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APPROXIMATION IN WEIGHTED Lp
SPACES

ALI GUVEN

Abstract. The Lipschitz classes Lip (α, p,w) , 0 < α ≤ 1 are defined for the weighted Lebesgue
spaces L

p

w with Muckenhoupt weights, and the degree of approximation by matrix transforms of
f ∈ Lip (α, p,w) is estimated by n−α.

1. Introduction and the main results

A measurable 2π-periodic function w : R → [0,∞] is said to be a weight function
if the set w−1 ({0,∞}) has Lebesgue measure zero. We denote by Lp

w = Lp
w ([0, 2π]),

where 1 ≤ p < ∞ and w a weight function, the weighted Lebesgue space of all
measurable 2π−periodic functions f , that is, the space of all such functions for
which

‖f‖p,w =





2π
∫

0

|f (x)|
p
w (x) dx





1/p

< ∞.

Let 1 < p < ∞. A weight function w belongs to the Muckenhoupt class Ap =
Ap ([0, 2π]) if

sup
I





1

|I|

∫

I

w (x) dx









1

|I|

∫

I

[w (x)]
−1/p−1

dx





p−1

< ∞,

where the supremum is taken over all intervals I with length |I| ≤ 2π.
The weight functions belong to the Ap, class introduced by Muckenhoupt ([8]),

play a very important role in different fields of Mathematical Analysis.
Denote by M the Hardy-Littlewood maximal operator, defined for f ∈ L1 by

M (f) (x) = sup
I

1

|I|

∫

I

|f (t)| dt, x ∈ [0, 2π] ,

where the supremum is taken over all subintervals I of [0, 2π] with x ∈ I.
Let 1 < p < ∞ and w be a weight function. In [8] it was proved that the

maximal operator M is bounded on Lp
w, that is,

‖M (f)‖p,w ≤ c ‖f‖p,w (1.3)
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12 Ali Guven

for all f ∈ Lp
w, where c is a constant depends only on p, if and only if w ∈ Ap.

Let 1 < p < ∞, w ∈ Ap and f ∈ Lp
w. The modulus of continuity of the function

f is defined by

Ω (f, δ)p,w = sup
|h|≤δ

‖∆h (f)‖p,w , δ > 0, (1.4)

where

∆h (f) (x) :=
1

h

h
∫

0

|f (x+ t)− f (x)| dt. (1.5)

The existence of Ω (f, δ)p,w follows from (1.3).

The modulus Ω (f, ·)p,w is nonnegative, continuous function such that

lim
δ→0

Ω (f, δ)p,w = 0, Ω (f1 + f2, ·)p,w ≤ Ω (f1, ·)p,w +Ω(f2, ·)p,w .

In the Lebesgue spaces Lp (1 < p < ∞) , the classical modulus of continuity
ω (f, ·)p is defined by

ω (f, δ)p = sup
0<h≤δ

‖f (·+ h)− f‖p , δ > 0. (1.6)

It is known that in the Lebesgue spaces Lp the moduli of continuity (1.4) and (1.6)
are equivalent (see [5]).

We define in the spaces Lp
w the modulus of continuity by using the shift (1.5),

because the space Lp
w is not translation invariant. The idea of defining the modulus

of continuity by (1.4) was developed in [5].
Let 1 < p < ∞, w ∈ Ap, f ∈ Lp

w and 0 < α ≤ 1. We define the Lipschitz class
Lip (α, p, w) as

Lip (α, p, w) =
{

f ∈ Lp
w : Ω (f, δ)p,w = O (δα) , δ > 0

}

.

Let f ∈ L1 has the Fourier series

f (x) ∼
a0
2

+

∞
∑

k=1

(ak cos kx+ bk sinkx) . (1.7)

Denote by Sn (f) (x) , n = 0, 1, . . . the nth partial sums of the series (1.7) at the
point x, that is,

Sn (f) (x) =

n
∑

k=0

uk (f) (x) ,

where

u0 (f) (x) =
a0
2
, uk (f) (x) = ak cos kx+ bk sinkx, k = 1, 2, . . . .

Let (pn) be a sequence of positive numbers. The Nörlund means of the series
(1.7) with respect to the sequence (pn) are defined by

Nn (f) (x) =
1

Pn

n
∑

k=0

pn−kSk (f) (x) , (1.8)
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Approximation in Weighted Lp Spaces 13

where Pn =
n
∑

k=0

pk, and p−1 = P−1 := 0.

If pn = 1 for n = 0, 1, . . . , then Nn (f) (x) coincides with the Cesàro means

σn (f) (x) =
1

n+ 1

n
∑

k=0

Sk (f) (x) .

The sequence (pn) is called almost monotone decreasing (increasing) if there
exists a constant K, depending only on (pn) , such that pn ≤ Kpm (pm ≤ Kpn)
for n ≥ m.

In the non-weighted Lebesgue spaces Lp, the following results were obtained
recently.

Theorem A ([1]). Let f ∈ Lip (α, p) and (pn) be a sequence of positive numbers

such that (n+ 1) pn = O (Pn) . If either
(i) p > 1, 0 < α ≤ 1 and (pn) is monotonic

or

(ii) p = 1, 0 < α < 1 and (pn) is non-decreasing,

then

‖f −Nn (f)‖p = O
(

n−α
)

.

Theorem B ([6]). Let f ∈ Lip (α, p) and (pn) be a sequence of positive numbers.

If one of the conditions

(i) p > 1, 0 < α < 1 and (pn) is almost monotone decreasing,

(ii) p > 1, 0 < α < 1, (pn) is almost monotone increasing and (n+ 1) pn =
O (Pn) ,

(iii) p > 1, α = 1 and
n−1
∑

k=1

k |pk − pk+1| = O (Pn) ,

(iv) p > 1, α = 1 and
n−1
∑

k=0

|pk − pk+1| = O (Pn/n) ,

(v) p = 1, 0 < α < 1 and
n−1
∑

k=−1

|pk − pk+1| = O (Pn/n)

maintains, then

‖f −Nn (f)‖p = O
(

n−α
)

.

It is clear that Theorem B is more general than Theorem A.
In the weighted Lebesgue spaces Lp

w, where 1 < p < ∞ and w ∈ Ap an analogue
of Theorem A was proved in [3].

In the paper [7], the authors extended Theorem A to more general classes of
triangular matrix methods.

Let A = (an,k) be an infinite lower triangular regular matrix with nonnegative

entries and let s
(A)
n (n = 0, 1, . . . ) denote the row sums of this matrix, that is

s
(A)
n =

n
∑

k=0

an,k.

The matrix A = (an,k) is said to has monotone rows if, for each n, (an,k) is
either non-increasing or non-decreasing with respect to k, 0 ≤ k ≤ n.
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14 Ali Guven

For a given infinite lower triangular regular matrix A = (an,k) with nonnegative
entries we consider the matrix transform

T (A)
n (f) (x) =

n
∑

k=0

an,kSk (f) (x) . (1.9)

Theorem C ([7]). Let f ∈ Lip (α, p) , A has monotone rows and satisfy

∣

∣

∣s
(A)
n − 1

∣

∣

∣ =

O (n−α) . If one of the conditions

(i) p > 1, 0 < α < 1 and (n+ 1)max {an,0, an,r} = O(1) where r = [n/2] ,
(ii) p > 1, α = 1 and (n+ 1)max {an,0, an,r} = O(1) where r = [n/2] ,
(iii) p = 1, 0 < α < 1 and (n+ 1)max {an,0, an,n} = O(1),

holds, then
∥

∥

∥f − T (A)
n (f)

∥

∥

∥

p
= O

(

n−α
)

.

For a given positive sequence (pn) , if we consider the lower triangular matrix
with entries an,k = pn−k/Pn, then the Nörlund transform (1.8) can be regarded
as a matrix transform of the form (1.9). Further, in this case the conditions of
Theorem A implies conditions of Theorem C and hence Theorem C is more general
than Theorem A (see [7]).

In the present paper we give generalizations of Theorems B and C in weighted
Lebesgue spaces.

We call the matrix A = (an,k) has almost monotone increasing (decreasing)
rows if there exists a constant K, depending only on A, such that an,k ≤ Kan,m
(an,m ≤ Kan,k) for each n and 0 ≤ k ≤ m ≤ n.

Our main results are the following.

Theorem 1. Let 1 < p < ∞, w ∈ Ap, 0 < α < 1, f ∈ Lip (α, p, w) and

A = (an,k) be a lower triangular regular matrix with

∣

∣

∣s
(A)
n − 1

∣

∣

∣ = O (n−α) . If one

of the conditions

(i)A has almost monotone decreasing rows and (n+ 1) an,0 = O(1),
(ii) A has almost monotone increasing rows and (n+ 1) an,r = O(1) where

r := [n/2] ,
holds, then

∥

∥

∥
f − T (A)

n (f)
∥

∥

∥

p,w
= O

(

n−α
)

.

Theorem 2. Let 1 < p < ∞, w ∈ Ap, f ∈ Lip (1, p, w) and A = (an,k) be a lower

triangular regular matrix with

∣

∣

∣
s
(A)
n − 1

∣

∣

∣
= O

(

n−1
)

. If one of the conditions

(i)
n−1
∑

k=1

|an,k−1 − an,k| = O
(

n−1
)

,

(ii)
n−1
∑

k=1

(n− k) |an,k−1 − an,k| = O (1) ,

holds, then
∥

∥

∥f − T (A)
n (f)

∥

∥

∥

p,w
= O

(

n−1
)

.
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Approximation in Weighted Lp Spaces 15

Let (pn) be a sequence of positive numbers, 0 < α < 1 and 1 < p < ∞. Consider
the lower triangular matrix A = (an,k) with an,k = pn−k/Pn. It is clear that in this

case s
(A)
n = 1.

If (pn) is almost monotone decreasing, then the Nörlund matrix A has almost
monotone increasing rows and

(n+ 1) an,r ≤ (n+ 1)Kan,n = K (n+ 1)
p0
Pn

≤ 1,

where r = [n/2] . Thus, A satisfies the condition (ii) of Theorem 1.
If (pn) is almost monotone increasing and (n+ 1) pn = O (Pn) , then A has

almost monotone decreasing rows and

(n+ 1) an,0 = (n+ 1)
pn
Pn

=
1

Pn
O (Pn) = O (1) .

Thus, A satisfies the condition (i) of Theorem 1.
Hence part (ii) of Theorem 1 is general than part (i) of Theorem B and and part

(i) of Thorem 1 is general than part (ii) of Theorem B even in the case w (x) ≡ 1.
Also, it is clear that parts (i) and (ii) of Theorem 1 are general than correspond-

ing parts of Theorem C.

Now let p > 1, α = 1 and
n−1
∑

k=1

k |pk − pk+1| = O (Pn) . Then,

n−1
∑

k=1

(n− k) |an,k−1 − an,k| =
n−1
∑

k=1

(n− k)

∣

∣

∣

∣

pn−k+1

Pn
−

pn−k

Pn

∣

∣

∣

∣

=
1

Pn

n−1
∑

k=1

k |pk − pk+1| =
1

Pn
O (Pn)

= O (1) .

Thus, the Nörlund matrix A = (pn−k/Pn) satisfies the condition (ii) of Theorem 2.
Hence, part (iii) of Theorem B is a special case of part (ii) of Theorem 2. Similarly,
one can easily show that part (i) of Theorem 2 is general than part (iv) of Theorem
B even if w (x) ≡ 1.

2. Lemmas

Lemma 1 ([3]). Let 1 < p < ∞, w ∈ Ap and 0 < α ≤ 1.Then for every

f ∈ Lip (α, p, w) the estimate

‖f − Sn (f)‖p,w = O
(

n−α
)

, n = 1, 2, . . . (2.1)

holds.

Lemma 2 ([3]). Let1 < p < ∞, w ∈ Ap, 0 < α ≤ 1 and f ∈ Lip (1, p, w) . Then
for n = 1, 2, . . . the estimate

‖Sn (f)− σn (f)‖p,w = O
(

n−1
)

(2.2)
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16 Ali Guven

holds.

In the non-weighted Lebesgue spaces Lp, 1 < p < ∞, the analogue of Lemma 2
was proved in [9].

Lemma 3. Let A = (an,k) be an infinite lower triangular matrix and 0 < α < 1.
If one of the conditions

(i) A has almost monotone decreasing rows and (n+ 1)an,0 = O(1),
(ii) A has almost monotone increasing rows, (n+ 1) an,r = O(1) where r :=

[n/2] , and
∣

∣

∣
s
(A)
n − 1

∣

∣

∣
= O (n−α) ,

holds, then

n
∑

k=1

k−αan,k = O
(

n−α
)

. (2.3)

Proof.

(i) Since
n
∑

k=1

k−α = O
(

n1−α
)

and an,k ≤ Kan,0 for k = 1, . . . , n, we get

n
∑

k=1

k−αan,k ≤ Kan,0

n
∑

k=1

k−α

= O

(

1

n+ 1

)

O
(

n1−α
)

= O
(

n−α
)

.

(ii) Since an,k ≤ Kan,r for k = 1, . . . , r and
∣

∣

∣s
(A)
n − 1

∣

∣

∣ = O (n−α) ,

n
∑

k=1

k−αan,k =

r
∑

k=1

k−αan,k +

n
∑

k=r+1

k−αan,k

≤ Kan,r

r
∑

k=1

k−α + (r + 1)
−α

n
∑

k=r+1

an,k

≤ Kan,r

n
∑

k=1

k−α + (r + 1)−α
n
∑

k=0

an,k

= O

(

1

n+ 1

)

O
(

n1−α
)

+O
(

n−α
)

s(A)
n

= O
(

n−α
)

. �
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3. Proofs of the main results

Proof of Theorem 1. By definition of T
(A)
n (f) , we have

T (A)
n (f) (x)− f (x) =

n
∑

k=0

an,kSk (f) (x)− f (x)

=

n
∑

k=0

an,kSk (f) (x)− f (x) + s(A)
n f (x)− s(A)

n f (x)

=

n
∑

k=0

an,k (Sk (f) (x)− f (x)) +
(

s(A)
n − 1

)

f (x) .

Hence, by (2.1) and (2.3) we obtain

∥

∥

∥
f − T (A)

n (f)
∥

∥

∥

p,w
≤

n
∑

k=1

an,k ‖Sk (f)− f‖p,w + an,0 ‖S0 (f)− f‖p,w

+
∣

∣

∣s(A)
n − 1

∣

∣

∣ ‖f‖p,w

=

n
∑

k=1

an,kk
−α +O

(

1

n+ 1

)

+O
(

n−α
)

= O
(

n−α
)

,

since
∣

∣

∣s
(A)
n − 1

∣

∣

∣ = O (n−α) . �

Proof of Theorem 2. By (2.1),

∥

∥

∥f − T (A)
n (f)

∥

∥

∥

p,w
≤

∥

∥

∥Sn (f)− T (A)
n (f)

∥

∥

∥

p,w
+ ‖f − Sn (f)‖p,w

=
∥

∥

∥Sn (f)− T (A)
n (f)

∥

∥

∥

p,w
+O

(

n−1
)

.

Thus, we have to show that
∥

∥

∥Sn (f)− T (A)
n (f)

∥

∥

∥

p,w
= O

(

n−1
)

. (3.1)

Set An,k :=
n
∑

m=k

an,m. Hence,

T (A)
n (f) (x) =

n
∑

k=0

an,kSk (f) (x) =
n
∑

k=0

an,k

(

k
∑

m=0

um (f) (x)

)

=

n
∑

k=0

(

n
∑

m=k

an,m

)

uk (f) (x) =

n
∑

k=0

An,kuk (f) (x) .
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On the other hand,

Sn (f) (x) =

n
∑

k=0

uk (f) (x) = An,0

n
∑

k=0

uk (f) (x) + (1−An,0)

n
∑

k=0

uk (f) (x)

=

n
∑

k=0

An,0uk (f) (x) +
(

1− s(A)
n

)

Sn (f) (x) .

Thus,

T (A)
n (f) (x)− Sn (f) (x) =

n
∑

k=1

(An,k −An,0)uk (f) (x) +
(

s(A)
n − 1

)

Sn (f) (x) .

By boundedness of the partial sums in the space Lp
w (see [4]) we get

∥

∥

∥Sn (f)− T (A)
n (f)

∥

∥

∥

p,w
≤

∥

∥

∥

∥

∥

n
∑

k=1

(An,k −An,0)uk (f)

∥

∥

∥

∥

∥

p,w

+
∣

∣

∣s(A)
n − 1

∣

∣

∣ ‖f‖p,w (3.2)

=

∥

∥

∥

∥

∥

n
∑

k=1

(An,k −An,0)uk (f)

∥

∥

∥

∥

∥

p,w

+O
(

n−1
)

.

Thus, the problem reduced to proving that
∥

∥

∥

∥

∥

n
∑

k=1

(An,k −An,0)uk (f)

∥

∥

∥

∥

∥

p,w

= O
(

n−1
)

. (3.3)

If we set

bn,k :=
An,k −An,0

k
, k = 1, ..., n,

Abel transform yields

n
∑

k=1

(An,k −An,0)uk (f) =

n
∑

k=1

bn,kkuk (f)

= bn,n

n
∑

m=1

mum (f) +
n−1
∑

k=1

(bn,k − bn,k+1)

(

k
∑

m=1

mum (f)

)

.

Hence,
∥

∥

∥

∥

∥

n
∑

k=1

(An,k −An,0)uk (f)

∥

∥

∥

∥

∥

p,w

≤ |bn,n|

∥

∥

∥

∥

∥

n
∑

m=1

mum (f)

∥

∥

∥

∥

∥

p,w

+
n−1
∑

k=1

|bn,k − bn,k+1|





∥

∥

∥

∥

∥

k
∑

m=1

mum (f)

∥

∥

∥

∥

∥

p,w



 .
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Considering (2.2), we have

∥

∥

∥

∥

∥

n
∑

m=1

mum (f)

∥

∥

∥

∥

∥

p,w

= (n+ 1) ‖Sn (f)− σn (f)‖p,w

= (n+ 1)O
(

n−1
)

= O (1) .

This and the previous inequality yield

∥

∥

∥

∥

∥

n
∑

k=1

(An,k −An,0)uk (f)

∥

∥

∥

∥

∥

p,w

= O (1) |bn,n|+O (1)

n−1
∑

k=1

|bn,k − bn,k+1| . (3.4)

Since
∣

∣

∣s
(A)
n − 1

∣

∣

∣ = O
(

n−1
)

,

|bn,n| =
|An,n −An,0|

n
=

∣

∣

∣an,n − s
(A)
n

∣

∣

∣

n
(3.5)

=
1

n

(

s(A)
n − an,n

)

≤
1

n
s(A)
n

=
1

n
O (1) = O

(

n−1
)

.

Therefore, it is remained to prove that

n−1
∑

k=1

|bn,k − bn,k+1| = O
(

n−1
)

. (3.6)

A simple calculation yields

bn,k − bn,k+1 =
1

k (k + 1)

{

(k + 1) an,k −

k
∑

m=0

an,m

}

.

(i) Let
n−1
∑

k=1

|an,k−1 − an,k| = O
(

n−1
)

.

Let’s verify by induction that

∣

∣

∣

∣

∣

k
∑

m=0

an,m − (k + 1) an,k

∣

∣

∣

∣

∣

≤

k
∑

m=1

m |an,m−1 − an,m| (3.7)

for k = 1, . . . , n.
If k = 1, then

∣

∣

∣

∣

∣

1
∑

m=0

an,m − 2an,1

∣

∣

∣

∣

∣

= |an,0 − an,1| ,
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thus (3.7) holds. Now let us assume that (3.7) is true for k = ν. For k = ν + 1,

∣

∣

∣

∣

∣

ν+1
∑

m=0

an,m − (ν + 2) an,ν+1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ν
∑

m=0

an,m − (ν + 1) an,ν+1

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

ν
∑

m=0

an,m − (ν + 1) an,ν

∣

∣

∣

∣

∣

+ |(ν + 1) an,ν − (ν + 1) an,ν+1|

≤

ν
∑

m=1

m |an,m−1 − an,m|+ (ν + 1) |an,ν − an,ν+1|

=

ν+1
∑

m=1

m |an,m−1 − an,m| ,

and hence (3.7) holds for k = 1, . . . , n. Therefore,

n−1
∑

k=1

|bn,k − bn,k+1| =

n−1
∑

k=1

∣

∣

∣

∣

∣

1

k (k + 1)

{

(k + 1)an,k −

k
∑

m=0

an,m

}∣

∣

∣

∣

∣

=

n−1
∑

k=1

1

k (k + 1)

∣

∣

∣

∣

∣

k
∑

m=0

an,m − (k + 1) an,k

∣

∣

∣

∣

∣

≤

n−1
∑

k=1

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m|

=

n−1
∑

m=1

m |an,m−1 − an,m|

n−1
∑

k=m

1

k (k + 1)

≤

n−1
∑

m=1

m |an,m−1 − an,m|

∞
∑

k=m

1

k (k + 1)

=

n−1
∑

m=1

|an,m−1 − an,m|

= O
(

n−1
)

.

(ii) Let
n−1
∑

k=1

(n− k) |an,k−1 − an,k| = O (1) .
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By (3.7),

n−1
∑

k=1

|bn,k − bn,k+1| ≤
n−1
∑

k=1

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m|

≤

r
∑

k=1

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m|

+

n−1
∑

k=r

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m| ,

where r := [n/2] . By Abel transform,

r
∑

k=1

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m| ≤

r
∑

k=1

|an,k−1 − an,k|

=

r
∑

k=1

1

n− k
(n− k) |an,k−1 − an,k|

≤
1

n− r

r
∑

k=1

(n− k) |an,k−1 − an,k|

=
1

n− r
O (1) = O

(

n−1
)

.

On the other hand
n−1
∑

k=r

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m|

≤
n−1
∑

k=r

1

k (k + 1)

{

r
∑

m=1

m |an,m−1 − an,m|+
k
∑

m=r

m |an,m−1 − an,m|

}

=

n−1
∑

k=r

1

k (k + 1)

r
∑

m=1

m |an,m−1 − an,m|+

n−1
∑

k=r

1

k (k + 1)

k
∑

m=r

m |an,m−1 − an,m|

= : In1 + In2.

Since
r
∑

k=1

|an,k−1 − an,k| = O
(

n−1
)

,

In1 ≤

n−1
∑

k=r

1

k + 1

r
∑

m=1

|an,m−1 − an,m|

= O
(

n−1
)

n−1
∑

k=r

1

k + 1

= O
(

n−1
)

(n− r)
1

r + 1

= O
(

n−1
)

.
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Let’s also estimate In2.

In2 =

n−1
∑

k=r

1

k (k + 1)

k
∑

m=r

m |an,m−1 − an,m|

≤
n−1
∑

k=r

1

k + 1

k
∑

m=r

|an,m−1 − an,m|

≤
1

r + 1

n−1
∑

k=r

(

k
∑

m=r

|an,m−1 − an,m|

)

≤
2

n

n−1
∑

k=r

(

k
∑

m=r

|an,m−1 − an,m|

)

=
2

n

n−1
∑

k=n−r

(n− k) |an,k−1 − an,k|

≤
2

n

n−1
∑

k=1

(n− k) |an,k−1 − an,k|

=
2

n
O (1) = O

(

n−1
)

.

Thus
n−1
∑

k=r

1

k (k + 1)

k
∑

m=1

m |an,m−1 − an,m| = O
(

n−1
)

,

and hence
n−1
∑

k=1

|bn,k − bn,k+1| = O
(

n−1
)

.

Therefore, (3.6) is verified both in cases (i) and (ii). Finally, combining (3.1), (3.2),
(3.3), (3.4), (3.5) and (3.6) finishes the proof. �
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