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Abstract We present new values of the structural coeffi-
cients ηj , and related quantities, for realistic models of dis-
torted stars in close binary systems. Our procedure involves
numerical integration of Radau’s equation for detailed struc-
tural data and we verified our technique by referring to the
8-digit results of Brooker & Olle (Mon. Not. R. Astron. Soc.
115:101, 1955) for purely mathematical models. We pro-
vide tables of representative values of ηj , and related quan-
tities, for j = 2,3, . . . ,7 for a selection of Zero Age Stel-
lar Main Sequence (ZAMS) stellar models taken from the
EZWeb compilation of the Dept. of Astronomy, University
of Wisconsin-Madison. We include also some preliminary
comparisons of our findings with the results of Claret and
Gimenez (Astron. Astrophys. 519:A57 2010) for some ob-
served stars.

Keywords Stellar structure · Structural coefficients · Close
binary systems

1 Introduction

Kopal (1959) discusses a potential for unit mass located at
a point M , external to a spherical shell of matter where a
typical point is labelled M ′, by an expression of the form

V = G

∫
dm′

R
; (1)
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G being the gravitation constant, R the separation of M and
M ′; the mass element dm′, given, in a naturally applicable
spherical polar co-ordinate system, by

dm′ =
∫ ∫ ∫

ρr ′2dr ′ sin θ ′dθ ′dφ′ (2)

with

R2 = r2 + r ′2 − 2rr ′ cosγ, (3)

r , θ , φ, being the co-ordinates of the point M , and then

cosγ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (4)

This potential is understood to mean that which when
differentiated gives the gravitational force on unit mass, al-
though this meaning differs slightly from that of normal po-
tential energy, which is higher for less tightly bound matter.
Such a potential would require a minus sign before the right
side expression in (1), and the corresponding derivative also
requires a minus sign for an attractive force. The end result
being the same for the force, there is some convenience in
retaining the notation of (1).

The denominator R lends itself readily to expansion in
Legendre polynomials, so that the integral (1) can be ex-
pressed as the sum of a series in n of terms, thus:

V =
∞∑
0

r−(n+1)Vn, (5)

where each term Vn is an integral of the form

Vn = G

∫
r ′nPn(cosγ )dm′. (6)

A closely comparable form exists also when M is internal
to M ′, except for a difference in the integral limits and that
the powers of r increase and those in r ′ decrease in cor-
responding successive terms. The surviving power of −1
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in the explicit unit of distance, given the surrounding fac-
tor G

∫
dm′ = Gm1, say, ensures that each term has the di-

mensions of energy per unit mass. Considerations are of-
ten aimed toward the surface distortion of a component in a
close binary system, where the internal form for the poten-
tial disappears, so the external form tends to assume a more
overt role.

The classical approach to finding the shape of a body
distorted by forces associated with rotation and tides refers
to equipotential surfaces, on which the potential associated
with all forces in the problem is constant. This approach,
coupled with the circumstance of a distinct ordering to the
relative scale of pertinent forces, so that contributory ef-
fects can be regarded as additive perturbations upon simpler,
more basic forms (e.g. having spherical symmetry), per-
mits distinct inroads into the situation conforming a priori
only to Poisson’s Equation. Clauraut’s theorem for bodies in
equilibrium (cf. e.g. Pressly 2001) implies that the density
ρ is constant over an equipotential surface, which permits
simplification of the integral formed by combining (2) and
(6). Indeed, it becomes tractable if we can also express the
equipotentials in terms of spherical harmonics Yj (a, θ ′, φ′),
that normally include Legendre polynomials P(cos θ ′), due
to the integrability of the relevant products, i.e. the orthog-
onality conditions applying to products of harmonics in an
integral (cf. e.g. MacRobert 1927). The radius r ′ is thus ex-
pressed as the series

r ′ = a

{
1 +

∞∑
j=2

Y i
j

(
a, θ ′, φ′)

}
, (7)

where a now represents a mean radius applying to any given
equipotential, whose perturbation from sphericity is given in
terms of the tesseral harmonics Y i

j . This leads to (5) being
expressible as a series of integrals involving only a, where
the mixed products of different order harmonics vanish.

The potential considered thus far refers only to the body’s
own distribution of matter and its gravitational self attrac-
tion. For a body with no net motion of any constituent parti-
cle in a given frame of reference, this is regarded as balanc-
ing a ‘disturbing potential’ V ′ = ∑∞

i,j ci,j r
jP i

j (θ,φ) that
gives rise to forces acting in opposition to that of the self at-
traction, with the coefficients ci,j pertaining to given forms
of disturbance at a = a1. By balancing the coefficients in the
expansion for the combined potential, since each equipoten-
tial surface is characterized by only one value of the total
potential (independently of θ or φ, i.e. regardless of where-
abouts on the surface we may locate a test particle), we ar-
rive, after a little manipulation (cf. Kopal 1959), at Clairaut’s
equation for the first order surface perturbation

G

(2j + 1)a
j+1
1

∫ a1

0

(
jajY i

j + aj+1
∂Y i

j

∂a

)
dm′

= ci,j a
j

1P i
j (θ,φ). (8)

The mass-shell weighted integral on the left side of this
equation results from only the external form for the poten-
tial; the internal one disappearing at the surface (a = a1).

Writing now

ci,j a
j

1P i
j = Gm1

a1

Y i
j

�j

, (9)

we expect the key coefficient �j introduced here to be a
purely numerical quantity of order unity. The forms of (7)
and (8) imply the harmonic functions Y i

j are also numerical,
with argument a/a1. Clairaut’s equation can then be rear-
ranged as

�j = (2j + 1)

j + ηj (a1)
, (10)

where ηj (a1) is the surface value of the logarithmic deriva-
tive for the perturbation potential

ηj (a) = a

Y i
j

∂Y i
j

∂a
. (11)

If the a-dependence of the harmonics Y i
j were simply as the

powers (a/a1)
k then ηj = k. Notice that the reduction to

only the index j for � and η anticipates that the relevant
disturbing potentials can be expressed (by an appropriate
co-ordinate choice) in terms of only (zonal) Legendre poly-
nomials.

Kopal (1959) and others have studied the mathematical
behaviour of the function ηj in some detail. It has been
shown to satisfy the differential equation, for a on the range
0 < a < a1,

a
dηj

da
+ 6ρ

ρ
(ηj + 1) + ηj (ηj − 1) = j (j + 1), (12)

that Kopal called Radau’s equation. If the envelope den-
sity falls away, i.e. ρ → 0, this equation could clearly be
solved by ηj = j +1, in accordance with Y i

j having the form

c′
j (a/a1)

j+1. The coefficient �j would then revert to unity,
which accords with an intuitive expectation that, in the ab-
sence of matter, the disturbing and balancing potentials di-
rectly match; c′

0 ≡ c0a1/Gm1 in the case of self-attraction,
for instance. A finite density ρ > 0 has the effect of reduc-
ing ηj in (12) in order to balance the left side with the con-
stant right, then entailing a diminution of the denominator in
(10) and an amplification of the surface distortion through
corresponding increase of the coefficient �j . The same ef-
fect can be seen in (8) when a decrease of the second, gra-
dient term in the integrand would require a compensating
increase in the coefficient of the Y i

j to entail constancy to
the right side of the equation. For a body of uniform den-
sity, (12) can easily be seen to be satisfied by ηj = j − 2,
so that �j = (2j + 1)/(2j − 2). But this would be the
maximum amplification of �j feasible for a regular astro-
physical body in equilibrium. For bodies with some degree
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Table 1 Apsidal-motion
constants k2. We have listed
values of the coefficients k2
corresponding to the procedure
given in the text, interpolating to
the mean masses adopted by
Claret and Gimenez (2010)

Star Mass (M�) k2 (Present work) k2 (Claret and Gimenez)

V 636 Cen 1.051 0.02314 0.01920

EK Cep 2.025 0.00409 0.00765

PV Cas 2.816 0.00526 0.00435

GG Lup 4.106 0.00710 0.00594

V 760 Sco 4.969 0.00825 0.00629

QX Car 9.250 0.01261 0.00810

of central condensation, like stars, ηj tends rather quickly
towards j + 1, so that �j → 1 similarly. �j = 1 should
thus hold for the centrally condensed ‘Roche’ approxima-
tion.

Brooker and Olle (1955) tabulated values of the solutions
ηj (a1), to 8 decimal places accuracy, for polytropic models
of stellar structure, with j = 2,3, . . . ,7; and 14 values of
the polytropic index n in the range 0 ≤ n ≤ 5. Their data
clearly show rapid increases of η towards j + 1 with in-
creasing polytropic index n, i.e. central condensation. These
results, cited as Table 2-1 by Kopal (1959), were used in
many subsequent modellings of rotationally and tidally dis-
torted stars and form a useful basis of comparison for the
present compilation.

Kushwaha (1957) and Schwarzschild (1958) calculated
theoretical apsidal constants (k2 = (�2 − 1)/2) for ho-
mogeneous and evolved stars. Petty (1973) looked for an
explanation of the discrepancy between observational and
theoretical (k2) values, using homogeneous stellar mod-
els. Hejlesen (1987) computed the structure constants kj

for ZAMS models, and discussed their evolutionary varia-
tion for the j -values 2, 3 and 4 using the theoretical mod-
els of Jeffery (1984). He pointed out the uncertainty in
the calculations arising from the use of different opacity
tables in theoretical models. More recently, Torres et al.
(2010) presented logarithms of k2-values for 18 binaries
between the ZAMS and TAMS (Terminal Age Main Se-
quence). Their results were related to the theoretical values
of Claret (1995) in dependence on the surface gravity and
mass.

Claret and Gimenez (2010) have also checked structural
coefficients against data from double-lined eclipsing bina-
ries. They used stellar models generated from the Granada
evolutionary code of Claret (2004), and integrated the Radau
equation as discussed in the foregoing. They paid particu-
lar attention to apsidal-motion rates, which can be related
to mean systemic values of k2. We have sought to check
our results against observational data and will report more
about this in subsequent work. In the interim, we present
some preliminary findings in Table 1 that can be com-
pared with corresponding values from Claret and Gimenez
(2010).

Fig. 1 ηj changing with representative polytropic index n. The dia-
gram shows values of ηj (j = 2) for different masses of stars as de-
termined by integrating ZAMS models of these stars (taken from the
EZWeb database) using the program RADAU. These values, listed also
in Table 2, are shown as pentacles. They can be compared with corre-
sponding values of ηj (j = 2) shown as asterisks taken from the table
of Brooker & Olle. These values are obtained by interpolation from
the tabulated data of Brooker& Olle at the representative values of the
polytropic index given on the abscissal scale. These values correspond
to n values derived in the manner shown in Fig. 2

2 Procedure

We first constructed a small piece of FORTRAN program-
ming to carry out numerical integration of Radau’s equation
that was combined with a separate program used to inte-
grate polytropic models of stars. The procedure was com-
parable to that of Brooker and Olle (1955), except that with
the greater data processing speeds and capacities of modern
computers, step sizes could easily be made suitably small to
avoid the numerical problems mentioned by Brooker & Olle,
and still return reliable results in a short time. The second-
order Lane-Emden equation is rearranged as two simultane-
ous first-order difference equations for this, while Radau’s
equation becomes a first-order difference equation for the
increment of ηj at each layer. Referring to Brooker & Olle’s
results, we confirmed a numerical agreement to eight signif-
icant digits with our program (RADAU).
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Table 2 Zero age solar
composition models j 2 3 4 5 6 7

M = 0.5M�; n1 = 2.31, n2 = 2.53

ηj 2.11988 3.49701 4.65909 5.74914 6.80576 7.84413

�j 1.21363 1.07742 1.03937 1.02334 1.01517 1.01050

kj 0.10681 0.03871 0.01969 0.01167 0.00758 0.00525

M = 0.75M�; n1 = 2.37, n2 = 2.62

ηj 2.58087 3.77719 4.85148 5.89118 6.91585 7.93253

�j 1.09150 1.03288 1.01678 1.00999 1.00652 1.00452

kj 0.04575 0.01644 0.00839 0.00500 0.00326 0.00226

M = 1.0M�; n1 = 2.18, n2 = 2.46

ηj 2.76930 3.88574 4.92550 5.94579 6.95816 7.96645

�j 1.04837 1.01659 1.00835 1.00495 1.00323 1.00224

kj 0.02419 0.00830 0.00417 0.00248 0.00161 0.00112

M = 2.0M�; n1 = 2.42, n2 = 2.82

ηj 2.95974 3.98990 4.99605 5.99809 6.99895 7.99937

�j 1.00812 1.00145 1.00044 1.00017 1.00008 1.00004

kj 0.00406 0.00072 0.00022 0.00009 0.00004 0.00002

M = 3.0M�; n1 = 2.38, n2 = 2.76

ηj 2.94512 3.98633 4.99466 5.99742 6.99858 7.99915

�j 1.01110 1.00196 1.00059 1.00023 1.00011 1.00006

kj 0.00555 0.00098 0.00030 0.00012 0.00005 0.00003

M = 4.0M�; n1 = 2.36, n2 = 2.72

ηj 2.93139 3.98293 4.99334 5.99677 6.99822 7.99893

�j 1.01391 1.00244 1.00074 1.00029 1.00014 1.00007

kj 0.00696 0.00122 0.00037 0.00015 0.00007 0.00004

M = 5.0M�; n1 = 2.34, n2 = 2.68

ηj 2.91837 3.97970 4.99209 5.99616 6.99788 7.99873

�j 1.01660 1.00291 1.00088 1.00035 1.00016 1.00008

kj 0.00830 0.00145 0.00044 0.00017 0.00008 0.00004

M = 7.0M�; n1 = 2.35, n2 = 2.66

ηj 2.89574 3.97402 4.98994 5.99513 6.99731 7.99838

�j 1.02130 1.00372 1.00112 1.00044 1.00021 1.00011

kj 0.01065 0.00186 0.00056 0.00022 0.00010 0.00005

M = 10.0M�; n1 = 2.41, n2 = 2.67

ηj 2.87080 3.96759 4.98754 5.99402 6.99671 7.99802

�j 1.02653 1.00465 1.00139 1.00054 1.00025 1.00013

kj 0.01326 0.00233 0.00069 0.00027 0.00013 0.00007

We next considered what approach might be made that

could find some mean or representative value of the in-

dex n yielding the same value of ηj as that for any given

modern model obtained by detailed numerical integration of

the structure equations: for example, a mass-shell weighted

mean of the local polytropic index applying to any given

mass-shell through the star. This could allow for suitable

comparisons with historical treatments. This idea turned out
not so directly applicable, however, since numerical integra-
tion of Radau’s equation for a given structural model would
need to be done anyway, in order to check the results of
any alternative approach. However, in this way, we could
show that representative values of n for given numerically
integrated stellar models correspond to ηj values following
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Fig. 2 Integration of η against mass distribution Mr (a) 2M� model
(b) 0.5M� model. The ordinate scale for the increment δη is 1/50 of
that shown, which directly applies to the local polytropic index value n

at the corresponding mass Mr . Note that the n-value (continuous line)
corresponding to the peak value of δη, which maximizes towards the

outermost mass-containing layers of the star, gives a good represen-
tation for equivalent polytropic stellar models compared with alterna-
tives mentioned in the text. The low-mass star (convective envelope)
thus has a representative value of n less than 2, compared with a little
>3 for the higher mass (radiative envelope) star

general expectations regarding the degree of central conden-
sation. Mass-shell weighted means of local n values (n1 in
Table 2) resulted in ηj values that were typically accordant
with the corresponding numerically integrated detailed stel-
lar models to 2 or 3 significant digits. Another estimate (n2),
giving a comparable indication, comes from simply averag-
ing the slope of the logρ versus logT from the centre to
each layer. But, an estimate having a closer reflection of the
effects of the changing proportions of convective and radia-
tive heat transports through the stars and the consequences
of this on the mass distribution and corresponding deforma-
tions comes from the local value of the polytropic index in
that layer of the star where the incremental contribution to
the integration of η maximises (Fig. 1).

Of course, no such averaging gainsays the desirability
of the relatively simple evaluation of ηj and the derivative
structural coefficients �j and kj for any given stellar model.
In the present report we address, for this purpose, the mod-
els of stars, as directly available from the EZWeb website
maintained by R. Townsend and associates at the University
of Wisconsin-Madison (2011).1 EZWeb models are based
on Eggleton’s (1971) evolution program.

3 Results and discussion

We applied the foregoing procedures to the Zero Age
Main Sequence models for composition Z = 0.02 from the
EZWeb website. Out results are listed in Table 2, which

1http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web (2011).

lists values of ηj , �j , kj for values of j = 2–7 for repre-
sentative solar-like composition models in the mass range
0.5–10 M�.2

Also, indications coming from the representative poly-
tropic indices n are borne out by the general trend of in-
creasing n, associated with the radiative envelopes of the
outer parts of more massive stars. For the low mass stars the
opposite holds (see also Fig. 2). However, there is some re-
versal of this trend at the highest masses. This is shown in
Fig. 1, and it is also reflected in the comparisons of Table 1.

The constants kj , often considered in the context of stud-
ies of the apsidal motion of eccentric close binary systems,
decrease with increasing j values (Claret and Gimenez
2010). In fact, practical comparisons, in such studies, can
usually only be directed to some mean value (of both com-
ponents) for the second harmonic coefficient k̄2. Our prelim-
inary results support the trend of values of k̄2 of Claret and
Gimenez (2010), although we have not studied the effects of
evolution, composition or internal structural variations as-
sociated with more detailed modeling. Some small apparent
discrepancies between our results and those of Claret and
Gimenez (2010) are of interest and should be checked fur-
ther, as well as taking into account more critical recent ap-
praisals of the solar composition.

On the other hand, all ηj are involved separately, for ei-
ther component, in the specification of the main tidal and
rotational distortions through the coefficients �j appearing
in the formulae for the photometric effects of proximity for

2We are grateful to a referee for pointing out that the solar metallicity
value has been substantially revised in the last decade. According to
the critical compilation of Asplund et al. (2009) and also Grevesse et
al. (2010) Z� = 0.0134 gives a much better representation.

http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web
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close binary stars (cf. e.g. Kopal 1959). Such formulae spec-
ify photometric variations arising from ‘ellipticity’ (tidal
and rotational) effects that depend on, in addition to a num-
ber of separate parameters (ai ), factored by the relative lu-
minosity of either component Lk , the coefficients �j . Typi-
cal treatment proceeds to the fifth order in the relative radii
r1,2. Although the effect of tides on tides is neglected in such
‘first-order’ approximations (as with the Roche models), the
main contributions from finite density envelope structure are
self-consistently included (unlike with the Roche models).
Fast and robust curve-fitting programs that analyze for such
effect are discussed elsewhere (cf. Budding and Demircan
2007). These are likely to have increasing importance with
the growth of significantly improved photometric accuracies
in the post-Kepler Mission era when light curves of mmag
accuracy or better are expected. The proximity effects con-
sidered here are typically of order 0.1 mag in the majority of
normal eclipsing binary light curves. The above table shows
that stellar type dependent structural variations affecting the
principle terms of the ellipticity variation become significant
at the 1 % level, i.e. ∼0.001 mag, and therefore will require
attention in this context.
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