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Let Gy and G be, respectively, bounded and unbounded components of a plane curve T
satisfying Dini’s smoothness condition. In addition to partial sum of Faber series of f belonging to
weighted Smirnov-Orlicz space Ep (Go), we prove that interpolating polynomials and Poisson
polynomials are near best approximant for f. Also considering a weighted fractional moduli of
smoothness, we obtain direct and converse theorems of trigonometric polynomial approximation
in Orlicz spaces with Muckenhoupt weights. On the bases of these approximation theorems, we
prove direct and converse theorems of approximation, respectively, by algebraic polynomials and
rational functions in weighted Smirnov-Orlicz spaces E 1, (Go) and Epg, (Gos)-

1. Introduction

Let Gy and G, be, respectively, bounded and unbounded components of a closed rectifiable
curve I' of complex plane C. Without loss of generality we may suppose that 0 € Go. By Rie-
mann conformal mapping theorem [1, page 26], if I is connected Jordan curve that consists
of more than one point, there exists a conformal mapping ¢y : D — Gy of complex unit disc
D := {w € C: |w| =1} onto Gy. Let y, := ¢po({w € C : |w| = r}) for a given r € (0,1). We
denote by EP(Gy), 1 < p < o0, Smirnov’s classes of analytic functions f : Gy — C satisfying

sup |f(z)|p|d2| <c, ifl< p < oo,
re(0,1) Jyr 1

rzré%3<|f(z)| <C, ifp=oco,

where positive constant ¢ is independent of r.
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It is well known that EP(Gy) C E'(Gy) for every 1 < p < oo and every function
f € EY(Gp) has a nontangential boundary values a.e. on T, the boundary function belongs
to Lebesgue space L' (T) onT. If 1 < p < oo, then EP(Gy) is a Banach space with the norm

1 1p
1700 {55 [ F@ ez} (12

Smirnov classes EF(G.), 1 < p < oo, of analytic functions f : G, — C can be defined
similarly and E?(G,) are fulfilling the same above properties to that of EP(Go).

A smooth Jordan curve I' will be called Dini-smooth, if the function 6(s), the angle
between the tangent line and the positive real axis expressed as a function of arclength s, has
modulus of continuity (6, s) satisfying the Dini condition

6
I @ds <o, 6>0. (1.3)
0

A Jordan curve I' will be called Radon curve, if 8(s) has bounded variation and it does not
contain cusp point.

Main approximation problems in the spaces EF(Gy), 1 < p < oo, were dealt with by
several mathematicians so far. Walsh and Russell gave [2] results in EP(Gp), 1 < p < oo,
for algebraic polynomial approximation orders in case of analytic boundary. Al'per proved
[3] direct and converse approximation theorems by algebraic polynomials in E”(Gp), 1 <
p < oo, for Dini-smooth boundary. Kokilashvili improved [4] to Al'per’s direct and converse
results of algebraic polynomial approximation, and then considering Regular curves that
Cauchy’s Singular Integral Operator is bounded (corners are permitted), he obtained [5]
improved direct and converse approximation theorems in Smirnov spaces EF(Gp), 1 <
p < oo. Andersson proved [6] that Kokilashvili’s results also holds in E'(Gy). When the
boundary is a regular curve, approximation of functions of E?(Gp), 1 < p < oo, by partial
sum of Faber series was obtained by Israfilov in [7, 8]. These results are generalized to
Muckenhoupt weighted Smirnov’s spaces in [9-12]. Approximation properties of Faber
series in so-called weighted and unweighted Smirnov-Orlicz spaces are investigated in [13—
20]. Most of the above results use the partial sums of Faber series as approximation tool.
Interpolating polynomials [16] and Poisson polynomials [21] can be also considered as an
approximating polynomial. In the present paper we obtain that in addition to partial sums
of Faber series of f belonging to weighted Smirnov-Orlicz space Ea.(Go), interpolating
polynomials and Poisson polynomials are near best approximant for f. Also considering
a weighted fractional moduli of smoothness, we obtain in Section 2 direct and converse
theorems of trigonometric polynomial approximation in Orlicz spaces with Muckenhoupt
weights. On the bases of these approximation theorems we prove in Section3 direct and
converse theorems of approximation, respectively, by algebraic polynomials and rational
functions in weighted Smirnov-Orlicz spaces Epzw(Go) and Epge(Ges)-

Throughout the work, we will denote by ¢, C, the constants that are different in
different places.
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2. Approximation Theorems in Weighted Orlicz Space

A function @ is called Young function if @ is even, continuous, nonnegative in R, increasing
on (0, o0) such that

®(0) =0, lim ®(x) = co. (2.1)

A Young function @ is said to satisfy A, condition (O € A;) if there is a constant ¢ > 0 such
that

D(2x) < cD(x) (2.2)

forall x € R.
Two Young functions @ and @; are said to be equivalent if there are ¢, C > 0 such that

®D1(cx) <D(x) <D(Cx), Vx>0. (2.3)

A function M : [0,00) — [0, 00) is said to be quasiconvex if there exist a convex Young
function @ and a constant ¢ > 1 such that

O(x) < M(x) <D(cx), Vx>0, (2.4)

holds.

A nonnegative function w defined on T := [0, 2or] will be called weight if w is
measurable and a.e. positive. Let M be a quasiconvex Young function. We denote by L., (T)
the class of Lebesgue measurable functions f : T — R satisfying the condition

ITM(|f(x)|)w(x)dx < 0. (2.5)

The linear span of the weighted Orlicz class L Mw(T), denoted by Lyz.,(T), becomes a normed
space with the Orlicz norm

||f||Mw = sup{fT|f(x)g(x)|w(x)dx : J‘T M(|g|)w(x)dx < 1}, (2.6)

where M(y) := sup,.q(xy — M(x)),y > 0, is the complementary function of M.
If M is quasiconvex and M is its complementary function, then Young’s inequality holds

xy < M(x) + M(y), x,y>0. (2.7)
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For a quasiconvex function M we define the indice p(M) of M as

;ﬁ :=inf{p : p > 0, M? is quasiconvex},
2.8
p'(M) = M (29
p(M) -1

The indice p(M) was first defined and used by Gogatishvili and Kokilashvili in [22] to obtain
weighted inequalities for maximal function. We note that the indice p(M) is much more
convenient than Gustavsson and Peetre’s lower index and Boyd’s upper index. If w € A, (),
then it can be easily seen that Ly, (T) C L'(T) and Lz, (T) becomes a Banach space with the
Orlicz norm. The Banach space Ly, (T) is called weighted Orlicz space.

We define the Luxemburg functional as

1l a0 = inf{7>o:LM<mT—x)|>w(x)dxgl}. (2.9)

There exist [23, page 23] constants ¢, C > 0 such that
C”f”(M),w < ”f”Mw = C”f“(M),w‘ (2.10)

For a weight w we denote by LP(T,w) the class of measurable functions on T such that w!/? f
belongs to Lebesgue space LP(T) on T. We set ||f||p,w = ||w1/Pf||p for f € LP(T, w).
A 2sr-periodic weight function w belongs to the Muckenhoupt class A,, 1 < p < oo, if

p-1
e A S

with a finite constant ¢ independent of J, where J is any subinterval of T and || denotes the
length of J.

We will denote by QCY(0,1) a class of functions g satisfying A, condition such that g%
is quasiconvex for some 0 € (0,1).

In the present section we consider the trigonometric polynomial approximation
problems for functions and its fractional derivatives in the spaces Laiw(T), w € Apmy,
where M € QCJ(0,1). We prove a Jackson type direct theorem and a converse theorem
of trigonometric approximation with respect to the fractional order moduli of smoothness
in weighted Orlicz spaces with Muckenhoupt weights. In the particular case, we obtain a
constructive characterization of Lipschitz class in these spaces.

In weighted Lebesgue and Orlicz spaces with Muckenhoupt weights, these results
were investigated in [24-29]. For more general doubling weights, some of these problems
were investigated in [30]. Jackson and converse inequalities were proved for Lebesgue spaces
with Freud weight in [31]. For a general discussion of weighted polynomial approximation,
we can refer to the books [32, 33].
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Let by =0, ax, bx € R, ¢k = (ax —iby)/2, c.x = (ax +ibx)/2, co = ap/2

f(x)~ Z cre’® = Z(ak cos kx + by sin kx), (2.12)
k=— k=0
f(x) ~ Z(ak sin kx — by cos kx) (2.13)
k=1

be the Fourier and the conjugate Fourier series of f € L'(T), respectively. Putting Ak (x) := cxe’®™

in (2.12), we define forn =0,1,2,...

Su(f) =8Su(x, f):= i(Ak(x) +Ak(x)) = % + i(ak cos kx + by sin kx),
k=0 k=1

R2“>(f,x)i=i<1-< . )a><Ak<x>+A_k(x>), xR,

= n+1
1 1
G)f,’? .= R<a> - Rir?)/
1-(m+1)/Cm+1)" "2 (2m+1)/(m+1))" -1
m=1,2,3,....
(2.14)
For a given f € L'(T), assuming
f f(x)dx =0, (2.15)
-
we define ath fractional (a € R*) integral of f as [34, v.2, page 134]
Le(x, f) = > ci(ik) e, (2.16)
keZ*
where
(ik)—a = |k|—ae(71/2).7riasignk (217)

as principal value.
Let a € R* be given. We define fractional derivative of a function f € L'(T), satisfying
(2.15), as

[a]+1

O = et (x ) @19

provided the right hand side exists.



6 Journal of Function Spaces and Applications

Setting x,t € T,r e R*, M € QCQ (0,1), w € Ap(my, and f € Lay(T), we define

of f(x) = (I - o) f ()

S . ! t t (2.19)
= k_O(_l)k<k> W f_t ... f_tf(x +up - uk)dul o duy,

where () =r(r-1)---(r —k +1)/k! for k > 1 and (j) := 1 are Binomial coefficients,
oif(x):=(1/2t) ﬁt f(x + u)du is Steklov’s mean operator, and I is identity operator.

Theorem A (see [23, page 278, Theorem 6.7.1]). One suppose that L is anyone of the operators
Sy, on,and f.If M € QCQ (0,1), w € Apmy, and f € Ly (T), then there exists a constant ¢ > 0
such that

[ M(Lrohwar<e [ msohena (2.20)

holds.

Since modular inequality implies the norm inequality, under the conditions of
Theorem A, we obtain from (2.20) that

LA aneo < €lf Mo (2.21)

with a constant ¢ > 0 independent of f.
By [35, page 14, (1.51)], there exists a constant ¢ depending only on r such that

r c
(W) <gm *=120 @22)
we have
| /r
< oo (2.23)
3 )
and therefore
o7 fll ago < €ll fll g < @ (2.24)

provided f € La,w(T), w € Apm), where M € QCg (0,1).
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Let M € QCY(0,1). For r € R*, we define the fractional modulus of smoothness of index r
for f € Lyw(T), w € Ay as

[r]
[Ta-on)d-o)lf

i=1

Qo (f,6) = sup (2.25)

0<h;, t<b

M,w

where [x] denotes the integer part of a real number x.
Since the operator oy is bounded in Ly, (T), w € Apnry, where M € QCg (0,1), we
have by (2.24) that

Qo (f,6) <l fll (2.26)

where the constant ¢ > 0, dependent only on r and M.

Remark 2.1. The modulus of smoothness Q?wrw(f,(S), where r € R*, M € QCg 0,1), w € Ay,
f € Lamw(T) has the following properties:

(i) ), (f, 6) is nonnegative, nondecreasing function of 6 > 0 and subadditive,
(ii) limg o Q) (f,6) = 0.
For formulations of our results, we need several lemmas.

Lemma A (see [36]). For a € R, we suppose that

() ar+ar+--+a,+---,

(ii) a1 +2%ax +---+na, +- -+,

be two series in a Banach space (B, || - ||). Let

(2.27)
s Zn: 1 £y k*a
R* . = -(—
] n+1 ,
forn=1,2,.... Then,
||R,<;”>* <c, n=12,... (2.28)
for some ¢ > 0 if and only if there exists a R € B such that
(a) ¢
R - R|| < =, (2.29)

where ¢ and C are constants depending only on one another.
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IfMe QCS(O, 1), w € Apimy, and f € Lagw(T), then from Theorem A(ii) and Abel’s
transformation we get

and therefore from (2.14) and(2.30)

o Sellfllve n=123,.., xeT (2.30)

1o (£, <ellfllpe n=123..., xeT. (2.31)
From the property
(a) 1 & & a 1
O’ (f)(x) = > [(k+1)*—k"]Sk(x,f), x€eT, feL(T)
k m+1 [(k 1) _k’x] k = m+1
(2.32)
it is known that
O (T) = Ty (2.33)

forT,,€eC,,m=1,2,3,....

Lemma22. [etT, € C,,n=1,23,...,M € QCQ(O,l), and w € Apvy. If a € RY, then there
exists a constant ¢ > 0 independent of n such that

(a)
n

<cn* .
o S en I Tallagg, (2.34)

holds.

Proof. Without loss of generality one can assume that ||Ty||;,, = 1. Since

T, = 3 (Ax) + Ax(x),

f_a E":[mk(x) A

k=0 nt
@ (2.35)
Ty Z [(Ak(x) - Ak (x))]
(m) P ne
we have by (2.30) and Theorem A (iii) that
(a) Z < i = i
Rm <nu>HM n Mew ~ a”T ”Mw ne (236)
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and from Lemma A

w (T
Rin )" <c. (2.37)
in Mo

Hence from (2.33) and (2.31), we find
1@ = nelle (L < enf|T 2.38
n M.w =n m (ln)a scon || n”M,w‘ ( . )

’ Mw

General case follows immediately from this. O

Let M € QCQ (0,1). We denote by W (T,w), @ > 0, w € Apm), the linear space of
2sr-periodic real valued functions f € Ly, (T) such that f® € Ly, (T).

Lemma 2.3. Let M € QCg(O,l). If f € Wi (T, w) with w € Apy and a > 0, then for n =
0,1,2,..., there is a constant ¢ > 0 dependent only on a and M such that

M,w

£ =52C. 0], < En(F) (2:39)

holds.

Proof. If a = 0, then from boundedness (see (2.21)) of the operator S, we get that
I f - S"f”M,w <cE, (f)M,w' (2.40)
Let W, (f) :=W,(x, f) = (1/(n+1)) Z,Z,Zn Sy(x,f),n=0,1,2,....Since

Wa (- f@) =W (. f), (2.41)

we have

|F90-s0CH],,, < IFOO-Walf ), * S8 CWat =806 A,

+ ||W,§“)(~,f) ~5@(, W"(f))”Mw =L +DL+15
' (2.42)

From (2.21) we get the boundedness of W), in Lj1,,(T) and we have

B ||fO0=Su( )|, * 1500 F =W, £
<Ea(f ) g+ [WaCSu () = 1), < eEa(F)

‘|

|M'“’ (2.43)
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From Lemma 2.2 we get

I, < Cna”Sn('/ Wn(f)) - Sﬂ(’f) ”M,w’

Iy < c@m)* W, £) = Su (s Wa () llag,0 S €@ En(Wa(£))

(2.44)

Now we have

10 CWa() =S ) lag € 150G W) = Wl ) e
Wl ) = POl + 1O =50 Dl (245

< CEx(Wn(f)) peo *+ €En(f) peo-
Since

En(WalF) o S En(F) g (246)

we get

[0 =176 Pl < E(F) ,, + e BV ass + e En( g

(2.47)
+¢(2n)*Ex(Wi(f)) p1, < €En <f(u)>le +CnEn(f) por
Now we show that
c
E, < E,(f@ ) 2.4
I s T A (248)
For this we set
Ak (x, f) = ax cos kx + by sin kx. (2.49)

For given f € L, (T) and € > 0, by Lemma 3 of [37], there exists a trigonometric polynomial
T such that

fTM(|f(x) -T(x)|)w(x)dx < e (2.50)
which by (2.7) this implies that
1f=Tllpe <& (2.51)

and hence we obtain

E”(f)M,w — 0 asn— oo. (2.52)
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In this case from (2.40) we have
f(x) =D Ax(x, f)
k=0
in| - ||M,w norm.Ifk=1,2,3,..., then

T o\ . oar
Ak(x,f)—Ak<x+§ f)cosT+Ak<x+§ f>sm7,
Ak<x,f(“)> = k"Ak<x+ %J).

Hence,

ZAk(x f) =Ao(x, f)+COS—ZAk<x+§ f)+SiH%ZAk<x+% -

= Ao(x, f) + cos %Zk‘“A;& f(“)> +sin —Zk “Ak< ,f(“)>.
k=1

k=1

Therefore,

f(x)=Su(x, f) = cos— Z kaAk<x,f(a)> +s1r1— Z kuAk<x,f(“)>

k=n+1 k=n+1

k=n+1 k=n+1

Z (k= (e + 1)) (Sk (4 f@) = F20))

k=n+1

=+ 1) (S (- f@

i kA (x, f©) = Z (k= (k +1)™)

k=n+1 k=n+1

=+ 1) (S (- f

F90),
Sk(-,f<"’>> _f<a>(.)>

(
)-
(
)-

FO0),

S kA <x,f(“)> - i k_“[<5k<-,f(“)> —f(“)(-)> _ <5k71 <~,f(“)> —f(“)(')>]

11

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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we obtain

1£C) = SuCo )l < k_f]l(k‘“ -y su(o @) - 100,

+(n+1)7"

(s -r0)l,

(et F) -Fo0
k=n+1 /

+(n+1)7"

(770,

< c[ S (k= (k+ 1)) Ee(f) yy,y + (14 1) E, (f<“>)M,w]

k=n+1

¥ c[ S (k= (k+ 1)) ER(f) yy, + (14 1)E, (f@'))M,w].

k=n+1
(2.58)
Consequently,
£ () = Sux, )l pg, < €Ex (f(“))Mw[ D (K = (k+ 1)) + (4 1)‘“]
" Lk=n+1
+eEa(f9) | [ S K- (k1)) + (n+ 1)—“]
e (2.59)
< cE,(f@ [ (k= (k+1)™) + (n+ 1)—“]
( >AA#J k£§;1
c
< E.(f@
T (n+1)* n<f >M,w’
and (2.48) holds. Now (2.47) and (2.48) imply the result. O
Lemma?24. LetT,€C,,n=0,12,... M€ QC?(O,l), and w € Ay If & € RY, then
a T c (a)
< .
Qo (T"’ n+ 1) “(n+1)* Tn Mw (2.60)

hold, where the constant ¢ > 0 is dependent only on a and M.

Proof. First we prove thatif 0 < a < 3, then

wa/w(:r ) < Qi (T, ). (2.61)
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It is easily seen thatif « < 8, a, p € Z7, then (2.61) holds. Now, we assume 0 < a < f < 1.In
this case, putting K(x) := 0{T,(x), we have

of_“K(x):g(—l)j<ﬁ;a>if f K(x+uy+---uj)duy - - - du;

2ty
(P
;0( 1)< j )(2t)f

X.rt'" tt[g( Dk( >(2t)

t
X,[ f Tn(x+u1+---u]-+uj+1+-~-u]-+k)du]~+1---du]-+k]du1~--duj
- -t
© f 1 t t
= (1)]+< ><> . f J‘ Tp(x+uy + - ujg)dug - dujik
22 ) TG

=i{i<-1>v—ﬂ(5:;§) (I R A

|
it 1

= 2, (2t) J‘ J To(x+u +...upy)duy - duvg <5:Z> (;)
=§(— )Y < )(Zt)” J‘_t-'-J‘_tTn(x+u1 +...up)duy---du —otT (x).
- (2.62)
Then,
”"t vt = ||of‘“1<||le < c|lof Tl pprr (2.63)

and hence (2.61) holds. We note thatif ry, r, € Z*, a1, p1 € (0,1) taking a :=r1+aq, =12 + 1
for the remaining cases 11 =12, a1 < 1 or rp < ry, a1 < 1 orry < rp, a1 > P, it can easily be
obtained from the last inequality that the required inequality (2.61) holds. Now we will show
thatif o € W](\ir)(T,w), r=1,2,3,..., then

M (9,6) < e8| (2.64)

M,w '

Putting

g(x) =] [ - on)ex), (2.65)
i=2
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we have

(I- O-hl)g(x) = H(I - O-hi)Q(x)’
i=1

1 h 1 hi ot pu
1;[(1— On,)Q(x) = 2 Lﬁ (g(x) —glx+1t))dt = S fo fo 3 & (x + 5)ds dudt.
(2.66)

Therefore,

T

H(I - O-hi)Q(x)

i=1

M,w

1 hy pt pfu
= —sup f ’[ j <" (x + s)dsdudt
8hy T|IJ0o JoJ-u

1 hl t 1 u )
< — 2uf|— ' d
- 8l 4[0 jo u"zujug(x+s) ’

c hl t
<o | [ 2 e = et
1Jo0 0

[o(x)|w(x)dx : L M(|Jo(x))w(x)dx < 1}

dudt
M,w

(2.67)
Since
,
§'(x) =T [d-on)¢"(x), (2.68)
i=2
we obtain that
,
Q1 (0,6) < sup chil|g" ||y, = 8| [ (I - 0n)e" (x)
19 M
,
= c6% sup H(I - 0,)0" (x) = 06295\;&} (0",6) (2.69)
Ospisolli=2 Mw
<co'@y?, (o¥,6) < <o [0 .
Using (2.61), (2.64), and Lemma 2.2, we get
2[a]
« T\ ¢ ol T \Nef T (2lal)
Q1\"""<F‘r"'11+1> _CQMf“’<T"'n+1> _C<n+1> T e (2.70)
¢ (n+1)la-@laD|lp@ __ € |pw '
= (e )@ TR VL I IV
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which is the required result (2.60) for « > 1. On the other hand in case of 0 < a < 1 the
inequality (2.60) can be obtained by Marcinkiewicz Multiplier Theorem for Ly, (T) where
M € QCY(0,1) and w € Ay O

Definition 2.5. For f € Ly, (T), 6 >0,and r =1,2,3,. .., the PeetreK-functional is defined as

K(6, f; Lauo(T), WE,(T,w)) := _inf {||f—g||M/w+6||g(’)

gEW, (T,w)

M } (2.71)

Proposition 2.6. Let M € QCQ(O,l), w € Ay, and f € Lao(T). Then the K-functional
K(62’,f; Laew(T), WJZ\;(T, w)) in (2.71) and the modulus QR,Lw(f, 6),r=1,2,3,..., areequivalent.

Proof. If h € W12VTI(T, w), then we have

1o (£,6) S cllf = hllyy, + 6”@ <eK(67, fiLma(T), WE(T, @) (272)
Putting
6 pu ot
(Lsf)(x) =367 f f f f(x+s)dsdtdu, x€T, (2.73)
0Jo )t
we have
d? c
@Lﬁf = ?(I -05)f, (2.74)
and hence
d2r . c .
i Lif = (U -0), r=123,.... (2.75)

On the other hand, we find

& pfu
oS <367 [ {28l dtau < el 276)

Now, let Ay := I - (I - L})". Then ALf € W2(T,w) and

d2r d2r
der Lgf

c
dx2r Agf

r c
= w1 =08) [l v < 557200 (f, 6)- (2.77)

<c
M,w

M,w

Since

r-1 .
I-L;=(I-Ls) > LL, (2.78)
j=0
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we get

6 pu
1T~ L5)8ly < el = Lo)gllyg, <3667 [ [ 2611 =001yt

(2.79)
<csup [[(I =098 || e
0<t<6
Taking into account
1f = A5 g = 1T = L) Fll e (2.80)
by a recursive procedure, we obtain
-1
If = A5l < csup ||(T=a)(T-L) 7 F||
0<t1<6 4
<csup sup ||(I-0:)T -0,)(I-L5)""
sup sup |[(I=0,)(T - 00) (I - L}) i s
T
<---<csup H(I—O'ti)f(x) = cQ}y,,(f,6).
ozl M
Now we can formulate the results. O

Theorem 2.7. Let M € QCQ(O,l) and r € R*. If f € Ly (T) with w € Apn, then there is a
constant ¢ > 0 dependent only on r and M such that forn =0,1,2,3,...

En(f)legcQR/Lw<f, ! ) (2.82)

n+1

holds.

Proof. We put k —1 < r < k, k € Z*. From Remark 2.1(i), (2.64), (2.71), Proposition 2.6, and
(2.61), we get for every g € Wﬁ,’l‘,w('ll‘) andn=0,1,2,3,...

En(F)star < EnF = )t + Er @y < €1 = llya + 0+ 752}

< cK<(n +1) 2K, £; Lo (T), W(T, w)> <cQh, ( f, (ann> (2.83)

<cQly <f, ﬁ)
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Theorem 2.8. Let M € QCS(O,l) and r € R*. If f € Lyew(T) with w € Apmy, then there is a
constant ¢ > 0 dependent only on r and M such that forn =0,1,2,3,...

a
n+1

QRM,(ff > i 1) Z(Hl)’ "Ey () mo (2.84)

holds.

Proof. Let T,, € T, be the best approximating polynomial of f € L1 (T) and let m € Z*.
Then,

Jr Jr Jr
Q1 (f/ m) < Qe (f = Tom, m) + Q) (sz/ m) < CEan(f) ppeo

(2.85)
+ o (T, —Z—
Mw\ "2 (v 1) )
By Lemma 2.4 we have
. T\ L\ o »
QM""(TZ '(n+1)> _C<n+1> ” 2" | Mo (2.86)
Since
o) ") & (o) ")
r r r
T () =TV (x) + 3 {TZM (x) - TY (x)}, (2.87)
v=0
we get
ar (r) (r) r)
Q" Tom < T, — . 2.
M""<2'(n+1)> (n+1) {” +ZH ies } (2.88)
Fractional Bernstein inequality of Lemma 2.2 gives
T -1 < 2T = Torllago < 27 B () gy
(2.89)
() _ () (r)
I770,,, = 7 =17 < B0

Hence,

m-1
P <T2m’ (n]+r 1) ) = n 1) {EO (F)a * Z(j}z“’*lﬁgzv (f) Mo } (2.90)
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It is easily seen that

2V
2(v+1)rE2v (f)M,w <c* Z ‘llr_lE‘u (f)M,w’ v=1,2,3,..., (2.91)
u=2v"141
where
21 0<r<l,
ct = (2.92)
22r, r>1
Therefore,

QR/I’W<T2M’ (nj-ll-l)>< (n+1)" { O(f)Mw erl(f)Mw+CZ Z W 1E#<f)Mw}

v=1 p=2v-141

Tl { 2 (f) S 1Eﬂ<f>Mw}

2m-1

S (Tl :1)7' ZO (V + 1)r71EV(f)M,w'

(2.93)
If we choose 2™ < n +1 < 2™ then
a
Q" Tom, 1) E, ,
M,w( 2 (1’1+1)>_ 71+1) Z(V—'— (f)Mw
(2.94)
Ezm (f)Mw < E2m 1 (f)Mw < (n n 1) Z(V + ]_)T lE (f)Mw
Last two inequalities complete the proof. O

From Theorems 2.7 and 2.8 we have the following corollaries.

Corollary 2.9. Let M € QCg(O,l) and r € R*. If f € L (T) with w € Ay and

E"(f)M,w = O(n_o)’ o> 0/ n= 1/2/- cey (295)
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then
0(67%); r>o,
Q1 (f,6) = (9<5" 10g<%> ); r=o, (2.96)
0(6%); r<o,
hold.

Definition 2.10. Let M € QCg(O,l) and r € R*. If f € Ly (T) and w € Apy then for
0 <o <rwesetLipo(r, M,w) := {f € Ly, (T) : QR,I/w(f,(S) =0(69),6 >0}.

Corollary 2.11. Let M € QC?(O,l) andr € R If f € Lyw(T), w € Apymy, 0 < 0 < rand
En(f)M,w =0(n°),n=12,... then f € Lipo(r, M, w).

Corollary 2.12. Let 0 < o < rand let f € Lyw(T), w € Apnry, where M € QCg(O,l). Then the
following conditions are equivalent:

(a) feLlipo(r,M,w),

0) Ea(f)po=0n"), n=12,.... (2.97)
Theorem 2.13. Let f € Ly(T), w € Apvy, where M € QCH(0,1). If a € (0, 00) and
SIE(f ) Mo < (2.98)
y=1
then
En(f “”)Mw = C<<" D En(f) meo vglv“‘lEv (f)M,w> (2.99)

hold where the constant ¢ > 0 is dependent only on a and M.

Proof of Theorem 2.13. The condition (2.98) and Lemma 2.3 implies that f® exist and f(® €
L (T). Since

=50, < B () =S+ 2 fl(5) =5 ()
(2.100)

we have for 2™ < n < 2"+l

S22 () = $a (£, € 2™ P En(f) agso < CO+ D En(f) pre (2.101)
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On the other hand, we find

[ee]

3, s (£) =5 ()], < 32 25 (s
k=m+2 ’ k=m+2
<3 S R @102)

k=m+2 p=2k-14+1

o 3 VIR <e SV Ry

p=2m+14] v=n+1

8

and Theorem 2.13 is proved. O
As a corollary of Theorems 2.7, 2.8, and 2.13 we have the following.

Corollary 2.14. Let f € W3, (T,w), w € Apmy, 1 € (0, 00), and

ivHEv (f) pw < (2.103)

v=1

for some a > 0. In this case for n = 0,1,2,..., there exists a constant ¢ > 0 dependent only on a, r,
and M such that

%,w<f(“ . ) CERYd Z<v+1“*r BNt e 5By, 2108

n+1 v=n+1
hold.

3. Near Best Approximants in Weighted Smirnov-Orlicz Space

Let w = ¢(z) and w = ¢1(z) be the conformal mappings of G, and Gy onto the complement
D, of D, normalized by the conditions

p(o0) = oo, lim,_, ,¢(z)/z >0,

91(0) =00, limzn(z) >0, (3.1)

respectively. We denote by ¢ and ¢ the inverse mappings of ¢ and ¢, respectively, and T :=
OD. These mappings ¢ and ¢ have in some deleted neighborhood of co the representations

g (w) :aw+a0+za—i, a>0, g1 (w) :Zﬁ—ll, p1>0. (3.2)
=1 W w

=1
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Therefore, the functions

1 (w)

¢'(w)
¢1(w) - z’

pw) -z T

z € Gy (3.3)

are analytic in D, and have, respectively, simple zero and zero of order 2 at co. Hence they
have expansions

z € Gy, w €Dy,

¢'(w) & Fr(z)
¢(w) -z - é wk+1 7
(3.4)

g1 (w) :ZFk(l/Z), z€ Gy, weD,,
=

¢1(w) -z wht!

where Fy(z) and Fx(1/z) are, respectively, Faber Polynomials of degree k for continuums Go
and C \ Gy, with the integral representations [38, pp. 35, 255]

K !
Fo@ = —— [ “¥®@ 4, zea,
271 ) ¢gp(w) —z (35)
] :
ﬁk<l>=i. W@ L ec.
z 27i ) g (w) — z
k
Fk(z)=(pk(z)+ﬁ’l‘r(£_(gz)dg, 2€G,, k=0,1,2,..., (3.6)
= 1\ 1 [ %)
) = - . 7
A(z) v -5 [ B4 zeqn) (7)
We put
ak : = ax(f) ::L_ fO(w)dw, k=0,1,2,...,
2ri ) g wktl (3.8)
diman(f) = = [ 1%, k=12 ‘
ak —ak(f) —E . wk+1 w, =1,z,...
and correspond the series
[ee) (oo} o~ 1
Zaka(z) + Zaka <—> (39)
k=0 k=1 z

with the function f € LY(I), that is,

f(z)~ iaka(z) + i%ﬂ(%)- (3.10)
k=0 P
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This series is called the Faber-Laurent series of the function f and the coefficients ay and
ar are said to be the Faber-Laurent coefficients of f. For further information about the Faber
polynomials and Faber Laurent series, we refer to monographs [39, Chapter I, Section 6], [40,
Chapter II], and [38].

It is well known that, using the Faber polynomials, approximating polynomials can
be constructed [3]. The interpolating polynomials can also be used for this aim. In their
work [41] under the assumption I' € C(2,a), 0 < a < 1, Shen and Zhong obtain a series of
interpolation nodes in Gy and show that interpolating polynomials and best approximating
polynomial in EP(Gg), 1 < p < oo, have the same order of convergence. In [42] considering
I' € C(1, a) and choosing the interpolation nodes as the zeros of the Faber polynomials, Zhu
obtain similar result.

In the above-cited works, I' does not admit corners, whereas many domains in the
complex plain may have corners. When I is a piecewise Vanishing Rotation curve [43] Zhong
and Zhu show that the interpolating polynomials based on the zeros of the Faber polynomials
converge to f in the EP(Gg), 1 < p < oo norm.

A function w : T — [0, 0] is called a weight on T, if w is measurable and w™!({0, c0})
has measure zero. We denote by Ly, (I') the linear space of Lebesgue measurable functions
f : T — C satisfying the condition

LM[a|f(z)|]w(z)|dz| <o (3.11)

for some a > 0.
The space L, (I') becomes a Banach space with the Orlicz norm

1l = sup{ [ 1f@s@lo@idz s g e LuaipgN) <1}, (12
where N is the complementary function of M and
p(gN) := j N[|g(=)|]w(z)|dz|. (3.13)
r

The Banach space Ly, (I') is called weighted Orlicz space on I
ForzeTande>0letI'(z,¢e) := {t €I : |t - z| < e}. For fixed p € [1,00), the set of all
weights w : I' — [0, oo] satisfying the relation

p-1
sup sup E f w(T)|dT| 1 J‘ w(T) VP D|dr| <oo, ifp>1,
zell e>0 € T(ze) € T'(z€) (314)

sup1 w(T)ldr| <cw(z), Vzel, ifp=1
e>0 € JT(ze)

is denoted by A, (T').
We denote by LP(T, w) the set of all measurable functions f : T — C such that |f|w'/?
belongs to Lebesgue space LP(I'), 1 <p < oo, on I
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Definition 3.1. Let w be a weight on ' and let Epri(Go) = {f € EY(Go) : f € Lmw(D)},
EM,w(Goo) = {f € El(Goo) : f € LM,w(F)}/ EM,w(Goo) = {f € EM,w(Goo) : f(OO) = 0}. The
classes of functions Epz.,(Go) and Enre, (Go) Will be called weighted Smirnov-Orlicz classes
with respect to domains Gy and G, respectively.

In this chapter, we prove that the convergence rate of the interpolating polynomials
based on the zeros of the F, is the same with the best approximating algebraic polynomials
in the weighted Smirnov-Orlicz class E ., (Go) under the assumption that I is a closed Radon
curve. This means that interpolating polynomials based on the zeros of the Faber polynomials
are near best approximant of f belonging to weighted Smirnov-Orlicz class E ., (Go).

In the case that all of the zeros of the nth Faber polynomial F,, are in Gy, we denote by
L,(f,-) the (n — 1)th interpolating polynomial for f € Ep1.,(Go) based on the zeros of F,.

Let f € L'(T). Then the functions f* and f~ defined by

f) - f© 4
+ —
F@-m | fag zeq fe-n[ Ma zee. e)
are analytic in Gy and G, respectively, and f~(o0) =
We denote by
E"(f)M,F,w = inf{ lf- P”M,r,w ‘pEe pn} (3.16)

the minimal error of approximation by polynomials of f, where [, is the set of algebraic
polynomials of degree not greater than 7.
Let I be a rectifiable Jordan curve, f € L}(T), and let

f)
(Srf)(®) —1H02m J‘F\W) g% tel (3.17)

be Cauchy’s singular integral of f at the point ¢. The linear operator Sr : f — Srf is called the
Cauchy singular operator.

If one of the functions f* or f~ has the nontangential limits a.e. on I, then Sr f (z) exists
a.e. on I' and also the other one has the nontangential limits a.e. on I'. Conversely, if Srf(z)
exists a.e. on I, then both functions f* and f~ have the nontangential limits a.e. on I'. In both
cases, the formulae

r@=6n@ L2 Fe=sne-L2 G189

hold, and hence
f=r-f (3.19)

holds a.e. onT (see, e.g., [1, page 431]).
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Lemma 3.2. fT is a regular curve, M € QC5(0,1) and w € Apm)(T), then for every f € En(Go)
one has

”Sr(f/‘)”M,r,w hS C||f||M,F,w’ (3.20)

where the constant c depends only on I and M.

Proof. Assertion (3.20) immediately follows from modular inequality

L M(|Sr(f,t)])w(t)dt < c L M(|f ()] w(t)dt (3.21)

given in (7.5.13) of [23]. O

Theorem 3.3. If I' is a closed Radon curve, M € QCg (0,1) and w € Ap(T), then for every
f € Enmw(Go) one has

”f - LTl (f’ ) ||M,F,w s CE" (f)M,F,w’ (322)

where the constant ¢ depends only on T and M.

Proof. First of all we know [16] that all zeros of the Faber polynomials are in Gy. Since
interpolating operator L,(f,-) is linear and corresponds f by a polynomial of degree not
more than n - 1, we need only to show that, for large values of n, L,(f,-) is uniformly
bounded in weighted Smirnov-Orlicz class En . (Go). We suppose that P,_; is the (n — 1)th
best approximating algebraic polynomial for f in Eps.,(Go). In this case we have

1= 2aMlaags = 1 = Pt = LaCF = Port Mg < 4 LIS = Prt g
(3.23)

Since we assumed the interpolation nodes as the zeros of the Faber polynomials F,, using
[39, page 59], we have

_ Fu(2) f(5) _ f
f(z)-Lu(f,2) = i ) Eoe—2) dg = Fu(z) <Sr<1__—n>>(z), z € Gy (3.24)

and consequently

Ro(5(7))0 (%)

< {maxir, 21}

1) = La(fr ) o =

M,T,w

M, w
(3.25)
By Lemma 3.2, we get
_ f { Fu(2) }
1 =M < e maxEa@ | <e{mad| 23 WA lr G20
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We set « := maxzer|®; — 1|, where 8, is the exterior angle of the point z € I'. By the Radon
assumption on I' we get 0 < x < 1. Then one can find for z € I’

0,5-0,5-x<|F,(2)|<1,5+0,5-x, (3.27)
and therefore
F.(z) 3+x

From the last inequality we obtain

3+k
I1f = LaCf Mnareo S e I lapr (3:29)

Since

3+x
1-x

”Ln(ff')”M,r,w < ||f||M,F,w + ”f —Ln (f/) ||M,F,w < (1 +c )||f||M,F,w’ (3.30)

we obtain that L, (f, -) is uniformly bounded in E 1., (Go), namely,

ILall < c. (3.31)

Therefore, we conclude that
If = Lu(f,) ||M,F,w <c|lf =P ”M,r,w = cEy (f)M,F,w (3.32)
and interpolating polynomial L, (f, ) is near best approximant for f. O

If T is Dini-smooth, then [44] there exist constants ¢ and C such that

O<c<|¢p'(w)|<C<oo, |w|>1. (3.33)

Similar inequalities hold also for ¢ and ¢, in case of [w| = 1 and z € I', respectively.
We define Poisson polynomial for function f € Enr. (Go)

2n-1

Va(f,z) = icka(z) + Z <2 - S)Cka(Z)/ z € Gy. (3.34)
k=0

k=n+1
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Theorem 3.4. If I' is a Dini-smooth curve, M € QCZG (0,1) and w € Ay (T), then for every
f € Enmuw (Go) one has

£ = Va(F ) st < CEn(F) mrr (3.35)

where the constant ¢ depends only on T and M.

Proof. From (3.8) and (3.5), we have

Va(fi2) = % Jjﬁf )2 ,[ By AW e lktdg, (3.36)
where z € Gy and
1, 0<k<mn,
M = {2—5, n+l<k<on-1. (3:37)
n
If P, € D, is near best approximant for f € Epr., (Go), we get
L =Vl agre < En(F) s + 1P = Va () g (339)
Using
Pu() = 5 j:ﬂ P(p(e")) o L Zitla"’z f'li‘z'(p(g)e_ikt de, zeGo, (3.39)
we find

Py(z) = Vu(f, 2)
—ikt

T 271:1 - Ak
L[ [noe) - sl | [ O,
(3.40)

Taking in the last inequality, the nontangential boundary values from inside of I', z — zp € T
and using (3.18), we have

Pu(z0) - Vu(f, z0) = % Jj”{Pn (9(e") - £(9(e")) Jat

2n-1 k
1 2l ikt 1 Zk:—(Zn—l))L|k|‘P(§)e
X[E 2 Awzoe Ef

—ikt

k=-(2n-1) 520
(3.41)
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Since 2" (g) Ziﬁ:l(h_l) Ajio¥ (g)e ! is analytic in G.,, we have

ikt

1 f Sk oy kgt (5)e”
20ri )¢

dg=0, zeGy, (3.42)
(6 = 2)9*"(5)
and taking nontangential limit in (3.42) we get
2n-1 ' 1 ¢*"(2) Zii:l(Zn—l) A‘kl(Pk(g)e—ikt
5 D" (zo)e ™ = —=— dg, (3.43)
Zk:_%,_l) P 2ori r (PZn(g) S~ 20

and hence by transformation zy = ¢(wp) we obtain

Pn(ZO) - Vn(f/ZO>

1 (% i i d 2n 2121 o wke ikt ,
=2x), {P"(‘F@t))—f(qf<et)>}2—;fT<1—ZL) ¥ (w) duw.

(3.44)
Since one has
2n ZZn—l A k ,—ikt
1 wy k=—(2n-1) Mk|W"€ )
- 1- o — ¢'(w)dw
27 ) w ¢ (w) — ¢(wo)
1 w%n 2n-1 ) (P_/(w) 1
= 1- Lwke ikt [ - dw 3.45
27ri T< w2 ) k:—%z—l) Ikl p(w) —g(wy) w—wy (345)
1 w2n 1 2n-1 )
* i <1 - w3"> w2 e,
T 0 k=—(2n-1)
we can write
Pu(z0) = Vu(f, 20)
1 (> it it
=0 ), AP (e)) = F(w(eh)) et
N 1 1 wy" Zil Alklwke—ikt[ ¢'(w) 1 ]dw
271 )¢ T ¢(w) —g(wo) w—wo (3.46)
1 (> i AN\ dt wy" 1
o [ o) - s s [ (-5 )

2n-1
X Z )L|k|wk€_lkt =1 + I.
k=-(2n-1)
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From equality

1 erL 1 2n-1 ) 2n-1 .
<1 °> 3 dgwFe™Mdw= > Agwle ™, (3.47)
=—(2n-1) k=-(2n-1)

we have
1 2T 2n-1 ik
||Iz||M,r,w5En(f)M,r,w2—f 2 Muoge™ |t (3.48)
T Jo | k="(2n-1)
On the other hand,
1 27T 2n-1 ) w2n (P,l(w)
I <E —J‘ A wke*’ktJ‘ 1- -2 - dw|.
Millvero <En(araw g | k:_%_u K L | s s el [

(3.49)

We denote by A a subarc of T with the center wy such that it has arc lenght O(1/n). In this

case
2n ’
f 1- 20 yw 1 ‘|dw|
A w || ¢g(w) —¢g(wo) w—wy
(3.50)
SJ |w2n_w5n |(P‘ (w)l _ 1 |d’(,l)|SC
A lg(w) — g(wo)|  w—wo
and, by (1.3),
w2n (P,/(w) 1
f 1-—3 - ‘|dw|
na|  w|lg(w) - ¢(w) w-—wo
o f ' (w) (=) = [p(a0) — g @Ol ) 351)
A l¢s(w) — ¢ (wo) || — wol
1 ’,t
Scf w(qf )dtSC.
1/n t
Hence,
27T 2n-1 )
lasrao < En(Ppap [ | 5 duwohe e (352)
k=—(2n-1)
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Inequalities (3.46), (3.48), and (3.52) imply that

201 2n-1 201 2n-1
”P" —Va (f, ) ||M,F,w <E, (f)M,F,w {I Z “\Iklwlgeﬂkt + I Z )L|k|wk€71kt }
0 |k=—(2n-1) 0 |k=—(2n-1)
(3.53)
For every w € T, one has
27| 2n-1 _
j > ke ™| <, (3.54)
0 |k=—(@2n-1)
and therefore we get the required inequality of Theorem 3.4. O
Theorem 3.4 signifies that Poisson polynomial is near best approximant for f.
For g € Ly (T), we set
1" it
on(g)(w) = = g<we >dt, O<h<x, weT. (3.55)
2h ),
IftMe QCg (0,1) and w € Apumy (T), then by Theorem A(ii) we have
llon(g) ”M,T,w < cllgllM,T,w’ (3.56)
and consequently o, (g) € Lmyw (T) for any g € Ly (T).
Definition 3.5. Let M € QC;9 (0,1), w € Apmy(T), and r > 0. The function
[r]
Qi (86) = sup || [ -on)T -0 Vg , 6>0 (3.57)
o 0<hi t<6 | i=1 M,Tw

is called rth modulus of smoothness of g € Lz, (T).

It can easily be verified that the function QR/LT,W (g,+) is continuous, nonnegative,
subadditive and satisfy lims_, Qyirw(8 6) =0for g € Lag(T).
LetI' be a Dini-smooth curve and w be a weight on I'. We associate with w the following

two weights defined on T by

wo = w oy, w1 = wo g (3.58)
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and let fo := f o, f1 := f oy for f € Lyw(I). Then from (3.33), we have fy € L, (T) and
f1 € Ly, (T) for f € Ly (T). Using the nontangential boundary values of f; and f" on T,
we define

Qo (£,6) = Qi (fo,6),

Ny ] A (3.59)
QM w (fr 5) = QM,’JI‘,wl (fl ’ 6)
forr, 6 > 0.
We set
E"(f)M,T,w = Pei,g:f(D)”f - P”M,T,w’ E, (g)M,F,w = Igg,{nllg - R||M,F,w’ (3.60)

where f € Epow(D), § € Emw(Gs), and R, is the set of rational functions of the form

n -k
Dm0 Az
Now we can give several applications of approximation theorems of Section 2.

Theorem 3.6. Let I' be a Dini-smooth curve, M € QCQ(O, 1) and f € Lpto(T) with w € Ai(D).
Then there is a constant ¢ > 0 such that for any natural number n

17 =R Dl <o Fara (5 )+ Doane (s ) | @D

where r > 0 and Ry, (-, f) is the nth partial sum of the Faber-Laurent series of f.

Corollary 3.7. Let I be a Dini-smooth curve, M € QCQ(O,l) and f € Epw(Go) with w € Ay (T).
Then there is a constant ¢ > 0 such that for every natural number n

1
15 =Pl < e (fr gy ) 720 (62

(n+1

where P, (-, f) is the nth partial sum of the Faber series of f.

Corollary 3.8. Let I be a Dini-smooth curve, M € QCZ" (0,1)and f € E Mw(Go) withw € Ay ().
Then there is a constant ¢ > 0 such that for every natural number n

~ 1
1f = RaCs Dl agro < €5 Lntr (f, W) r>0, (3.63)
where R, (-, f) is as in Theorem 3.6.

Theorem 3.9. Let I be a Dini-smooth curve, M € QC? (0,1) and f € Enpw(Go) with w € A1(I).
Then for r > O there exists a constant ¢ > 0 such that

1 n
Qi <f' E) < % {EO () mrew* ékr_lEk (f)M,F,w} (3.64)

hold.
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Corollary 3.10. Under the conditions of Corollary 3.7, if

En(f)prw =0(n"), a>0,n=123,..., (3.65)

then for f € Enw(Go) and r >0

0(6%), r>a,
Qyire (f,6) = 0<6“ log% > r=a, (3.66)
0(6"), r<a.

Definition 3.11. Let M € QCg (0,1) and a € R*. If f € Epg4 (Go), then for 0 < 0 < a we set

Lipo(a, M,T,w) : = {f € Eno(Gon) : Q81 o (f,6) = (9(6”‘)},

(3.67)
{f € Emu(Go) : @441, (f,6) = 0(6%), 6 > 0}.

Lipo(a, M, T, w) :

Corollary 3.12. Let M € QC?(O,l) and a € R*. If f € Epw(Go), w € A1(I'), 0 < 0 < a and
E"(f)M,F,w =0n7°),n=1,2,..,then f € Lipo(a, M,I', w).

By Corollaries 3.7 and 3.10 we have the constructive characterization of the class
Lipo(a, M, T, w).

Corollary 3.13. Let 0 < 0 < aand f € En(Go), w € A1(I), where M € QCS (0,1), be fulfilled.
Then the following conditions are equivalent:

(a) f € Lipo(a, M,T, w).
(b) E"(f)M,F,w =0n7°%),n=1,2,....
The inverse theorem for unbounded domains has the following form.

Theorem 3.14. Let I be a Dini-smooth curve, M € QC;9 (0,1) and f € EM,W(GOO) with w € A1(T).
Then there is a constant ¢ > 0 such that for every natural number n

Dara(F5) S Bt S B 720 G69)
n k=1

n

holds.
By the similar way to that of Ep;,.,(Go), we obtain the following corollaries.

Corollary 3.15. Under the conditions of Corollary 3.8, if

En(f)pre=0m"), a>0,n=123,..., (3.69)
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then forf € EM,W(GOO) andr >0

0 (6%), r>a,
= 1
Qirw(f,6)=40 <5" log = > r=a, (3.70)
O (6", r<a.
Corollary 3.16. Under the conditions of Theorem 3.14, if
En (f)M,r,w = O(n—“), a> O/ n= 1/2/3/~ vy (371)

then f € fﬁ)o(a, M,T,w).
By Corollaries 3.8 and 3.15, we have the following.

Corollary 3.17. Let « > 0 and the conditions of Theorem 3.14 be fulfilled. Then the following
conditions are equivalent,

(a) f € Lipo(a, M,T,w),
(®) En(f) i = Om™), n=1,23,....
Before the proofs, we need some auxiliary lemmas.

Lemma 3.18. Let I be a Dini-smooth curve, M € QCZ"(O,l) and f € Lpw(I) with w € Aq(T).
Then, f* € Epw(Go) and f~ € Enw(Geoo) for every f € Lag, (D).

Proof. Using M € A, we can find a p € (1,00) such that Ly, (I') € LP(I',w), where the
inclusion maps being continuous (see, e.g., Lemma 2.13 of [20]). Since w € A,(T) by [9], we
get f+ € EY(Gp) and f~ € E'(G,). Using w € Apmy (') and boundedness of operator Sr in
Lpg(I'), we obtain from (3.18) that

freLmo@), € Lyw(). (3.72)

O

Lemma 3.19. Let M € QCQ(O, 1) and w € Apm)(T). Then there exists a constant ¢ > 0 such that
for every natural number n

, 1
18 = Tugll v < € Qe (g, m) 8 € Emw(D), (3.73)

where v > 0 and T, g is nth partial sum of the Taylor series of g at the origin.

Proof. Using Theorem 2.7 this lemma can be proved by the same method of Theorem 3 of
[45]. O
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Let D be the set of all polynomials (with no restrictions on the degree), and let (D)
be the set of traces of members of P on D. We define the operators T : (D) — Epz.,(Go) and
T:PD) - Epw(Gy) defined on P(D) as

P(w)y' (w)
T(P)(Z) 2 i dew, z e GO,

P(w) () (3.74)
Py (z) = o [ 2 e,

231'1 T ¢1(w) -z

Then it is readily seen that
n n - n n - 1
T<Zbkwk> = Y'beF(2), T<dewk> = depk(->. (3.75)
k=0 k=0 k=0 k=0 z

If z' € Gy, then

P ! Po v,
T(P)(z) = 20ri J‘T % - 231'1[ ( (P)(G) = (Poy) (), (3.76)
which, by (3.18), implies that
T(P)(2) = 5 (Pog)(2) + (5 ) (Pog)(2) (377)

a.e.onl.
Similarly taking from outside of I' the nontangential limit z” — z € I in the relation

P .
&) = o [ "D o= [(Pog)] @), =G (378)
we get
- 1
102 = (3 ) (Pop) @ +5:(Pog)(2) 379)
a.e.onl.

Since Sr is bounded in Ly, (I'), we have the following result.

Lemma 3.20. Let I be a Dini-smooth curve, M € QC?(O,l) and f € Ly (D) with w € Ap) (D).
Then the linear operators

T:P(D) — Emw(Go),  T:P(D) — Emw(Ge) (3.80)

are bounded.
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The set of trigonometric polynomials is dense in Ly, (T), which implies density of
the algebraic polynomials in Ejpg., (D). Consequently, from Lemma 3.20, we can extend the
operators T and T from p (D) to the spaces Epfw, (D) and Epgp, (D) as linear and bounded
operators, respectively, and for the extensions T : Epf, (D) — Eaw(Go) and T:E Mw, (D) —
E Mw(Ge), we have the representations

= Enw, (D),
2ori T (I,f(u))—Z w, ZEGO/ ge M,o( )

L[ sy w) (81
& 1
- w (D).
T(g)(z) 2ri T (Pl(w)_z dw/ ZEGOO/ geEM, 1( )
Lemma 3.21. Let M € QC3(0,1) and f € Ly (T) with w € Ay (T). Then,
1P (f) = fllpgpw — 0 asr—17, (3.82)
where
” 1 20r it
Pr(f)<e >:Zﬂf0 P(r,9—t)f<e )dt, 0<r<l (3.83)
and P(r, 6 —t) is the Poisson kernel.
Proof. There are numbers p and g such that
l<p<p(M)<g<oo, w € Ap(T). (3.84)

Since [46, Theorem 10] P, is a bounded operator in LP(T, w) for every 1 < p < oo, we have by
Marcinkiewicz Interpolation Theorem

”Pr (f) ||M,T,w < c”f”M,’JI‘,w' (3.85)

From density of trigonometric polynomials in L. (T), we have density of the set of
continuous functions on T in Ly (T). Consequently, there is a continuous function f* on
T such that, for given € > 0 and f € L, (T),

If = fllpre <e (3.86)

On the other hand, since the Poisson integral of a continuous function converges to it
uniformly on T [47, page 239], we have by (2.7) and w € A,(T)

IP-(f) = fllmrew = sup | [Pr(f)(@w) = f(w)||g(w)|w(w)|dw]
plg <1t (3.87)

< e(M(l) Lr w(w)|dw| + 1> <Ce
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for0 <1-r < 6(e). Then, from (3.85), (3.86), and (3.87), we conclude that

”Pr(f) _f“M,'Jl‘,w < ”Pr(f) - P"(f*)”M,T,w + ”Pr(f*) _f*"M,T,w + ”f* _f”M,'JT,w
= ”Pr(f - f*)”M,T,w + ”Pr(f*) - f*“M,T,w + ”f* _f”M,']I‘,w (3.88)
<ellf = fllvmew * 1P (F7) = Fllyp < le + Cle

This completes the proof. O
Theorem 3.22. Let I be a Dini-smooth curve, M € QCQ (0,1) and f € LymwI) with w € Ai(I).
Then the linear operators

T: Enmuw, (D) — Eniw(Go), T : Engo (D) — Ento(Gos) (3.89)

are one-to-one and onto.

Proof. The proof we give, only for the operator T. For the operator T is the proof goes similarly.
Let g € Epp e, (D) with the Taylor expansion

g(w) = thkwk, w € D. (3.90)
k=0

Since I is a Dini-smooth curve, the conditions w € A1(T'), wy € A1(T), and w; € A{(T) are
equivalent.

Let g, (w) := g(rw), 0 < r < 1. Since g € E}(D) is the Poisson integral of its boundary
function [48, page 41], we have

ll8r = &ll v, = 1P (8) = 8l im0 (3.91)

and using Lemma 3.21, we get [|gr — &lly;r,,, — 0,as7 — 1.
Therefore, the boundedness of the operator T implies that

IT(g) - T(@) s — 0 asr—1. (3.92)

Since 37 axr¥w* is uniformly convergent on T, one has

rg)() = g [ DD, S L[ w0

27i Jr ¢(w) -2/ ~ 27ri g(w) -2 (3.93)

[ee]
= szmrmFm (), Z €Go.
m=0
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From the last equality and Lemma 3 of [39, page 43] we have

ak(T(g,)) = Zyrzf M ZJHJ‘ Zm 0 O™ m((’,r(w))

wk+1 wk+1
. Fo () (3.94)
AN m\§{o — sk
_Z 2.71'1_]‘ de_akr’
and therefore
ax(T(gr)) — ax, asr—1". (3.95)
On the other hand, applying (3.33), (2.7), and weighted version of Holder’s inequality
IFIM(Z)U(Z)IW(Z)IdZI < cllullprwollolFre  # € Lyw(l), v € Lz, (), (3.96)
we obtain
|ax(T(8r)) — ax(T(g))]
_ _f [T(s) ~T(@] (@) ,
271 J wk+1
< o [ 1) ~T@ @) lldwl = 5- [ |[(z) - T@] @Iy @)1=
<o [ 1IT(e) - T(@1 @11z = 1 [ 11780 - T@) @) @l
<7 (s) —T<g>||M,r,w||w-1||m < 5= I7(8) = T(®) It
(3.97)
because [lw™[|5; 1, < M(1) mes (I) +1< ¢ < 0.
Using here the relation (3.92), we get
ax(T(gr)) — ax(T(g)), asr—17, (3.98)

and then by (3.95), ax(T(g)) = ax fork =0,1,2,.... If T(g) = 0, then ax = ax(T(g)) =0, k =
0,1,2,..., and therefore g = 0. This means that the operator T is one-to-one.

Now we take a function f € Ep.,(Go) and consider the function fo = f o € Lpz,, (T).
The Cauchy type integral

Jo(7) T)

3.99
2]1'1 T — w ( )
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represents analytic functions f; and f; in D and D, respectively. Since wy € A(T), by
Lemma 3.18, we have

f§ €EmenD),  fy € Entuy(Deo), (3.100)
and moreover
fo(w) = fg (w) - fg (w) (3.101)
a.e.on T. Since f; € E'(D) and fo (o0) =0, we have

[ folw)

~ 1 fo(w)
20i Jp wkt

20ri Jp wkt?

ai =

L o) [ fiw)
P w=—
27 ) wk+! 20i Jp wkt

dw dw dw,

(3.102)

which proves that the coefficients ax, k =0,1,2,.. ., also become the Taylor coefficients of the
function f at the origin, that is,

fo(w) =D aw, weD, (3.103)
k=0
and also
T(f5) ~ D aF. (3.104)
k=0

Hence the functions T(f;) and f have the same Faber coefficients ax, k = 0,1,2,..., and
therefore T(f;) = f. This proves that the operator T is onto. O

Proof of Theorem 3.6. We prove that the rational function
n n o~ 1
Ru(z, f) == D axFi(z) + > axFk (E) (3.105)
k=0 k=1

satisfies the required inequality of Theorem 3.6. This inequality is true if we can show that

- L.~ /1 ~ 1

o+ 2an(2) o =B ) (3:100)
+ _ - T 1
f(=z) kZ:Oaka(Z) M,r,wSCQM’F’w<f' —(n+1)>, (3.107)

because f(z) = f*(z) - f7(z) a.e.onT.
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First we prove (3.106). Let f € Lpiw(I). Then f1 € L, (T) and fo € Lagw, (T).
According to (3.101),

£(6) = f5 ((c)) = fo (9(s)) (3.108)

a.e. onT. On the other hand,
fi(w) = fi (w) - f; (w), (3.109)

which implies the inequality
f(6) = £ (91(9)) = f7 (91(5)) (3.110)

a.e.onT.
Let z' € Gy \ {0}. Using (3.7) and (3.110), we have

I 2 A NI - Zklaktpl(g)
ZF(‘) S2AnE) gn ) T 4
:iakqﬂ;(z' L (St aok©) - fi (‘Pl(G))> f fi(p(e)) (<p1 g)) dc
e 271 )¢ ¢—2 - 2ri
L ( f@)
- 2uri rg—z’dg
g ELade-fiee)
- St () -5 | — e~ f; (p1(2)) - f(2).
k=1
(3.111)
Hence, taking the nontangential limit z’ — z €T, inside of T, we obtain
SIS A W U LIGs & +
Zﬂka p —Zaklpl(z)—z Zak‘/’l(z)—fl (<p1(Z))
k=1 k=1 k=1 (3.112)

-Sr [iﬁkgo'f - (ffo 901)] - fi(p1(2) - f(2)

k=1

ae.onl.
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Using (3.19), (3.110), Minkowski’s inequality, and the boundedness of Sr, we get

o gea()

M,T,w
n

- “ % <Za""’lf(z) - ff(‘/’l(z))> ~Sr [Zﬁw"f ~(fio wl)] (2) (3.113)
k= k=1 M
<o Yagk@ - fim@)| e fiw) - Ya*
k=1 MTw k=1 MT.0r

On the other hand, from the proof of Theorem 3.22 we know that the Faber-Laurent
coefficients ay of the function f and the Taylor coefficients of the function f;" at the origin
are the same. Then taking Lemma 3.19 into account, we conclude that

<cQ

Hf +Zaka z>' MTw1<ff/mlTl)>:C§§vI,r,w<fl(anl)>' (3.114)

M,T w

and (3.106) is proved.

The proof of relation (3.107) goes similarly; we use the relations (3.6) and (3.108)
instead of (3.7) and (3.110), respectively. Hence (3.19), (3.106), and (3.107) complete the
proof. O

Proof of Theorem 3.9. Let f € Enpw(Go). Then we have T(f;) = f. Since by Theorem 3.22 the
operator T : Epj., (D) — Enw(Go) is linear, bounded, one-to-one and onto, the operator
T : Epmw(Gy) — E Muw, (D) is also linear and bounded. We take a p;, € [, as the best
approximating algebraic polynomial to f in Epz.,(Go), that is,

Ex(f)mrw = 1f =Prll v (3.115)

Then, T\ (p},) € P,(D), and therefore

fo =T'(py)

=T -1 ()

En(f3) wman < |

| M,T,wy | M,T,wy

B B . (3.116)
= ||T (f_pn) M,T 0 < ||T ||”f_pn”M,I',w = HT
because the operator T~! is bounded.
Theorem 2.8 and (3.116) imply that
. 1 c S
QMrw<f n) Q0T <f0 , _> < o {E0<fJ)M,T,wg + Zk 1Ek(fo+)M,1r,wo}
k= (3.117)

C”T 1” {Eo(f)Mrw+Zkr 1Ek(f)Mrw}' r>0.
]
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