al. [13] as an extension of 3D-QSAR
methodology for the representation of each compound by an ensemble of conformations.
4D-QSAR models are similar to 3D models but, when compared, the ligands of both the
training set and test set are provided as an ensemble of conformations, instead of one fixed
conformation [14]. Since the active conformer is often not the lowest-energy conformer,
the 4D-QSAR approach used in this work is based on the generation of a conformational
ensemble profile describing each molecule instead of the lowest-energy conformer. The
relatively small energy differences between conformers can result in significant variations
in electronic structure. Therefore, the 4D-QSAR approach used in the present work takes
into account the Boltzmann populations and the dynamics of the conformational changes
of all compounds in order to understand the effects of all energetically stable conformers
on the biological activity [15]. In this study, not only the lowest-energy conformation but
also all reasonable conformers were used in order to reveal the pharmacophore and predict
the bioactivity.

Recently, several anti-HIV-1 QSAR studies have also been carried out in a series of
HEPT derivatives acting as NNRTIs by research groups using different techniques, such
as simple multiple linear regression (MLR) [16], artificial neural networks (ANNSs) [17,18],
holographic (HQSAR) methods, genetic algorithm-based partial least squares regression
(GAPLS) [19], computational docking [20], principal component analysis (PCA) [21],
stepwise discriminant analysis (SDA) [21], comparative molecular field analysis (CoMFA)
[22] and supervised stochastic resonance [23].

The first attempt to establish the structure—activity relationships for HEPT derivatives
was made by Tanaka et al. in 1992. In their research, the active and inactive regions of
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Table 1. Chemical molecular structures: A“”, experimental activity taken from reference 25 and
A calculated activity for training and test sets according to Model 4 which is the best model for
115 HEPT derivatives as NNRTIs using EC-GA method. CN is the number of conformers in the
table. All of the conformers in the table were used to reveal the pharmacaphore and to predict
activity.

0
HN Re ~ |
)\ | 5 R
X7 N \
Ry
No R3 R2 RI X CN A% g
b 2 Me Me CH,OCH,CH,OH O 12 4150 4554
20 2.NO, Me CH,OCH,CH,OH 0 9 3850 3.752
3¢ 2.0Me Me CH,OCH,CH,0H 0 9 4720  4.098
4 € 3-Me Me CH,OCH,CH,OH O 15 5590  4.833
suboe 3 g Me CH,OCH,CH,0H O 10 5570 4991
6% ¢ 3tBu Me CH,OCH,CH,OH O 11 4920 5.168
7 3CF, Me CH,OCH,CH,0H O 12 4350 4.858
gnbc 3F Me CH,OCH,CH,0H 0 9 5480 4.742
gnbc 3] Me CH,OCH,CH,OH O 13 4890 4926
104 5>¢  3.Br Me CH,OCH,CH,OH 0 9 5240  4.829
R | Me CH,OCH,CH,0H 0 8§ 5000 4.738
120 ¢ 3-NO, Me CH,OCH,CH,0H o 9 4470  4.603
13+ %< 3.0H Me CH,OCH,CH,OH 0 9 4090 4.671
14 ® 3-OMe Me CH,OCH,CH,OH O 12 4660 4824
1542 ¢ 3,5-Me, Me CH,OCH,CH,0H O 17 6590  6.285
16%° 3,5-Cl, Me CH,OCH,CH,0H 0 6 5890 5951
175 % ¢ 35 Me, Me CH,OCH,CH,O0H S 10 6.660 6.243
18> ¢  3.COOMe Me CH,OCH,CH,0H O 13 5100 4.792
19 ° 3-COMe Me CH,OCH,CH,0H 0 6 5140  4.790
207 3-CN Me CH,OCH,CH,OH O 12 5000 4.575
214 B¢ g CH,CH=CH, CH,OCH,CH,0H 0 9 5600 5.630
208 b H Et CH,OCH,CH,0H S 14 6960 6.161
23% € H Pr CH,OCH,CH,OH S 8§ 5000 5752
24% ¢ H i-Pr CH,OCH,CH,0OH S 8 7230 6.885
255 ¢ 35 Me, Et CH,OCH,CH,0H S 12 8110  7.666
264 ° 3,5-Me; i-Pr CH,OCH,CH,0H S 6 8300 8.666
27 ¢ 35.Cl, Et CH,OCH,CH,OH S 8 7370 8.244
288 b H Et CH,OCH,CH,0H 0 9 6920 5.770
J9a b g Pr CH,OCH,CH,OH o} 9 5470 5116
30> H i-Pr CH,OCH,CH,0H 0 8§ 7200 6.309
312> ¢ 35.Me, Et CH,OCH,CH,0H O 12 7890 6950
32 35 Me, i-Pr CH,OCH,CH,0H 0 7 8570 8.570
33% b 3,5-Cl, Et CH,OCH,CH,OH O 10 7850 7.570
340 4 Me Me CH,OCH,CH,OH (0] 10 3.660 4.533
350 ¢ H Me CH,OCH,CH,0H O 11 5150  4.696
36- ¢ H Me CH,OCH,CH,0H S 9 6010 5224
37 b H 1 CH,OCH,CH,OH 0 6 5440 5.653
gt H CH=CH, CH,OCH,CH,0H O 10 569  6.208
390 b ¢ H CH=CHPh CH,OCH,CH,OH O 8 5220  6.047
40 >° H CH,Ph CH,0CH,CH,0H O 13 4370 5516

(continued)
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Table 1. Continued.

No R3 R2 RI X CN AP e
41% b H CH=CPh, CH,OCH,CH,OH O 12 6.070 6.018
FHRC I ¢ | Me CH,OCH,CH,OMe O 10 5060 5214
43% ¢ H Me CH,OCH,CH,0Ac¢ O 15 5170 5.176
44 ® H Me CH,OCH,CH,OCOPh O 12 5120 5420
45 b H Me CH,OCH,Me 0] 9 6480 5.794
464 > ¢ H Me CH,OCH,CH,Cl O 10 5820 5327
47% ¢ H Me CH,OCH,CH,N; O 12 5240 6.241
488 % ¢  H Me CH,OCH,CH,F o) 9 5960 5.811
49* H Me CH,OCH,CH,Me O 10 5480 5.395
50% P H Me CH,OCH,Ph o) 7 7.060  5.820
514 H Et CH,OCH-Me O 10 7720 6.751
5% b g Et CH,OCH,Me S 7 7.580  6.849
53% ¢ 3,5-Me, Et CH,OCH-Me O 10 8240 8.461
54% ¢ 3,5-Me, Et CH,OCH,Me S 11 8300 8.697
5500 Y Et CH,OCH,Ph O 10 8230 6.712
56% P 3,5-Me, Et CH,OCH,Ph 6] 8 8550 7953
5740 ¢ H Et CH,OCH,Ph S 7 8.09  7.101
584 ¢ 35 Me, Et CH,OCH,Ph S 9 8140 8.427
5940 Y i-Pr CH,OCH-Me 0 8  7.990 7.412
60+ ¢ H i-Pr CH,OCH,Ph O 10 8510 7.729
61% ¢ H i-Pr CH,OCH-Me S 8  7.890  8.068
62% © H i-Pr CH,OCH,Ph S 8 8140 7.996
63> H Me CH,OMe 0 9 5680 5.125
64* ¢ H Me CH,OBu O 16 5330 5455
65%>¢ H Me Et 0 8§  5.660 5.251
66> ® H Me Bu 6] 9 5920 5.343
67% © 3,5-Cl, Et CH,OCH,Me S 10 7.890  8.490
68* H Et CH,0-i-Pr S 13 6.660 6.677
69% > ¢ H Et CH,0-c-Hex S 13 579  6.631
70% ® H Et CH,OCH,-c-Hex S 13 6450 6.162
71 %¢ H Et CH,OCH,C¢H4(4-Me) S 10 7.110 7.084
7200 H Et CH,OCH,CH,(4-Cl) S 10 7920 7.104
73 by Et CH,OCH,CH,Ph S 12 7.040 6.851
742 3,5-Cl, Et CH,OCH,Me O 10 8130 7.938
75% ¢ H Et CH,O-i-Pr O 10 6470 6.240
76 ¢ H Et CH,0-c-Hex O 11 5400 6.189
77 ¢ H Et CH,OCH,-c-Hex O 13 6350 6.158
78% b H Et CH,OCH,CH,Ph O 14 7020 6.871
79% ¢ H c-Pr CH,OCH,Me S 13 7.020 7.69%4
80> ¢ H c-Pr CH,OCH,Me O 17 7.000 7.191
815 ¢ H Me CH,OCH,CH,OCsH;;-n O 13 4460 4.290
g2 © 2-Cl Me CH,OCH,CH,OH O 22 3890 3.601
835 ¢ 3-CH,OH Me CH,OCH,CH,OH O 20 3.530 3.661
84 © 4-F Me CH,OCH,CH,OH O 19 3.600 3.861
85 4-Cl Me CH,OCH,CH,OH O 24 3600 3.835
86> © 4-NO, Me CH,OCH,CH,OH O 26 3720 3.695
87° 4-CN Me CH,OCH,CH,OH O 29 3.600 3.902
88> © 4-OH Me CH,OCH,CH,OH O 19 3560 3.845
89 4-OMe Me CH,OCH,CH,OH O 13 3600 4.062
90" © 4-COMe Me CH,OCH,CH,OH 0) 8 3960 3.706
91° 3-COOH Me CH,OCH,CH,OH O 15 3450 3.594

(continued)
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Table 1. Continued.

No R3 R2 RI X CN AP e
920 © 3-CONH, Me CH,OCH,CH,OH 0) 7 3510 3.547
93b: ¢ H COOMe CH,OCH,CH,OH 6) 5 5180  4.865
940 ¢ H CONHPh CH,OCH,CH,OH 0] 4 4740 4795
955 © H SPh CH,OCH,CH,OH O 14 4680 5451
96° H CCH CH,OCH,CH,OH 0 8 4740 4.743
97° H CCPh CH,OCH,CH,OH O 10 5470 4.89%
98 3-NH, Me CH,OCH,CH,OH O 28 3600 3.643
99° H COCHMe, CH,OCH,CH,OH 6} 7 4920 4.585
100 H COPh CH,OCH,CH,OH o) 6  4.890 4.638
101¢ H CCMe CH,OCH,CH,OH O 25 4720 4.704
102° H F CH,OCH,CH,OH O 18  4.000 4.030
103° H Cl CH,OCH,CH,OH O 18 43520 3.774
104° H Br CH,OCH,CH,OH O 25 4700 4.696
105° H Me CH,OCH,CH,OCH,Ph O 15 4700 4.071
106° H Me H 0) 7 3.600 2.863
107° H Me Me 6] 7 3.820 3.423
108¢ 2-Me Me CH,OCH,CH,SH o 10 NA 5635
109¢ 2-Me Me CH,OCH,CH,SH S 12 NA  6.163
110¢ 2-Me Me CH,OCH,COH o 18 NA  6.721
1114 2-Me Me CH,OCH,COH S 2 NA  7.030
112¢ 2-Me c-Hex CH,OCH,CH,OH 0) 4 NA  6.671
113¢ 2-Me c-Hex CH,OCH,CH,OH S 11 NA  8.191
114¢ 2- ¢-Hex Me CH,OCH,CH,OH o 13 NA  5.039
1154 2- ¢-Hex Me CH,OCH,CH,OH S 5 NA  6.391

Notes: *: training set compounds in model 2

®: training set compounds in model 3

¢ training set compounds in model 4

d: novel compounds never tested experimentally designed using Model 4.
NA: Not available

compounds not marked , ® or € appear in test set for regarding model.

these compounds were shown in these studies [5]. Duda-Seiman et al. [16] performed
research on a large series of HEPT compounds using the MTD (minimal topological
difference) and HyperChem molecular modelling methods. However, they did not use a
validation method to obtain a predictive QSAR model. To create a good statistical
model requires an available data set to be divided into training sets and test sets [16].
Hannongbua et al. [22] performed a CoMFA study to describe QSARs, particularly to
investigate the steric and electrostatic interactions for HEPT derivatives. Kireev et al. [24]
performed a 3D-QSAR study including 87 HEPT derivatives using the MLR method.
Luco and Ferretti [25] developed a QSAR based on MLR and PLS methods using
topological descriptors in order to construct the relationship between the physicochemical
parameters and biological activity of 107 HEPT derivatives. These authors concluded that
PLS is a better method than MLR for evolving data, and the PLS method has better
predictive power for representing models. In many cases, the PLS and MLR methods
exhibit some limitations and give poor statistical results, especially when the relationship
between dependent and independent variables is so complex that it can not be emulated
by a simple linear relationship [25]. The correlation coefficient () and cross-validated
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correlation coefficient (¢) values for these compounds are given in the literature [25].
Bak and Polanski [26] applied both Hopfinger’s 4D-QSAR and self-organizing mapping-
4D-QSAR (SOM-4D-QSAR), which are the self-organizing neural network versions of
traditional 4D-QSAR, for the investigation of the antiviral activity of HEPT derivatives.
These authors compared these methods for their performance in predicting the QSAR
model. Both methods yielded comparable results according to cross-validated regression
coefficient (¢*) values. However, they did not explain the regression coefficients (rfmmmg or
12, ) and external validated regression coefficients (¢2 ,; or ¢2 ,,). A high ¢* value for the
training set has often been considered as a sufficient criterion of QSAR model accuracy.
However, a high ¢* does not automatically imply the high predictive power of the model.
There is no relationship between internal and external predictivity [27]: high internal
predictivity may result in low external predictivity and vice versa. This effect is called the
‘Kubinyi paradox’ [28]. The overall picture which emerges from these QSAR studies shows
that hydrophobic, electronic and steric characteristics of the compounds have predom-
inant roles in the anti-HIV-1 activity of HEPT derivatives.

The electron conformational (EC) method by Bersuker and co-workers, presented as
a QSAR method, is aimed at searching rules for predicting different activities based on
the pharmacophores found previously by specific EC calculations [29]. For this purpose,
a nonlinear mathematical model which defines the relationship between bioactivity and the
parameters was presented for bioactivity prediction using one conformer for compounds.
This EC method has been recently applied to a variety of problems such as screening
rice blast activity inhibitors, angiotensin-converting enzyme inhibitors, group I metabo-
tropic glutamate receptor agonists, inhibitors of human breast carcinoma, guanidino- and
aminoguanidinopropionic acid analogues [29-36].

Genetic algorithm (GA) is a heuristic search method used for identifying optimal
solutions to a problem where the possible solution space is too large to be exhaustively
enumerated. GA has been widely used for feature optimization in QSAR models for
variable selection [37-39]. The purpose of variable selection is to select the variables
significantly contributing to prediction and to discard other variables by a fitness
function [37-39].

The EC and GA methods, namely electron conformational and genetic algorithm
method (EC-GA) [40—43], were combined for identifying pharmacophore and predicting
anti-HIV-1 activity by studying 107 compounds in the class of HEPT derivatives as
NNRTIs [25]. In the EC-GA method which incorporates conformational and alignment
freedom, the conformers, heavily populated at room temperature, are taken into account
by using Boltzmann weighting for pharmacophore identification and bioactivity predic-
tions for a series of compounds that have the same type of biological activity. The EC-GA
method is categorized as a useful ligand-based QSAR method. In the EC-GA method, as
in all QSAR methods used to design a novel drug, the molecular structure is also
represented with the physicochemical and structural properties of the molecules. These
are usually represented by a set of descriptors, with the assumption that the molecule’s
activity is related to the values of these descriptors in some way. In this method, the
optimal subset of these chemical descriptors is selected from a molecular descriptor pool to
obtain a statistically robust model. For selecting a subset of relevant descriptors and
building the optimal QSAR model, the GA optimization method is used in the EC-GA
method. The leave-one-out cross-validation method is used in order to explore the
reliability of the EC-GA method by dividing data into two groups: one used to train the
model and the other to validate it. The results obtained in this way allowed us to perform
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computer-based screening of eight new compounds (never tested before) and to predict
theoretically the novel molecular structures 108—115 with statistically significant anti-HIV-
1 activities as prospective candidates for future experimental studies.

In our previous studies, this method was successfully performed for a 4D-QSAR
procedure to identify the pharmacophore for benzotriazines as Src inhibitors, the
anti-cancer activity of N-morpholino triaminotriazine derivatives, penicillins and 1,4-
dihydropyridines as calcium channel antagonists as well as to make a quantitative
prediction of activity [40—43].

The aim of the research is to explain the pharmacophore and to predict anti-HIV-1
activity of HEPT derivatives as NNRTIs. Below, we compare the performance of the
EC-GA method on HEPT compounds with those of MLR, ANNs, HQSAR, GAPLS,
SSR (supervised stochastic resonance) and CoMFA analyses reported in the literature [16—
26]. In most of these studies, molecules in the compound series corresponding to one fixed
conformation were employed for model building and bioactivity prediction. Although
these methods are popular 3D QSAR methods, they do not always lead to reliable
predictions because of several internal problems: (i) identification of the pharmacophore
features of active conformation; (ii) consideration of the conformation of molecules; and
(ii1) external prediction ability of models. It has been shown that the EC-GA method is
useful for overcoming these difficulties in structure—property studies of HEPT derivatives
and the other series of compounds [44].

2. Materials and methods

4D-QSAR analysis using the EC-GA method was carried out on a series of 107 HEPT
derivatives to reveal the pharmacophore and to predict anti-HIV-1 activity. The chemical
structures of the HEPT derivatives are shown in Table 1 and the experimental activity data
(IC50, micromol) are taken from literature [25].

The newly developed EC-GA method is described in more detail elsewhere [40-43].
The computational part of the EC-GA method consists of the following steps:
(1) calculation of conformational and quantum-chemical analysis; (2) formation of the
electron conformational matrices of congruity (ECMC) for each conformer of all
compounds; (3) multiple intercomparison of the ECMC between themselves and
activity feature (pharmacophore) selection; (4) preparation of the molecular descriptors;
(5) selection of the best subset of parameter combinations which contribute mostly to
activity using the GA method; and (6) implementation of robust statistical methods
to predict the model’s power.

Quantum mechanical calculation and conformational analysis for HEPT derivatives
have been performed from SPARTAN 08 software using the parametric model number 3
(PM3) method [45]. Because lower energy conformers are responsible for biological
activity much more than higher energy conformers, the conformers were seperated from
heavily populated conformers (smaller than 1.5kcalmol™!) at room temperature using
Boltzmann weighting [29].

In the EC-GA method, the properties of a molecule in its interaction with the
bioreceptor are described by a set of electronic and geometric features presented in terms
of elements of the ECMC. Figure 1 illustrates an example of the ECMC calculated for
compound 32 for its lowest-energy conformer. The ECMC is a 3D square matrix of the
order nxn (n is the number of atoms in the molecule) and it is symmetric with respect to
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€l € €3 N2 €5 N 81 €7 €8 ¢ Cio C1 Ci2 H7 01 €& C6 C13 Cl4 €15 Cl6 04 CI8 C19 02 H27T 03
0967 2469 2.853 2477 1.033 4.155 4.968 7.097 4932 6155 7.126 6096 2108 1798 6.574 B.429 2560 3.059 3.142 4315 4722 5.646 7.001 7711 7254 3.580 C1
0149 1747 2.436 2858 2483 2771 3.686 6035 3765 4942 5991 5059 3.397 2435 5713 7326 0971 2505 2.506 3789 4287 5479 6.677 7.198 6.598 4.084 C2
-0.145 1063 2486 2835 0.964 2819 5347 3337 3884 5044 4633 3833 3618 5592 6267 2512 3.576 3.530 2551 3.196 4481 5.521 6013 5395 3614 C3
0053 1.023 2452 2775 3577 5851 4244 4278 5390 5361 3346 4063 6382 6410 3834 4743 4765 0937 2341 3.396 4463 5214 4775 2329 N2
0231 1059 4.118 4883 6967 5331 5.623 6634 6386 2080 3.527 7218 7.644 4362 S5.048 5167 2499 3072 3675 4.925 5901 5644 1716 C5
0015 4631 5455 7.548 5.633 6433 7420 6734 0938 2228 7342 8579 3841 4303 4507 3789 4.245 4896 6248 7.161 6858 2281 N1
0156 0986 4.558 2780 2718 4029 4.068 S.630 5204 5274 5199 3110 4175 4116 3.103 3742 5.137 5.794 5957 5.166 5.099 S
0194 2787 1392 1403 2418 2416 6405 5929 3778 3773 3943 5308 4366 3516 3475 4825 5.421 5217 4327 5776 C7
0073 2414 2413 1412 1397 £.375 7.885 [2.496] 2504 6178 7.647 6003 5.463 4735 5.655 6005 5218 4366 7.678 C8
0082 2415 2792 1414 6514 5680 2498| 4277 3766 5243 3681 4442 4.118 5388 6184 5919 5.063 6298 C9
nnszﬁ‘ 2790 7.359 T.180 4276| 2490 5312 6.635 5750 3706 3.516 4677 4886 4.405 3461 6313 C10
U077 2420 8204 BOT0 3.778| 1.000 6291 T.696 6450 4744 4.190 5.123 5217 4.405 3486 7.259 CI1
-0.070 7.550 6765 1001| 3786 5.049 6530 4.693 5337 4706 5779 6.450 5921 5082 7.244 CI2
0123 2436 BO61| 9.429 4.651 4965 5178 4.564 4924 5359 6738 7T.735 7.525 2490 HI7
C10-C11 Bond Order 0348 7.009| 9.424 2972 3141 3151 5509 5813 6.662 8078 8781 8339 4494 O1
-0.068| 4999 5.517 6951 4749 6.539 S810 6.779 T.579 7.056 6291 £.103 C4
-0.067 7.706 9.077 7928 5490 4905 5.559 5243 4.156 3345 8105 C6
0.040 0986 0985 5059 5513 6.792 7.929 B.286 7.585 5.588 CI3
0.116 2510 6.069 6728 7.959 9.087 9.561 8891 6219 Cl4
0124 5923 6.047 7.263 8493 B.728 8.023 6364 CIS
0052 0981 2403 3.128 3864 3466 2.799 CI6
0.274 0.973 2451 2.991 2615 3273 04
0004 0.963 2461 2571 3397 CI8
0036 1.007 1916 4.546 C19
Ej 0310 0941 571902
C4-C8 Distance 0.191 5.660 H27

-0.399 03

Mulliken Charge of
C1 Atom

3

Figure 1. Electron-conformational matrices of congruity (ECMC) of the lowest energy conformer of
the reference compound (compound 32) with the highest activity in the series of HEPT derivatives.
The diagonal elements represent to the Mulliken charges while the non-diagonal elements are bond
orders for chemically bonded pairs of atoms and interatomic distances for non-bonded pairs.
Hydrogen atoms bonded to carbon atoms are excluded in the ECMC for simplicity.

diagonal elements. The diagonal elements of the ECMC seen in Figure 1 refer to Mulliken
atomic charges. The non-diagonal elements are either the bond orders for chemically
bonded pairs of atoms or the interatomic distance for non-bonded atoms [46.,47]. In this
way, the ECMC contains both geometric and electronic parameters. ECMs of congruity
have been constructed from the data of conformational analysis and the electronic
structure calculation of molecules in a compound series to reveal pharmacophore atoms.
In this study, 1233 ECMs of congruity, corresponding to the conformers of the HEPT
derivatives, were constructed using EMRE software [40—44].

In this work, the ECMC of the most active compound chosen as a template was
compared with other ECMs of congruity to find the pharmacophore, within given
tolerances, and identified by the electron conformational submatrix of activity (ECSA)
which represents the pharmacophore. The pharmacophore, which can also be described as
a group essential for activity, is defined as a specific three-dimensional arrangement of
functional groups that are found in active molecules. To begin the identification of
pharmacophore groups, the most active compound was chosen as a template molecule,
and 55 compounds with values of —log(ECsy) > 5.47 were classified as high-activity
compounds and 52 molecules with values of —log(ECsg) < 5.47 were considered as low-
activity compounds [34,35,46-49]. The ECMC of the template molecule, which is the
lowest-energy conformer of the compound with the highest activity, is compared with all
other ECMs of congruity within given tolerances to reveal the ECSA [40]. In general,
tolerance values existing in compounds of high activity are lower than those existing in
compounds of low activity.

The tolerance evaluation procedure starts with smaller (small) values. Then, it is
increased until an ECSA with the smallest tolerance values is reached in all the active
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compounds. By gradually changing the limits of tolerance for diagonal and non-diagonal
matrix elements, the tolerance limits of the ECSA are obtained [29-33]. Two criteria are
used to determine the pharmacophore. The first (P,) only demonstrates the probability
of pharmacophore presence in active compounds; the other («,) shows the possibility
of pharmacophore presence in inactive compounds. They are given by the following
equations [34,35,46-49]: P, = (c1 4+ 1)/(c1 + ¢2+2), ag=(c1 % ca— 2% ¢3)/(by % by % by % by) V>,
where ¢; (53 compounds) and ¢, (2 compounds) are the numbers of the molecules that
are inclusive and non-inclusive, respectively, as the features of activity in the active
compounds; ¢3 (two compounds) and ¢4 (50 compounds) have the same meaning
for low-active compounds; b, and b, are the numbers of the molecules in the class of
active and low-active compounds; b3 =c| + ¢3; by=cy+ ¢4 [46]. Accordingly, the group
is determined as the ECSA existing in all of the compounds and having the minimum
tolerance value and maximum (P,) and («,) values. Under these circumstances, the
probabilistic estimation values are high enough, P,=0.9474, a,=0.9252.

In this paper, the ECSA that is common for all of the active molecules contains eight
atoms consisting of C1, C2, S1, C7, C8, H17, Ol and O3 in all of the compounds.
The resulting ECSA, which represents the pharmacophore for the HEPT derivatives and
its tolerance values for the compounds of both high and low activity, is given in Table 2.
The pharmacophore atoms are shown in white in Table 2. The first submatrix, which
demonstrates the lowest-energy conformer of the template molecule, corresponds to the
pharmacophore group. The second submatrix in Table 2 shows the tolerance values for
55 compounds with high activity, and the third submatrix shows the tolerance values
for 52 compounds with low activity. The fourth submatrix is obtained without limitation
on tolerance values of the pharmacophore group; the maximum tolerance values are
calculated for all conformers of all compounds, and the submatrix shows the tolerance
values for the 1233 conformers of the 107 compounds. As seen in Table 2, the tolerance
values in compounds with high activity are usually lower than those found in compounds
with low activity. For example, the tolerance values of the distance between the H17 and
O3 atoms for higher and less active compounds are +0.2112 and 4+2.0871, and the charge
values of the C8 atom are £0.0522 and £0.3372, respectively.

Two of the eight atoms in the pharmacophore group are oxygen atoms, Ol and O3,
and one is a sulphur atom, S1. The highest positive charge is concentrated in the C1 atom,
which is part of the carbonyl group. The S1 and H17 atoms have positive charges, and
the other atoms have negative charges. Cl, C2 and Ol form a rigid plane, whereas the
positions of the O3, C7 and C8 atoms are highly flexible. The flexible position of the C8
atom of the pharmacophore can also be seen directly in the tolerance values for the
corresponding distances in the ECSA matrix. The C8 atom, which is a distal atom,
has different distances from the other pharmacophore atoms. First of all, the positioning
flexibilty of all atoms in the overall pharmacophore structure is taken into account in the
EC-GA method, and then the relationships between the flexibility and activity of the
compounds are used for bioactivity predictions. The pharmacophore analysis explains
that the pharmacophore group, containing the C1, C2, S1, C7, C8, H17, O1 and O3 atoms,
is a principal component of activity within the specifics of the drug-receptor interaction
mechanism for HEPT derivatives.

A 3D pharmacophore is defined as an arrangement of molecular features in space that
are required for a desired biological activity. However, the concept of pharmacophore
does not explain why different compounds with the same pharmacophore have quite
different activities. A pharmacophore is a necessary, but not sufficient, condition for
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Table 2. (a) ECSA (pharmacophore) of reference compound (compound 32) for HEPT derivatives;
(b) tolerance matrix of ECSA for 55 compounds with high activity; (c) tolerance matrix of ECSA
for 52 compounds with low activity; (d) tolerance values for all conformers (1233). Pharmacophore
atoms are shown in white. P, and «, values of pharmacophore were found as 0.9474 and 0.9252,

respectively.
>R o
i (@ — @
D)
@
@a)‘.O (s1) / & .
:O L
& @ ca)
Cl C2 S1 (ov4 c8 HI7 0l 03 Pha Atoms
(a) ECSA of reference compound (Pharmacophore group)
0.2955 0.9674 4.1549 4.9677 7.0969 2.1078 1.7980 3.5799 C1
—0.1487 2.7711 3.6858 6.0353 3.3966 2.4349 4.0838 C2
0.1555 0.9864 4.5580 5.6303 5.2036 5.0987 S1
—0.1936 2.7869 6.4046 5.9286 5.7759 C7
—0.0733 8.3751 7.8847 7.6781 C8
0.1231 2.4362 2.4898 H17
—0.3479 4.4944 O1
—0.3989 03
(b) Tolerance matrix of ECSA for 55 compounds with high activity
+0.0425 +0.0153 +0.0822 +0.3875 +0.6701 +0.0824 +0.0323 +0.4177 C1
+0.1344 +0.0690 +0.3970 +0.6016 +0.0648 +0.0597 +0.4616 C2
+0.0326 +0.0095 +0.0393 +0.1431 +0.1276 +0.4152 S1
+0.0412 +0.0220 +0.3485 +0.5038 +0.6197 C7
+0.0522 +0.5789 +0.9110 +0.8722 C8
+0.0134 +0.0354 +0.2112 H17
+0.0219 +0.3781 o1
+0.0917 03
(c) Tolerance matrix of ECSA for 52 compounds with low activity
+0.0294 +0.0198 +0.1343 +0.3422 +0.7381 +0.0084 +0.0220 +0.7490 C1
+0.1928 +0.1693 +0.4211 +0.6655 +0.0485 +0.0475 +0.4569 C2
+0.0517 +0.0251 +0.0282 +0.0517 +0.2248 +2.0413 S1
+0.0688 +0.0252 +0.1743 +0.4686 +2.0541 C7
+0.3372 +0.3858 +1.0919 +1.8240 C8
+0.0128 +0.0860 +2.0871 H17
+0.0280 +1.0506 Ol
+0.2976 03
(d) Tolerance matrix of ECSA for 1233 conformations of 107 compounds
+0.0425 +0.0211 +0.1438 +0.3875 +0.7744 +0.0825 £0.0407 +0.7490 Cl1
+0.2048 +0.1786 +0.4450 +0.6877 +0.0660 +0.0605 +0.4650 C2
+0.0647 +0.0261 +0.0424 +0.1448 +0.2347 +2.0422 S1
+0.0782 +0.0259 +0.3979 +0.5127 +2.0541 C7
+0.3372 +0.6986 +1.1296 +1.8240 C8
+0.0138 +0.0884 +2.0871 H17
+0.0322 +1.0506 Ol
+0.2976 03
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the ligand to interact at the receptor site. Therefore, other factors, such as auxilary
groups (AG), anti-pharmacophore shielding groups (APS), electronic properties and
three-dimensional space, which are linked to biological activity, must be considered [29].
APS and AG parameters, which affect the activity of molecules in all molecular systems
with a pharmacophore, exist there. Both AG and APS can be described by means
of geometrical, electronic and physicochemical parameters. The effect of AG and APS is
determined by introducing the function S that is the sum of all these effects and is given
in short as follows [29]:

ZK/ () (1)

where a(’ are the molecular parameters describing the jth kind of APS or AG groups
in the zth conformation of the nth molecule, N is the number of selected APS and AG
parameters and the «; are variational parameters. A formula of activity is obtained for all
conformations using the function S and taking into account the Boltzmann weighting
of each conformation as a function of its energy and temperature, and «; variational
constants are calculated from the formula that was developed by Bersuker et al., given
below [29-36)].

A o Zmll —E;i/RT Zmn 8 ] ] Snfe_Em’/RT
= lzmn —Eu/RT Y 51 Phale—Sie~Ei/RT

(@)

where § is a kind of Dirac § function. It is equal to Pha 1 when pharmacophore is present.
It is equal to Pha 0 when pharmacophore is absent. 4, and A4; stand for the numerical
values of activity of the nth compound and the reference compound, respectively. Ej; is the
relative energy of the ith conformation of the reference compound (in kcalmol ™). Ej; is
the relative energy of the ith conformation of the nth compound (in kcalmol™') and
R (kcalmol 'K ™) i 1s the gas constant. 7 is the temperature in Kelvin.

The choice of a parameters and the determination of «; variational constants in
Equation (1) are 1mportant components in this method. The unknown coefficients «; m
the S function can be found by performing a least square minimization (Y, |45 — 44| )
for all the compounds in training set. This procedure is carried out using Matlab
software in conjunction with the optimization function Isqnonlin, which is a general
nonlinear least squares fitting algorithm to fit the data. If the «; variational constants are
known, bioactivity prediction for novel compounds may be possible. The numbers
“k”=1,2,..., N, obtained in this way characterize the weights of each kind of the am
parameters in the overall APS/AG influence [29].

In classical QSAR analysis, it is important to select the best subset descriptors from a
large pool of descriptors. In this study, 300 different molecular descriptors including
topological, geometrical and thermodynamical parameters were prepared and calculated
for each conformer of 107 compounds using EMRE software [40]. Generally, selecting
a proper subset of descriptors from a large descriptor pool is difficult, and is one of the
most important steps in the QSAR modelling process. For selection of the most important
descriptors, the GA technique was used [50]. In this QSAR study, the GA codes were
written in Matlab by the authors. GA randomly creates subsets of chromosomes with the
input parameters for the QSAR model. The Isqnonlin function within the statistics toolbox
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in MATLAB [51] was used to obtain «; values by numerically solving the system
of differential equations for the best subset of variables.

The GA method represents a probable solution of a given problem by means of bit
strings. It is optimized towards better solutions by applying genetic operators such as
selection, mutation and crossover. The first step in the GA method is to create a
population (population size =500) of N individuals (feature subsets). Each individual
encodes the same number of randomly chosen descriptors, and the fitness of cach
individual in this generation (generations=1500) is determined. In our study, further
increasing the population and generation size from 500 to 1000 did not create a significant
improvement but involved much longer computational time. The compounds in the
dataset were divided into two: training sets (80) and test sets (27). The test set is not used
during training but serves to test the predictive ability of final models. In this study, the
predictive residual sum of squares (PRESS) is also taken as the fitness measure. Next,
a fraction of children of the next generation is produced by crossover (crossover
probability =0.850, elite count=2) and the rest by mutation (mutation probabil-
ity =0.015) from the parents on the basis of their scaled fitness scores. The new offspring
contains characteristics from one or both parents, and is evaluated for fitness. The cycle
continues for a predetermined number of generations, or until the results do not change
continuously for a specified number of generations. Model parameters (kappa indices ;)
are coded by chromosomes as integer numbers. Each parent is submitted to the Isqnonlin
function to calculate the «; values of model parameters. The Isqnonlin function iterates «;
values over the Equation (1). After determining the «; values and the most important
parameters for the HEPT series, and in order to explore the reliability of the proposed
method, the leave-one-out (LOO) cross-validation method is used. The validation of the
developed model is a very important task in the building of the predictive QSAR model.
For this reason, model validation is performed by internal validation and external
validation techniques [52-56].

PRESS is a standard index to measure the accuracy of a modelling method based on
the LOO cross-validation technique. PRESS is defined as the sum of the squared
differences between calculated and experimental values of activity and can be written as:

N
PRESSy =Y A5 — A5’

n=1

(©)

where A% is the value of the activity that is calculated in the LOO cross-validation model
and A2 is the value of experimental activity taken from the experimental data. The
predictive performance of the model is measured by ¢, which is the cross-validation
regression coefficient that is given as follows:

SN jAer — geae)? _, _PRESS

2
=1
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n= n n
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where N is the total number of training compounds in the data set. SSY is the sum of
squares of deviations of the experimental values (457) from their mean (/If;xl’). A% and
/ifff’ are the experimental and averaged experimental activity values of the dependent
variable, respectively. The smaller the PRESS is, the better the model’s accuracy is.
Its value must be less than the SSY value for the model to be statistically significant.
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The external predictive ability of a QSAR model is an important feature, especially
if the model is to be used for the prediction of untested compounds. External validation is
used for predicting the activity values of chemical structures that are in the same chemical
domain as the training set but not used in the creation of the correlation in the training set.
A QSAR model is developed from data that are obtained from the training set which is
applied to the test set in order to explain the predictive ability of the model. Two different
expressions used for quantifying the external prediction capability of QSAR models are
discussed by Schiiiiremann et al. [53].

The average experimental value of training compounds and the average experimental
value of test compounds are, respectively, used in ¢> ,; and in ¢2 .. These expressions are
defined as follows:

N exp ale,?
Zn:l |Atest - A(a(l

2 test
Qoo =1 = 7 3 Q)
’ Xp exp
Zn:l [ Aest — Arraining'
N exp _ geale)?
q2 ) = _ Zn:l |Anml A”ww' (6)
exi2 ™ N exp Jexp 2
Zn:l |A”/u.&/ - Anlmining|

where N is the number of tested molecules and A;7 is the experimental activity of the
nth molecule in the test set. A;‘:’f is the calculated activity of test set without using the left-
out compound in the model building. /If,f{l’”ﬂ and fif;:”’ are the average of experimental
activities of training and test set, respectively.

The predictive ability of our 4D-QSAR model was evaluated by the LOO cross-
validation method. In many cases, the LOO cross-validated regression coefficient (¢°) and
regression coefficient (rfmim-ng) are taken as an evidence of the high predictive ability of
QSAR models. In addition to a high ¢* and Fhaining» @ Teliable model should also be
characterized by high r2,,, ¢> ,, and ¢> ,, for the test set of the molecules that were not used
to develop the models. To obtain a statistically significant QSAR model, there should
not be a large difference between the rfrm-nmg and ¢° values and, in addition, an external set

should be used for the predictive ability of the QSAR model [57].

3. Results and discussion

In this study, QSAR models were generated using four different training sets and then
validated using the corresponding test sets; thus four independent models (models 1-4)
could be obtained to evaluate both the robustness and the predictive ability of the models.
Models 1-3 were constructed using the training set and test set compounds given in
previous studies [25,26], but the training set and test set compounds in model 4 were
randomly selected for comparison with the other models. These models were used to make
a comparison with the model under discussion. For comparison, correlation, cross-
validation and external validation coefficients were used for each model. The results are
summarized in Table 3. By using sets containing different compounds and working
in different ways, the form of the training set was found to have a significant impact on the
predictive ability of the models.

In order to show the performance of these models and to obtain the optimum number
of descriptors, the EC-GA method was applied to determine the anti-HIV-1 activity of the
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Table 3. Comparison of four models according to statistical parameters to predict anti-HIV activity
of HEPT derivatives. Calculated activity values according to statistical data obtained from Model 4
are given in Table 1.

Tr almng set Test set rtzraining qZ rtzesz qlel qi\‘/Z
Model 1 107 - 0.887 0.868 - - -
Model 2 80 27 0.861 0.815 0.568 0.500 —5.562
Model 3 80 27 0.850 0.797 0.855 0.718 0.715
Model 4 80 27 0.867 0.811 0.923 0.909 0.909

Notes: model 1: all molecules were used as training set;

model 2: compounds 1-80 marked with * in Table 1 and compounds 81-107 were used as training set
and test sets, respectively;

model 3: compounds marked with ° in table 1 were used as training set;

model 4: compounds selected randomly and marked with € in Table 1 were used as training set.

HEPT derivatives. Since the optimum number of variables is not known in advance,
several runs are needed to examine the relationship between the predictive power of a
model (¢7) and the number of descriptors selected. Consequently, by using coefficient K;
which was obtained from the training set by the Isqnonlin function, the activities of the test
compounds were calculated using Equation (2). The test compounds are not included
in the model generation for all of the models. The most active molecule, 32, was used as a
template for alignment in the models. In order to demonstrate the predictive power and
accuracy of the EC-GA method, the four models developed in this work were compared
with those obtained with other QSAR approaches reported in the literature for the same
data sets on HEPT compounds. We demonstrated that our models, which are constructed
using the newly developed EC-GA method, were described by similar or better statistics
and predictive power as compared with the other QSAR models. Thus, it has been proven
that this approach was a powerful alternative to more popular QSAR methods.

In Luco et al.’s study [25], the activity of the compounds that were used as a training set
in model 1 was estimated by applying the coefficients derived by PLS (+*=0.891 and
¢=0.866) and MLR (+*=0.900 and ¢°>=0.745) statistical methodology from all
molecules in the compound series. Note that these models were constructed without
using test set-predicted values to validate the model. In our study, the statistical quality of
model 1, as depicted in Table 3, was also determined by rf,w-nmg and ¢°. Model 1, which was
developed by 12 descriptors (model 1’s descriptors and «; values are given in Table 4), had
the following statistics: ¢* = 0.868, Firaining = 0-887. This seems adequate for comparing the
results given in the previous work [25] with those of our study. The reggression coefficient
r%m,-ning) between the experimental and predicted activities calculated with the EC-GA
method was rarely lower, but it implied the model’s high predictive power with a higher
cross-validation regression coefficient (¢°) than in the previous work. We can assume that
model 1, which was generated with the EC-GA method, outperforms those given in the
literature in terms of predictive ability. Moreover, model 1 has an advantage because of
the nonlinear character of the relationship between variables and biological activities
obtained by the EC-GA method.

In order to apply the EC-GA modelling method to derive Models 2 and 3, the data set
of 107 was split into training (80 compounds) and test sets (27 compounds) as in Bak and
Polanski’s study [26]. They used Hopfinger’s 4D-QSAR and SOM-4D-QSAR methods for
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Table 4. Optimum 12 molecular parameters selected with GA and «; values used in activity
calculation for HEPT derivatives in Model 1.

a Molecular parameters Kk values
a Distance between C1 and S1 —4.001
a® Electrostatic charge of the farthest atom (H27) bonded to N2 0.176
a® Atomic valency of the farthest atom (C15) bonded to C2 —13.602
a® Distance between C2 and NI 16.991
a® Distance between C2 and the farthest atom (C15) bonded to C2 —0.825
a® Distance between C8 and N2 —0.038
a? Distance between C8 and the farthest atom (H16) bonded to C8 —0.772
a® Distance between O1 and C2+ van der Waals radius of C2 atom —16.527
a® Distance between C1 and the farthest atom (H7) bonded to C10+ 0.023
van der Waals radius of H7 atom
a1 Angle 03-C5-N1 —0.002
a'th Polarizability (gamma) (au) YYYY 2x 1073
a1? Polarizability (gamma) (au) XXZZ 1.5% 107

Table 5. Optimum 12 molecular parameters selected with GA and «; values used in activity
calculation for HEPT derivatives in Model 2.

a Molecular parameters Kk; values
a Mulliken charge of C3 atom —2.787
a® Atomic valency of the farthest atom (H27) bonded to N2 —0.026
a® Distance between C2 and N1 10.768
a® Distance between C2 and O3 17.690
a® Distance between S1 and the farthest atom (H16) bonded to C8 —0.455
a® Distance between C8 and H atom bonded to N1 (H17) 0.100
a? Distance between C8 and N2 —0.041
a® Distance between C8 and the farthest atom (H27) bonded to N2 0.089
a® Distance between O1 and C2+ van der Waals radius of C2 atom —29.707
a1 Distance between Ol and the farthest atom (H2) bonded to C12+ —0.059
van der Waals radius of H2 atom
ath Distance between C1 and O3+ van der Waals radius of O3 atom 0.026
a'? Angle between line of C5-03 atoms and C8-C7-O1 plane —0.183

the investigation of the structure—activity relationships of a HEPT series. The training set
compounds of Models 2 and 3 are marked with a and b, respectively, in Table 1. The cross-
validated ¢ values of 4D-QSAR and SOM-4D-QSAR models ranged from 0.76-0.98 for
the same training and test set compounds in model 2. However, test set statistics were
not used in these methods. Therefore it did not provide any information about the
predictive performance of the method. In another work, Heravi et al. [18] used both ANN
and MLR techniques for the same data set. While the ¢° values for MLR and ANN were
found as 0.605 and ranged from 0.525-0.954, the > values were found to be 0.811 and
0.919, respectively (but no qﬁm and qf,m values). In our study, the predictive ability of
model 2 was determined by 17 iines @» e doxnt @0d @2y, values, as seen from Table 3.
Model 2 was developed using 12 descriptors, which are given in Table 5. Although the
training set had good statistical prediction, contrary to expectations, the external set
showed much worse statistical prediction for model 2. In this model, the training set
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Table 6. Optimum 12 molecular parameters selected with GA and «; values used in activity
calculation for HEPT derivatives in Model 3.

a Molecular parameters Kkj values

al Electrostatic charge of the farthest atom (H27) bonded to N2 0.482

a® Distance between O3 and C12 —0.077

a® Distance between O3 and the farthest atom (H7) bonded to C10 0.107

a® Distance between Cland the farthest atom (H6) bonded to C11+ 0.025
van der Waals radius of H6 atom

a® Distance between C8 and the farthest atom (H7) bonded to C10 + 0.126
van der Waals radius of H7 atom

a® Distance between C8 and the farthest atom (H2) bonded to C12 + —0.215
van der Waals radius of H2 atom

a? Distance between C2—C7-C8 plane and the farthest atom bonded to C11 0.045

a® Distance between S1-O4-O1 plane and the farthest atom bonded to C11+ —0.025
van der Waals radius of H6 atom

a® Angle 01-C1-C2 —0.009

a? Angle C2-N2-the farthest atom (H27) bonded to N2 0.004

ath Angle C1-C2-the farthest atom bonded to C2 (C15) (radian) 0.320

a'? log P, partition coefficient —0.029

showed a good fit with rf,.m-m-ng =0.861 and ¢°=0.815, but the test set did not have high

correlation coefficients, relatively. Model 2 gave a negative ¢, value (—5.562) and lower
r2,, (0.568) for the test set.

Some of the statistics of the 4D-QSAR, SOM-4D-QSAR, ANN and MLR methods
can be expected to be better than, though still comparable with, those obtained for model 2
to reliably predict the modelled property for the entire universe of chemicals. Many
authors consider a high ¢* value (for instance, ¢> > 0.5) as an indicator, or even as ultimate
proof, that the model is highly predictive. Indeed, according to the current OECD
guidelines [58], high ¢* cannot be a single parameter to imply the predictive ability of a
model. Thus, a high ¢* value, alone, is insufficient proof that a QSAR model shows a high
predictive power. It has been shown that the only way to estimate the true predictive power
of a model is to test it using an external test set. Therefore, goodness-of-fit and robustness,
and the predictivity of a model are represented by internal performance and external
validation, respectively [59]. Model 2 explains the importance of ¢>,, and ¢ , for the
predictive abilities of QSAR models, and proved that high ¢* values do not automatically
imply a model’s high predictive ability; external validation is the only way to ‘determine’
the true predictive power of a QSAR model.

In other training set compounds that correspond with b in Table 1 and our model 3,
the values of ¢* obtained by Bak and Polanski [26] using Hopfinger’s 4D-QSAR and
SOM-4D-QSAR methods ranged from 0.23-0.77 and 0.60-0.71, respectively, but external
values were not given. In our study, model 3 yielded high predictive correlation coefficients
(¢*=0.797, ¢>,=0.718 and ¢ ,=0.715) and high fitted correlation coefficients
(Firaining =0-850 and r,, =0.855). Model 3 was developed using 12 descriptors which
are given in Table 6. Results obtained from model 3 show that EC-GA gives slightly better
values for ¢, rf,,a,nmg, ¢>.,, and ¢2,, than the other methods. This is because in our method
a conformational ensemble of compounds according to Boltzmann weighting is used
instead of a single representative structure. It is important to note that the prediction
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Figure 2. Actual vs. predicted and experimental anti-HIV-1 activity values for the training set
obtained by Model 4 with 11 variables, using the EC-GA method.

ability estimated by EC-GA methods for this analysis is at least as good as the results
obtained with other QSAR methods originally used on the same data sets.

An additional study using a training/test set protocol was performed in order to better
estimate the results of the EC-GA method. In model 4, 18 molecules (marked with ¢
in Table 1) were randomly partitioned into a training set of 107 HEPT derivatives and a
test set of 27 compounds which were used to validate the QSAR models. The best model
was selected based on the best value of the cross-validated coefficient ¢* and the regression
coefficient 72 for the training set, and the external validation coefficients ¢> ,; and ¢> ,,

training
and the regression coefficient 2, for the test set. All the models were compared with

test

the other models; model 4 had a considerably high r2 ;... 4> 421 and g2, In this case,
the best model was determined as model 4 with the highest cross-validated coefficicent
¢>=0.811 and the regression coefficients r?raining =0.867 and r2,,=0.923 for the training
set and test set, respectively. For the test set, both of the external validation coefficients
¢, and ¢, were as high as 0.909. It was proven that model 4 was a statistically
significant model and had high predictive power. This was a demonstration that model 4
was not obtained by chance correlation. Hence, we successfully developed an externally
validated QSAR model for predicting anti-HIV-1 activity for HEPT derivatives. The plots
of the predicted activities versus experimental values of anti-HIV-1 activity are shown
individually for the training and test set in Figures 2 and 3, respectively.

To determine the best subset of descriptors in the best model, the HEPT derivatives
were calculated for a range of 1-14 parameters. To obtain the optimum number of
descriptors, * and ¢” values were presented in a graph against the number of descriptors as
seen in Figure 4. According to the ¢” values, the results indicated that 7-14 parameters are
acceptable. As seen from the graph, the model reaches a stable condition after 11 variables,
and any new additional variable is unnecessary. Therefore, the best model was found as
the 11-parameter model involving charges, distance, angle and dipole (X) (X component
of the dipole moment) using the EC-GA method. The predictive performances of the
generated QSAR models using the reduced set of descriptors are shown in Table 7.
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Figure 3. Actual vs. predicted and experimental anti-HIV-1 activity values for the test set obtained
by Model 4 with 11 variables, using the EC-GA method.
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Figure 4. Plot of r?m-nmg, 12, and cross-validated ¢” against the parameter numbers. The model

reaches a stable condition after 11 variables, and any new variable added is unnecessary.

In Table 7, the a'V, a®, a'® and ¢ parameters, which are corresponding interatomic
distances employed to take into account the influence of their limited flexibility on activity,
are related to the overall shape of the molecules. We employed the difference in distance
between all pairs of the atoms in all of the conformers of molecules. We found that the
distances of the C2-O1, C2-N1, C8-N2 and C8-the farthest atom (H16) bonded to C8 atom
were strongly influenced by such conformational changes. The first parameter, which gives
the largest negative contribution in the change of activity as the «; value, a', is the
distance between C2 and O1, which are pharmacophoric atoms. Distance descriptors,
which are defined by molecular conformation, have been proven to be useful in the
construction of QSAR models and in the prediction of important properties of the active
conformation [60]. Distance descriptors are helpful in quantifying their inter and
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Table 7. Optimum 11 molecular parameters selected with GA and «; values used in activity
calculation for HEPT derivatives in Model 4.

a Molecular parameters Kkj values
a Distance between C2 and O1 —15.370
a® Mulliken charge of C2 —2.530
a® Electrostatic charge of the farthest atom (C15) bonded to C2 0.153
a® Electrostatic charge of the farthest atom (H27) bonded to N2 0.190
a® Distance between C2 and N1 13.281
a® Distance between C8 and N2 2.494
a? Distance between C8 and the farthest atom (H16) bonded to C8 —0.025
a® Distance between C7 and the farthest atom (H5) bonded to C2+ —0.628
van der Waals radius of HS atom
a® Angle between line of C5-03 atoms and C8-C7-O1 plane —0.224
a1 Angle 03-C5-N2 —0.002
ath Dipole (X), X component of the dipole moment 0.015

intramolecular 3D interactions between ligand and bioreceptor, and these descriptors are
related to the ability of the ligand molecule to fit into its site in the receptor.

The second parameter, ¢'?, is the Mulliken charge of the C3 atom of the thymine ring,
and its parameter value is changeable in all molecules. ¢ and «® are electronic
parameters of the electrostatic charges of the farthest atom (C15) bonded to C2 and the
farthest atom (H27) bonded to N2, respectively. The electrostatic charges of the C15 and
H27 atoms directly affect activity. The atomic charges at the C2 and C3 positions,
representing the steric interaction of the substituents of the compounds, play an important
role in the model, particularly in the relationships between the atomic charge and the
nature of the substituent on the atom. Positive electrostatic charges located near the
substituent, which is attached to the C2 position of the thymine ring, showed favourable
positive charges. It can be understood that the C3 atom with negative Mulliken charges
may reduce the binding affinity of all the molecule conformers in the central area where
the increase of negative charge is; the C15 and H27 atoms with positive electrostatic
charges in the more distant area, where the increase of the positive charge is, may decrease
binding affinity, too. a® is the distance between C7-HS5 excluding hydrogen as the farthest
atom van der Waals radius of the H5 atom (Figure 5). The van der Waals atomic radius is
one of the criteria used for determining whether atoms are bonded to one another [61].
Therefore, the van der Waals radius is one of the most important descriptors for describing
the interaction with the receptors. a® is the angle between the line of the C5-O3 atoms and
the C8-C7-0O1 plane. ¢"'? is the angle (radian) between the 03-C5-N2 atoms. a'" is the
dipole (X) which is the X component of the dipole moment. The dipole (X) is one of the
most important molecular descriptors for predicting activity [62]. Dipole (X) is applicable
in reciprocal format: its contribution is negative and positive for some of the conformers
in the HEPT series in predicting biological activity.

Activity depends exponentially on S (4~e™°). It shows the APS parameter, and
providing that the product of the parameter and kappa values is positive and vice versa,
it also shows the AG. @, a®, a¥®, ¢® and ¢® are APS parameters. aV, a®, P, d® and
a'? are AG parameters. a'" has positive or negative values in different conformers of the
same compound; it is not only AG, but also APS.
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Figure 5. Van der Waals surface of the reference compound. ¢® is the angle between C7-C8-O1
plane shown in yellow and O3-C5 line. ¢ indicates C7-H35 distance+ van der Waals radius of H5
atom. ¢® is distance between C2 and N1 atoms.

The E statistical technique [63,64] was used to determine the role of selected molecular
parameters on anti-HIV-1 activity. The statistical £ value is defined as follows [34]:

PRESSp

=77 7
PRESSp_ M

The E statistical method is similar to the LOO cross-validation method. Each
molecular parameter was omitted and 10 molecular parameters were evaluated from
within the 11 molecular parameters. Therefore, the effect each of the molecular
parameters was determined for the HEPT series. The E, ¢°, 17 inings Fasrr doxt a0 @2y
values, which are displayed in Table 8, were calculated to determine which variables
affect the performance of the generated model 4. The performance of the model affected
a"” much more than the other variables in terms of O3-C5-N2. Both the E value (0.542)
and ¢* value (0.704) are the lowest for the case of negligence of a''” variables. Moreover,
considering the 12, ¢> ., and ¢> , values, we can see in Table 8 that they are also low.
Therefore, a"'” is the most important variable for this model. The second variable most
affecting the model is a®, which represents the distance between C7-H54 van der Waals
radius of the HS atom, and when this variable is neglected the values of E, ¢°, 12, ¢*.,,
and ¢2, , decrease. Considering the case of the negligence of @', the E and ¢* values do not

decrease much, but a significant decline is observed in the r2,,, ¢2,; and ¢> , values.
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Table 8. E, 7, 17 ings oosts Gy and ¢;,, values showing the contribution of each descriptor
to model performance for anti-HIV-1 activity of HEPT derivatives. ¢>,, and ¢2, are external

validations in the leave-one-out cross-validation for 11 parameters.

Index E r /21'nining q2 rtzex/ qull qulZ
aV 0.663 0.793 0.883 0.715 0.882 0.880
a? 0.948 0.856 0.828 0.801 0.786 0.781
a® 0.940 0.854 0.890 0.799 0.879 0.877
a® 0.910 0.868 0.868 0.793 0.859 0.855
a® 0.915 0.745 0.794 0.738 0.635 0.628
a® 0.978 0.862 0.913 0.807 0.889 0.887
a” 0.995 0.860 0.895 0.810 0.869 0.866
a® 0.638 0.778 0.609 0.704 0.436 0.424
a® 0.981 0.862 0.896 0.808 0.873 0.866
a'? 0.542 0.770 0.665 0.652 0.570 0.560
atv 0.996 0.864 0.895 0.810 0.863 0.860

Individually, the a®, a®, d®, ¢ and a parameters have only a small effect on the

model. Using the developed EC-GA model we found that 11 parameters, which include
electronic and geometric characteristics, are the most important for affecting the activity
of HEPT derivatives.

The EC-GA method, which was successfully used in a 4D-QSAR study employing
four independent models, improve model selection and predictivity. The results from our
study clearly show that electronic and, in particular, geometric parameters are of prime
importance for determining the anti-HIV-1 activity of the HEPT derivatives under study.
The QSAR models were validated both internally and externally. External validation
should be seen as a useful supplement to internal validation, rather than as a superior
alternative. Whenever additional data sets with compounds of unknown activity are
available, it is preferable that QSAR models be externally validated.

At last, eight novel compounds (see Table 1, compounds 108-115) never tested
experimentally have been designed theoretically to predict the anti-HIV-1 activity of
compounds before their synthesis. These new derivatives were used as external test set and
their predictive pIC50 values checked based on our model 4. Eleven parameters and «;
values obtained from model 4 entered the final activity formula (Equation (2)) in order
to predict the anti-HIV-1 activity of eight novel compounds. Calculated activity values are
shown in Table 1. Because of the absence of experimental values for new compounds,
statistical evaluations have not been performed for these compounds. However, according
to the EC-GA method, these compounds are expected to demonstrate statistically
significant anti-HIV-1 activity under experimental conditions.

(6) (11)

4. Conclusion

This study provided statistical interpretations of the activity predictions of HEPT
derivatives investigated to reveal pharmacophore and to predict anti-HIV-1 activity using
a 4D-QSAR method called EC-GA that combines the electron conformational and
genetic algorithm methods. The goal of the EC-GA method was not only to explain the
relationships between molecular descriptors and anti-HIV-1 activity, but also to describe



430 L. Akyiiz et al.

the pharmacophore group using the conformational flexibility of the HEPT compounds.
However, a conformational ensemble of compounds according to Boltzmann weighting
was also used instead of a single representative structure to predict anti-HIV-1 activity.
Four independent models were constructed using four different training and test sets to
evaluate both the robustness and the predictive ability of the models and to compare the
results obtained from this study with previous works. Internal and external validations
were used to explain the goodness-of-fit and robustness, and the predictivity of a model.
Finally, the results of model 2 which had a negative ¢, value and high ¢* value,
emphasized that external validation is essential to interprete the predictive power of QSAR
models. Based on both internally and externally validated results, we concluded that the
best model for the prediction of the anti-HIV-1 activity of HEPT derivatives was model 4.
The investigated activity of the HEPT derivatives proved to be of electrostatic, geometric
and topological nature according to the model 4 results. It depended on compound
charges, van der Waals radius of atoms, and distance between of two atoms in the model 4.
The EC-GA method provided reliable and valid model in terms of statistical character-
ization and LOO analyses.
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