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APPROXIMATION IN WEIGHTED L? SPACES

ALI GUVEN

ABSTRACT. The Lipschitz classes Lip (o, p,w),0 < a < 1 are defined for the weighted Lebesgue
spaces L, with Muckenhoupt weights, and the degree of approximation by matrix transforms of
[e3

f € Lip(a, p,w) is estimated by n™¢.

1. INTRODUCTION AND THE MAIN RESULTS

A measurable 27-periodic function w : R — [0, 00] is said to be a weight function
if the set w™! ({0, 0o}) has Lebesgue measure zero. We denote by L2, = LZ ([0, 27]),
where 1 < p < oo and w a weight function, the weighted Lebesgue space of all
measurable 2w —periodic functions f, that is, the space of all such functions for

which
1/p

27
110 = /uuww@mx < a
0

Let 1 < p < oo. A weight function w belongs to the Muckenhoupt class A, =
A, ([0, 27]) if

p—1

1 1 1/p—
sup —/w(m)dm —/[w(m)] Vet < 00,
o\ I ]
I I

where the supremum is taken over all intervals I with length |I| < 27.

The weight functions belong to the A,, class introduced by Muckenhoupt ([3]),
play a very important role in different fields of Mathematical Analysis.

Denote by M the Hardy-Littlewood maximal operator, defined for f € L' by

MWW=W%MWM%xHMW

where the supremum is taken over all subintervals I of [0, 27] with x € I.
Let 1 < p < oo and w be a weight function. In [8] it was proved that the
maximal operator M is bounded on L that is,

1M (P < €N F 1l (1.3)
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12 ALl GUVEN

for all f € LP, where ¢ is a constant depends only on p, if and only if w € A,,.
Let 1 <p < oo, we A, and f € L. The modulus of continuity of the function
f is defined by

2f Dy = S0 180 (Dl 00 (14)

where 7h
Bn (1) (@)= [ 1 40~ f @) . (15)

0

The existence of 2 (f,4),, ,, follows from (1.3).
The modulus Q (f, ')p,w is nonnegative, continuous function such that

élli)% Q(.ﬁé)p’w = 07 Q(fl +f25')p,w S Q(fla')p,w +Q(f25')p,w'

In the Lebesgue spaces LP (1 < p < o), the classical modulus of continuity
w (f, ~)p is defined by

w(f,6),= sup |If(-+h)—fll,, 6>0. (1.6)
0<h<é

It is known that in the Lebesgue spaces LP the moduli of continuity (1.4) and (1.6)
are equivalent (see [5]).

We define in the spaces L?, the modulus of continuity by using the shift (1.5),
because the space L is not translation invariant. The idea of defining the modulus
of continuity by (1.4) was developed in [5].

Let 1 <p<oo,we Ay, fe Ll and 0 < a < 1. We define the Lipschitz class
Lip (o, p,w) as

Lip (a, p,w) = {feLg:Q(f,&)wz()(aa),bo}.

Let f € L! has the Fourier series

a s .
f(x) ~ 70+];(akcoskx+bk81nkx). (1.7)

Denote by S, (f)(z), n =0,1,... the nth partial sums of the series (1.7) at the
point z, that is,

k=0

where
uo (f) (x) = %, up (f) () = ag coskx + by sinkz, k=1,2,....
Let (pn) be a sequence of positive numbers. The Norlund means of the series
(1.7) with respect to the sequence (p,,) are defined by

No (1) (@) = 5> kS (1) (@), (18)
" k=0
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APPROXIMATION IN WEIGHTED LP SPACES 13

where P, = > pi, and p_; = P_; :=0.
E=0
If p, =1forn=0,1,..., then N, (f) (z) coincides with the Cesaro means

on () (@) = ——3 Sk (f) ().
k=0

n+1

The sequence (p,,) is called almost monotone decreasing (increasing) if there
exists a constant K, depending only on (p,), such that p, < Kpn (pm < Kpp)
for n > m.

In the non-weighted Lebesgue spaces LP, the following results were obtained
recently.

Theorem A ([1]). Let f € Lip(a,p) and (pyn) be a sequence of positive numbers
such that (n+1)p, = O (P,). If either
(i) p>1,0<a<1and (p,) is monotonic
or
(1i)) p=1,0< a <1 and (p,) is non-decreasing,
then

If = No (Pl = O (n™°).
Theorem B ([6]). Let f € Lip (o, p) and (py) be a sequence of positive numbers.
If one of the conditions
() p>1,0<a<1 and (p,) is almost monotone decreasing,
(#7@) p>1,0 < a <1, (pn) is almost monotone increasing and (n+1)p, =
O (P,),

n—1

(tit) p>1,a=1and Y klpr — prs1] = O (Pn),
k=1
n—1

(iw)yp>1,a=1and > |pr — prt1| = O (Pn/n),
k=0

n—1
wp=L0<a<land Y |pkx—Dprt+1] =0 (Py/n)
k=—1

maintains, then
If = Nu (Fll, = O (n™°).

It is clear that Theorem B is more general than Theorem A.

In the weighted Lebesgue spaces LT, where 1 < p < oo and w € A, an analogue
of Theorem A was proved in [3].

In the paper [7], the authors extended Theorem A to more general classes of
triangular matrix methods.

Let A = (an,x) be an infinite lower triangular regular matrix with nonnegative

entries and let sSZA) (n=0,1,...) denote the row sums of this matrix, that is

A n
s% ) — > an k-
k=0
The matrix A = (a,x) is said to has monotone rows if, for each n, (a, ) is

either non-increasing or non-decreasing with respect to k, 0 < k < n.
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14 ALl GUVEN

For a given infinite lower triangular regular matrix A = (a,,x) with nonnegative
entries we consider the matrix transform

T (f) (x) = Y _an kS (f) (). (1.9)
k=0

Theorem C ([7]). Let f € Lip (a,p), A has monotone rows and satisfy

O (n=%). If one of the conditions
)p>1,0<a<1and (n+1)max{ano,anr} = O(1) where r = [n/2],
(7)) p>1,a=1and (n+ 1)max{an,o,anr} = O(1) where r = [n/2],
(i) p=1,0< a <1 and (n+ 1)max {an,o, ann} = O(1),

holds, then

ss{q) — 1‘ =

|- () =0 0.

For a given positive sequence (py,), if we consider the lower triangular matrix
with entries apn ; = pn—r/ P, then the Norlund transform (1.8) can be regarded
as a matrix transform of the form (1.9). Further, in this case the conditions of
Theorem A implies conditions of Theorem C and hence Theorem C is more general
than Theorem A (see [7]).

In the present paper we give generalizations of Theorems B and C in weighted
Lebesgue spaces.

We call the matrix A = (ay ) has almost monotone increasing (decreasing)
rows if there exists a constant K, depending only on A, such that a, ; < Kan m
(@n,m < Kapy) for eachn and 0 <k <m < n.

Our main results are the following.

Theorem 1. Let 1 < p < o0, w € Ay, 0 < a < 1, f € Lip(a,p,w) and

A = (an,1) be a lower triangular reqular matriz with s — 1‘ =0 (n~%). If one

of the conditions
(1)A has almost monotone decreasing rows and (n+ 1) an,0 = O(1),

(17) A has almost monotone increasing rows and (n+1)a,, = O(1) where
r:=[n/2],
holds, then
[F-m0 )| =o@™).
pw

Theorem 2. Let 1 <p <oo,we Ay, f € Lip(l,p,w) and A = (an,;) be a lower

triangular reqular matriz with

S%A) — 1‘ =0 (n_l) . If one of the conditions

n—1

(i) Y lank—1 = anil =0 (n7"),
k=1
1

(i) 22 (n=k)|ank—1 —ankl =O0(1),
k=1
holds, then

3

|F-m ()| =om™).

p,w
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APPROXIMATION IN WEIGHTED LP SPACES 15

Let (py,) be a sequence of positive numbers, 0 < @ < 1 and 1 < p < co. Consider
the lower triangular matrix A = (ay, ;) With @, = pp—r/Py. It is clear that in this
case 55{4) =1.

If (p,) is almost monotone decreasing, then the Norlund matrix A has almost
monotone increasing rows and

0

]

m+1)apn, <(n+1)Kap,=K(n+1)

é]-;

o]

where r = [n/2]. Thus, A satisfies the condition (ii) of Theorem 1.
If (pn) is almost monotone increasing and (n+1)p, = O(P,), then A has
almost monotone decreasing rows and
pn 1
—=—=—0(P,)=0(1).
Thus, A satisfies the condition (i) of Theorem 1.
Hence part (ii) of Theorem 1 is general than part (i) of Theorem B and and part
(i) of Thorem 1 is general than part (ii) of Theorem B even in the case w (x) = 1.
Also, it is clear that parts (i) and (ii) of Theorem 1 are general than correspond-
ing parts of Theorem C.

n—1
Now let p> 1, a=1and > k|px — pr+1| = O (F) . Then,
k=1

n+1)ano=Mn+1)

n—1 1
(n—k)lank—1 —ank| = (n—k) 1%:“ _ p;;;k
k=1 1
1 n—1 1
7y 2okl = penl = -0 ()
= 0(1).

Thus, the Norlund matrix A = (p,—/P,) satisfies the condition (ii) of Theorem 2.
Hence, part (iii) of Theorem B is a special case of part (ii) of Theorem 2. Similarly,
one can easily show that part (i) of Theorem 2 is general than part (iv) of Theorem
B even if w(z) = 1.

2. LEMMAS

Lemma 1 ([3]). Let 1 < p < o0, w € A, and 0 < o < 1.Then for every
f € Lip (a, p,w) the estimate

||f—Sn(f)Hp7w:O(n*a), n=12,... (2.1)
holds.

Lemma 2 ([3]). Letl <p<oo,w € Ay, 0 <a<1and f e Lip(1l,p,w). Then
for n=1,2,... the estimate

150 () = o (Fllpe = O (n77) (2:2)
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16 ALl GUVEN

holds.

In the non-weighted Lebesgue spaces LP, 1 < p < 0o, the analogue of Lemma 2

was proved in [9].

Lemma 3. Let A = (ank) be an infinite lower triangular matriz and 0 < a < 1.

If one of the conditions
(1) A has almost monotone decreasing rows and (n + 1) a, o = O(1),

(#3) A has almost monotone increasing rows, (n+1)a,, = O(1) where r =

[n/2], and sV — 1‘ =0 (n"?),
holds, then
Zkf‘lan’k =0 (nfa) .
k=1
Proof.
(i) Since Y k= =0 (nlf‘l) and app < Kano for k=1,...,n, we get
k=1
Zk_aan,k < Kan,OZk_a
k=1 k=1
= 0 L 0] (nl_(’)
n+1
= 0 (n_a) .
(ii) Since app < Kay,, for k=1,...,r and S%A) - 1‘ =0(n"),

Zkiaamk = Zkfaamk—l— Z kiaamk
k=1

k=r+1

Kan,erfa +(r+1)"° Z ke
k=1

k=r+1

IN

IN

Kan,er_a + (7“ + 1)70‘ Zamk
k=1 k=0

_ 1 -« —a\ J(A)
= O(n+1>0(n )+ 0 (%) s

= O(n*a) .l
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APPROXIMATION IN WEIGHTED LP SPACES 17

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. By definition of 7 (f), we have
T () (@) = f (&) = D ansSe(f)(z) = f(x)
k=0
= D ankSk(H) (@) = f (@) + sV f (@) = sV f ()
k=0

= Y ank (S () @) = f @) + (59 =1) (@)
k=0

Hence, by (2.1) and (2.3) we obtain

IN

|F-T ()

Zan,k 1Sk (f) = fllp + ano 150 (f) = £l
k=1

p,w

+[5 = 1| 11

- — 1 —
;an,kk + 0] (n——i—l) + o (n )

= 0 (n*a) ,

since

s — 1‘ =0(n ). 1

Proof of Theorem 2. By (2.1),

r-100)

IN

|5- =2 A1 = Sa Dl

|s- -z o).

p,w

Thus, we have to show that

5. (D=1 (| =o@). (3.1)

p,w

n
Set Ay k== > anm. Hence,
m=k

n n k
ﬁ“m@>=§)m&muh§)m<zwwmﬁ
k=0 k=0 m=0

k k=0

k=0 \m=
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On the other hand,

Su(f) (@) = S ur(f) (@) = Anod ur (F) (@) + (1 - Au0) Y ux (f) (@)
k=0 k=0

> Anour (£) (@) + (1= 5) S0 (£) (@).
k=0

Thus,

n

T () @) = Su (F) (@) = D (Ange = Ano) e () (@) + (s69 = 1) S () (@)

k=1

By boundedness of the partial sums in the space L (see [1]) we get

> (A — Ano) ur (f)

Su () =T (|| <

|5 = 1| 1l 3:2)

P k=1 pow
= Z (An,k An 0) Uk (f) +0 (nil)
k=1 pow
Thus, the problem reduced to proving that
Z (An,k - An,O) Uk (f) =0 (nil) . (3 3)
k=1 pow
If we set
Apk — An
bnk - kk ’0; k:]-a ) 1y
Abel transform yields
Z (Ank — Ano)ur (f) = an,kk‘uk (f)
k=1 k=1
n n—1 k
= bn,n Zmum (f) + Z (bn,k - bn,k+1) (Zmum (f)) :
m=1 k=1 m=1
Hence,
Z (An,k - An,O) U (f) S |bn,n| Zmum (f)
k=1 p,w m=1 pw
n—1 k
+Z |bn,k - bn,k+1| Zmum (f) :
k=1 m=1 p,w
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APPROXIMATION IN WEIGHTED LP SPACES 19

Considering (2.2), we have

(m+ 1) 150 (f) = on (F)l0

p,w

= (n+1)O0(n ") =0().

This and the previous inequality yield

Z nk— Uk(f) :O() nn|+0 Z|bnk nk+1|- (3'4)

p,w
Since ss{q) — 1‘ =0 (n’l) ,
A= Ava| _ [ann =57
n,n — 4in,0 n,n
n n
_ 1 (s ~ ) < Ly
n
=—-0( ):O(n_l)
Therefore, it is remained to prove that
n—1
Z |bn,k - bn,k+1| =0 (nil) . (36)
k=1

A simple calculation yields

k
1
n,k — Un = 77 1 1)ank — n,m (-
bk — bn iyt k(k+1){<k+ ) G ke Za, }

m=0

(i) Let Z|ank 1— An k| = (n‘l).
=1
Let’s Verlfy by induction that

k k
Zan,m - (k + 1) Gn k| < Zm |an,m—1 — Gn,m (37)
m=1
fork=1,...,n
If k=1, then
1
Zan,m - zan,l = |an,O —Qn,1|,
m=0
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20 ALl GUVEN

thus (3.7) holds. Now let us assume that (3.7) is true for k = v. For k = v + 1,

v+1
Zan,m - (V + 2) Gn,v+1
m=0

v
Zan,m - (V + 1) Gn,v+1
m=0

v
< Zan,m - (V + 1) Qn,v
m=0
v +1)an, — (v +1)ans+1]
v
S Zm |an,m71 - an,m| + (V + ]-) |an,1/ — Qp,v+1

m=1
v+1

= Zm |an,m71 - an,m| )
m=1

and hence (3.7) holds for £ = 1,...,n. Therefore,

n—1 n—1 k
1
n,k — Un = 771 AN 1)ank — n,m
3 busel = & iy s S

St
2k (kT 1)

k
Zamm —(k+1)ans
m=0

n—1 1 k

< ;mmz::lm |an,m—1 - an,m|
n—1 n—1 1

= Zm |an,m71 - an,m| Z T 1 AN
= =k (k+1)
n—1 00 1

< Zm |Gn,m—1 — Gnm] Z m
m=1 k=m
n—1

= Z |an,m71 - an,m|
m=1

= 0 (n_l) .

(ii) Let :Z:i (n—k)|anr—1 —ank| =0 (1).

Rev. Un. Mat. Argentina, Vol 58—-1, (2012)
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By (3.7),

n—1
Z |bn,k - bn,k+1|
k=1

IN

n—1 k
1
kzzl k(k+ 1)mZ:1m [an,m=1 = @]

IN

T 1 k
27 Zm |an,m—1 - an,ml
k=1 k (k + 1) m=1

n—1 1 k
+gmmz::1m | m—1 — Gn,m]|

where 7 := [n/2]. By Abel transform,

r k r
1
27 Zm |an,m71 - an,m| é Z |an,k71 - an,k|
k:lk (k + 1)mzl k=1
1
= Y ) o —
k=1
1 r
< (’I’L - k) |an,k—1 - an,k'
n—r
k=1
1
= O(1)=0(n1).
n—r (1) (™)

On the other hand

—

k

1
mmz::lm |an,m71 - an,m|

3

(]

k=r
n—1 r X
1

< (k1) -1 1 —
< ;k(k+1) {mz:lmlan,m 1 an,m,|+;m|an,m, 1 amm|}

= 1 r n—1 1 k
= k:rm;m |an,m—1 - an,m| + ;ﬂmmzz;m |an7m_1 — An,m
= : Inl + Ing.

T
Since Y |ank—1 — anil =0 (n71),
k=1

1
Inl S 7 1 Z |an,m71 — Gn,m

21
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22 ALl GUVEN

Let’s also estimate I,,5.
k

i
A

1
Ino = m Zm |an,m71 - an,m|
k=r m=r
n—1 1 k
< ]f—'f']. z_: |an,m—1 - an,ml
k=r =r
1 n—1 k
< =
) — <m=r |an,m 1 an,ml
n—1

k
Z |@n,m—1— @n,m|

INA
S
™
™

9 n—1
= (n—k)|anr—1 — tnkl
k=n—r
< 2,171(71_ k) |t —
~ n n,k—1 an,k|
k=1
- Zom=0@m")
n
Thus
n—1 1 k
Y T 2 o = ann| =0 (7)),
k=r m=1
and hence

n—1
Z brge = bnget1| =0 (n71).
k=1

Therefore, (3.6) is verified both in cases (i) and (ii). Finally, combining (3.1), (3.2),
(3.3), (3.4), (3.5) and (3.6) finishes the proof. B
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