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1. INTRODUCTION AND MAIN RESULTS

Let p(·) : [0, 2π]→ [1,∞) be a Lebesgue measurable function. We define
the modular functional

ρp(·) (f) :=

∫ 2π

0
|f (x)|p(x) dx

on the Lebesgue measurable functions f on [0, 2π]. By L
p(·)
2π we denote the

class of 2π periodic Lebesgue measurable functions f , such that for a constant
λ = λ (f) > 0

ρp(·) (f/λ) <∞.

Equipped with the norm

‖f‖p(·) := inf
{
λ > 0 : ρp(·) (f/λ) ≤ 1

}
the class L

p(·)
2π creates a Banach space.

The variable exponent Lebesgue spaces are a generalization of the classical
Lebesgue spaces, replacing the constant exponent p with a variable exponent
function p(·). Interest in the variable exponent Lebesgue spaces has increased
since 1990s, because of their use in the different applications to problems in
mechanic, especially in fluid dynamic for the modeling of electrorheological
fluids and also in the study of image processing and some problems in physics
(see, for example the monographs [4, 5, 14] and the references cited therein).
Nowadays there are sufficiently wide investigations relating to the fundamen-
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tal problems of these spaces, in view of potential theory, maximal and singular
integral operator theory and others. The sufficiently wide presentation of the
corresponding results can be found in the monographs [4, 5, 14].

In the variable exponent Lebesgue spaces some fundamental problems of
approximation theory were investigated also. Some necessary and sufficient
conditions in term of the variable exponent for the basicity of the well known
classical systems of functions were obtained [15, 16], the different modulus of
smoothness were defined [7, 8, 17] and the direct and inverse theorems of ap-
proximation theory in these spaces defined on the intervals of the real line and
on the domains of the complex plane were proved [1–3, 7–9, 17]. The detailed
information on these results and also on the general aspects of approximation
theory in the variable exponent Lebesgue spaces can be found in the mono-
graph [18].

Note that in the variable exponent Lebesgue space theory some convolu-
tion operators were commonly used. This type of operators have some applica-
tions also in the approximation theory, in particular for the construction of the
approximation polynomials. Therefore, the estimation problem of convolution
operators by using the best approximation numbers is an actual problem of ap-
proximation theory. In this work, we investigate this problem in the variable
exponent Lebesgue spaces. For the formulation of the main results obtained
in this work we give some notations.

By β2π we denote the class of the exponents p (·), for which 1 < p− ≤
p+ <∞, where

p− := essinf
x∈[0,2π]

p (x) , and p+ := essup
x∈[0,2π]

p (x) .

Definition 1. Let p(·) : [0, 2π] → [1,∞) be a 2π periodic, measurable
function. We say that p(·) is a log-Holder continuous function on [0, 2π] if

(1.1) |p (x)− p (y)| ≤ c0
− log (|x− y|)

, x, y ∈ [0, 2π] with |x− y| ≤ 1/2

with some constant c0 > 0.
If p(·) ∈ β2π and satisfies the condition (1.1), then we say that p(·) ∈ β̂2π.

In the space L
p(·)
2π with p(·) ∈ β̂2π we define a mean value operator σh

(σhf) (x, u) :=
1

2h

∫ h

−h
f (x+ tu) dt, 0 < h < π, x ∈ [0, π] , −∞ < u <∞,

which is linear and bounded by [6], moreover ‖(σhf)‖p(·) ≤ c1 ‖f‖p(·) for some
constant c1 > 0.

For f ∈ Lp(·)2π we define also the best approximation number

En (f)p(·) := inf
Tn
‖f − Tn‖p(·)
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by trigonometric polynomials

Tn (x) =
n∑
k=0

cke
ikx

of degree at most n and by T ∗n the best approximation trigonometric polynomial
of degree ≤ n, such that

‖f − T ∗n‖p(·) = En (f)p(·) .

Let f ∈ Lp(·)2π . We define a convolution type operator∫ ∞
−∞

(σhf) (·, u) dσ (u)

with a bounded variation function σ (u) on the real line R and denote

D (f, σ, h, p (·)) :=

∥∥∥∥∫ ∞
−∞

(σhf) (·, u) dσ (u)

∥∥∥∥
p(·)

.

In this work, we estimate the quantity D (f, σ, h, p (·)) using the best
approximation number En (f)p(·).

Our new results are following:

Theorem 1. If f ∈ Lp(·)2π with p(·) ∈ß̂2π, then

D (f, σ, h, p (·)) ≤ c
m∑
k=0

E2k−1 (f)p(·) δ2k,h + cp(·)E2m+1 (f)p(·)

for every m ∈ N, where

δ2k,h : =
2k+1−1∑
l=2k

|σ̂ (lh)− σ̂ ((l + 1)h)|+
∣∣∣σ̂ (2kh

)∣∣∣ ,
σ̂ (x) : =

∫ ∞
−∞

sin (ux)

ux
dσ (u) , 0 < h < π.

Theorem 2. Let f ∈ Lp(·)2π with p(·) ∈ß̂2πp(·) and let F (x) be a function
with bounded variation, i.e.

‖F (x)‖ ≤ c1,

2µ+1−1∑
θ=2µ

|F (θh)− F ((θ + 1)h)| ≤ c2, h ≤ 2−m−1.

If σ1 and σ2 are two functions satisfying the condition

σ̂1 (x) = σ̂2 (x)F (x) , |x| < 1,

then
D (f, σ1, h, p(·)) = c

[
D (f, σ2, h, p(·)) + E2m+1 (f)p(·)

]
.
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Using the usual shift f(x+ t) in the definition of the convolution operator
Theorems 1 and 2 in the Orlicz spaces were proved in [13]. In the weighted
Orlicz spaces in term of the mean value operator (σhf) (x, u), Theorems 1 and
2 were obtained in [10]. We also use this operator in the variable exponent

spaces L
p(·)
2π , because L

p(·)
2π in general is non invariant with respect to the usual

shift f(x+ t).

Throughout this paper, the constant c denotes a generic constant, i.e.
a constant whose values can change even between different occurrences in a
chain of inequalities.

2. AUXILIARY RESULTS

As was proved in [15], if p (·) ∈ ß̂2π, then the system
{
eikx

}
k∈Z of expo-

nents greats a base in the space L
p(·)
2π , which is equivalent to the inequality

‖Sn (f)‖p(·) ≤ cp(·) ‖f‖p(·) (n = 0, 1, 2, ...) ,

where

Sn (f) (x) :=

n∑
k=−n

f̂k (x) eikx

is the nth partial sum of the Fourier series

∞∑
k=1

f̂ke
ikx ; f̂k (x) =

1

2π

∫ 2π

0
f (y) e−ikydy

of f . This inequality implies the following

Lemma 1. If f ∈ Lp(·)2π with p(·) ∈ß̂2π, then

‖f − Snf‖p(·) ≤ cEn (f)p(·) .

Proof.

‖f − Snf‖p(·) ≤ ‖f − Tn‖p(·) + ‖Snf − Tn‖p(·)
≤ En (f)p(·) + ‖Sn (f − Tn)‖p(·)
≤ En (f)p(·) + c ‖(f − Tn)‖p(·)
≤ c1En (f)p(·)

with some constant c1=c1(p)¿ 0. �

The proofs of the following two Theorems A and B can be found in [4,
p. 27, Theorem 2.26] and [18, p. 39, Theorem 1.6.5], respectively.
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Theorem A. Let p : [0, 2π] → [1,∞) be a 2π periodic, measurable func-

tion. If f ∈ Lp(·)2π and g ∈ Lp
′(·)

2π , where 1/p (·) + 1/p
′
(·) = 1, then fg ∈ L1

2π

and ∫ .2π

0
|f (x) g (x)|dx ≤ Kp(·) ‖f‖p(·) ‖g‖p′(·)

with

Kp(·) = 1/p− − 1/p+ + 1.

Theorem B. Let p (·) : [0, 2π]→ [1,∞) and let f : [0, 2π]× [0, 2π]→ R
be a measurable function and f (·, y) ∈ Lp(·)2π for every y ∈ [0, 2π]. Then∥∥∥∥∥∥

2π∫
0

f (·, y) dy

∥∥∥∥∥∥
p(·)

≤ c
2π∫
0

‖f (·, y)‖p(·) dy

with some positive constant c = cp(·).

Theorem C ([6]). If f ∈ Lp(·)2π with p(·) ∈ß̂2π, then the maximal operator

M (f) (x) := sup
I� x

1

|I|

∫
I
|f (t)|dt

is bounded in L
p(·)
2π and

‖Mf‖p(·) ≤ c ‖f‖p(·)
with some constant c = cp(·) > 0.

Theorem CF ([4, p. 212]). Let = be a family of pairs (f, g) of non-
negative, measurable function f and g defined on (0, 2π) such that for all
ω ∈ Ap0(0, 2π) with some p0 ≥ 1

2π∫
0

fp0 (x)ω (x) dx ≤ c
2π∫
0

gp0 (x)ω (x) dx, (f, g) ∈ =,

where a constant c independent of (f, g). If p(·) ∈ß̂2π, then for every r,
1 < r <∞, and sequence {(fi, gi)} ⊂ =∥∥∥∥∥∥

(∑
i

f ri

)1/r
∥∥∥∥∥∥
p(·)

≤ cp(·)

∥∥∥∥∥∥
(∑

i

gri

)1/r
∥∥∥∥∥∥
p(·)

.
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Lemma 2 ([11]). Let f ∈ L
p(·)
2π with p (·) ∈ß̂2π. If Al (x) = eilxf̂l and

A2−1 (x) = 0, l = 0, 1, 2, ..., then

c1 ‖f‖p(·)≤

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣∣∣∣∣
2j−1∑
l=2j−1

Al(x)

∣∣∣∣∣∣
21/2

∥∥∥∥∥∥∥
p(·)

≤ c2 ‖f‖p(·) .

Lemma 3. Let {fn}∞1 be a sequence of functions fn∈Lp(·)2π with p (·) ∈ß̂2π

and let Sn,kn be the kth partial sum of fn with k = kn. Then

(2.1)

∥∥∥∥∥∥
( ∞∑
n=1

|Sn,kn (x)|2
)1/2

∥∥∥∥∥∥
p(·)

≤ c

∥∥∥∥∥∥
( ∞∑
n=1

|fn (x)|2
)1/2

∥∥∥∥∥∥
p(·)

with some constant c > 0 independent of fn.p

Proof. The inequality (2.1) is a consequence of the extrapolation Theo-
rem CF (for the case of r = 2, gi := fi and fi := |Si,ki (x)|, i = 1, 2, ..., )
and of the norm inequality, proved by Kurtz in [12] in the weighted Lebesgue
spaces Lpω.

Let L∞comp be the set of all bounded functions with compact support on
[0, 2π]and let {fn}∞1 be a sequence in L∞comp. If

f (x) :=

( ∞∑
n=1

|fn (x)|2
)1/2

and Tf (x) :=

( ∞∑
n=1

|Sn,kn (x)|2
)1/2

,

then by [12] for a number p0 with 1 < p0 <∞ there is a constant c such that
for all weight ω ∈ Ap0

‖Tf‖p0,ω ≤ c ‖f‖p0,ω .

Hence the conditions of the above cited extrapolation Theorem CF are fulfilled
which implies the inequality (2.1) for the sequence in {fn}∞1 from L∞comp. Since

the set L∞comp is dense in L
p(·)
2π the inequality (2.1) is also valid for all sequences

{fn}∞1 from L
p(·)
2π . �

Theorem D. Let λ0, λ1, ... be a sequence of the numbers such that

(2.2) |λl| ≤M ,

2l+1−1∑
υ=2l

|λυ − λυ+1| ≤M (l = 0, 1, 2, ...) .

If p (·) ∈ß̂2π and aυ, bυ be the Fourier coefficients of f ∈ Lp(·)2π , then the series

a0λ0/2 +

∞∑
υ=1

λυ (aυ cos υx+ bυ sin υx)
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is the Fourier series of function F ∈ Lp(·)2π and

‖F‖p(·) ≤ c ‖f‖p(·)

with some constant c = cp(·) > 0 independent of f .

Proof. Let for s > 2µ−1, µ = 1, 2, ...,

∆µ,s : =

s∑
υ=2µ−1

Aυ (x) , Aυ (x) := aυ cos υx+ bυ sin υx

∆µ : =
2µ−1∑
υ=2µ−1

Aυ (x) and ∆
′
µ :=

2µ−1∑
υ=2µ−1

λυAυ (x) .

As in [19, p. 347] we have the estimation

∣∣∣∆′µ∣∣∣2 ≤ 2M

(
2µ−1∑
s=2µ−1

|∆µ,s|2 |λs − λs+1|+ |∆µ|2 |λ2µ |

)
.

Since p (x) ≤ p+ by Lemma 3 and (2.2)

ρp(·)


 ∞∑
µ=1

∣∣∣∆′µ∣∣∣2
1/2

 =

∫ 2π

0

 ∞∑
µ=1

∣∣∣∆′µ∣∣∣2
p(x)/2

dx

≤
∫ 2π

0

 ∞∑
µ=1

2M

(
2µ−1∑
s=2µ−1

|∆µ,s|2 |λs − λs+1|+ |∆µ|2 |λ2µ |

)p(x)/2

dx

=

∫ 2π

0
(2M)p(x)/2

 ∞∑
µ=1

(
2µ−1∑
s=2µ−1

|∆µ,s|2 |λs − λs+1|+ |∆µ|2 |λ2µ |

)p(x)/2

dx

≤ c
∫ 2π

0
(2M)p(x)/2

 ∞∑
µ=1

|∆µ|2
(

2µ−1∑
s=2µ−1

|λs − λs+1|+ |λ2µ |

)p(x)/2

dx

≤ c
∫ 2π

0
(2M)p+

 ∞∑
µ=1

|∆µ|2
p(x)/2

dx ≤ c3
∫ 2π

0

 ∞∑
µ=1

|∆µ|2
p(x)/2

dx

= c3ρp(·)


 ∞∑
µ=1

|∆µ|2
1/2

 ,
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which by Lemma 2 implies that

‖F‖p(·) ≤

∥∥∥∥∥∥∥
 ∞∑
µ=1

∣∣∣∆′µ∣∣∣2
1/2

∥∥∥∥∥∥∥
p(·)

≤ c3

∥∥∥∥∥∥∥
 ∞∑
µ=1

|∆µ|2
1/2

∥∥∥∥∥∥∥
p(·)

≤ c4 ‖f‖p(·) . �

3. PROOFS OF MAIN RESULTS

Proof of Theorem 1. Let f ∈ Lp(·)2π , m ∈ N and let S2m+1 be the 2m+1th
partial sum of its Fourier series.

Let also h ≤ 2−m−1. Then

D (f, σ, h, p(·)) ≤
∥∥∥∥∫ ∞
−∞

[(σhf) (x, u)− (σhS2m+1f) (x, u)]dσ (u)

∥∥∥∥
p(·)

+

∥∥∥∥∫ ∞
−∞

(σhS2m+1f) (x, u)]dσ (u)

∥∥∥∥
p(·)

.(3.1)

By applying Theorems B and C and Lemma 1 in the first term, we have∥∥∥∥∫ ∞
−∞

[(σhf) (x, u)− (σhS2m+1f) (x, u)]dσ (u)

∥∥∥∥
p(·)

≤ Kp(·)

∫ ∞
−∞
‖(σhf) (·, u)− (σhS2m+1f) (·, u)‖p(·) dσ (u)

= Kp(·)

∫ ∞
−∞
‖(σh(f − S2m+1f)) (·, u) ‖p(·) dσ (u)

≤ c5Kp(·)

∫ ∞
−∞
‖f − S2m+1f‖p(·) dσ (u)

≤ c5Kp(·)E2m+1 (f)p(·)

∫ ∞
−∞

dσ (u) ≤ c6E2m+1 (f)p(·) .

Without loss of generality, we suppose that the Fourier series of f is
∞∑
k=1

Âk (x) :=

∞∑
k=1

f̂ke
ikx.

Then ∫ ∞
−∞

(σhS2m+1f) (x, u) dσ (u)
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=

∫ ∞
−∞

[
1

2h

∫ h

−h
S2m+1f (x+ tu) dt]dσ (u)

=

∫ ∞
−∞

[
1

2h

∫ h

−h

2m+1−1∑
k=1

f̂ke
ik(x+tu)dt]dσ (u)

=

∫ ∞
−∞

[
1

2h

2m+1−1∑
k=1

f̂ke
ikx

∫ h

−h
eiktudt]dσ (u)

=

∫ ∞
−∞

[
1

2h

2m+1−1∑
k=1

Âk (x)

∫ h

−h
eiktudt]dσ (u)

=

2m+1−1∑
k=1

Âk (x)

∫ ∞
−∞

eikhu − e−ikhu

2ikhu
dσ (u)

=

2m+1−1∑
k=1

Âk (x) σ̂ (kh) ,(3.2)

and hence by (3.2) and (3.1)

(3.3) D (f, σ, h, p(·)) ≤

∥∥∥∥∥∥
2m+1−1∑
k=1

Âk (x) σ̂ (kh)

∥∥∥∥∥∥
p(·)

+ c6E2m+1 (f)p(·) .

Now, by inequality (a+ b)p < ap + bp, which holds for every positive numbers
a and b in the case of 0 < p < 1 and by Lemma 2∥∥∥∥∥∥

2m+1−1∑
k=1

Âk (x) σ̂ (kh)

∥∥∥∥∥∥
p(·)

≤ c

∥∥∥∥∥∥∥
 m∑
k=0

∣∣∣∣∣∣
2k+1−1∑
l=2k

Âl (x) σ̂ (lh)

∣∣∣∣∣∣
21/2

∥∥∥∥∥∥∥
p(·)

: = c

∥∥∥∥∥∥
(

m∑
k=0

∆2
k,σ

)1/2
∥∥∥∥∥∥
p(·)

< c

∥∥∥∥∥
m∑
k=0

∆k,σ

∥∥∥∥∥
p(·)

≤ c
m∑
k=0

‖∆k,σ‖p(·) .
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On the other hand, applying the Abel transformation to the sum

∆k,σ =

2k+1−1∑
l=2k

Âl (x) σ̂ (lh)

we have

∆k,σ =

2k+1−1∑
l=2k

[
Sl (f, x)− S2k+1−1 (f, x)

]
[σ̂ (lh)− σ̂ ((l + 1)h)]

+
[
S2k+1−1 (f, x)− S2k−1 (f, x)

]
σ̂
(

2kh
)

and then

‖∆k,σ‖p(·) ≤
2k+1−1∑
l=2k

‖Sl (f)− S2k+1(f)‖p(·) |σ̂ (lh)− σ̂ ((l + 1)h)|

+
∥∥S2k+1−1 (f)− S2k−1 (f)

∥∥
p(·)

∣∣∣σ̂ (2kh
)∣∣∣

= ‖S2k (f)− S2k+1 (f)‖p(·)
∣∣∣σ̂ (2kh

)
− σ̂

((
2k + 1

)
h
)∣∣∣

+...+
∥∥S2k+1 (f)− S2k+1 (f)

∥∥
p(·)

∣∣∣σ̂ ((2k + 1
)
h
)
− σ̂

((
2k + 2

)
h
)∣∣∣

+
∥∥S2k+1−1 (f)− S2k−1 (f)

∥∥
p(·)

∣∣∣σ̂ (2kh
)∣∣∣

≤
[
‖S2k (f)− f‖p(·) + ‖S2k+1 (f)− f‖p(·)

] ∣∣∣σ̂ (2kh
)
− σ̂

((
2k + 1

)
h
)∣∣∣+ ...

+
[∥∥S2k+1 (f)− f

∥∥
p(·) + ‖S2k+1 (f)− f‖p(·)

] ∣∣∣σ̂ ((2k+1 − 1
)
h
)
− σ̂

(
2kh
)∣∣∣

+
[∥∥S2k+1−1 (f)− f

∥∥
p(·) +

∥∥S2k−1 (f)− f
∥∥
p(·)

] ∣∣∣σ̂ (2kh
)∣∣∣

≤ cE2k−1 (f)p(·) δ2k,h.

Hence ∥∥∥∥∥∥
2m+1−1∑
k=1

Âk (x) σ̂ (kh)

∥∥∥∥∥∥
p(·)

≤ c
m∑
r=0

E2k−1(f)p(·)δ2k,h

and by (3.3) we obtain the required inequality. �

Proof of Theorem 2. Let f ∈ Lp(·)2π . Repeating the techniques used for the
estimation of the quantity D (f, σ, h, p(·)) from Theorem 1, we have
(3.4)

D (f, σ1, h, p(·)) ≤
∥∥∥∥∫ ∞
−∞

(σhS2m+1f) (·, u) dσ1 (u)

∥∥∥∥
p(·)

+ cp(·)E2m+1 (f)p(·) .
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On the other by (3.2) and Lemma 1∥∥∥∥∫ ∞
−∞

(σhS2m+1f) (x, u) dσ1 (u)

∥∥∥∥
p(·)

=

∥∥∥∥∥∥
2m+1−1∑
k=1

Âk (x) σ̂1 (kh)

∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥
2m+1−1∑
k=1

Âk (x) σ̂2 (kh)F (kh)

∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥
2m+1−1∑
k=1

f̂ke
ikxσ̂2 (kh)F (kh)

∥∥∥∥∥∥
p(·)

≤ c

∥∥∥∥∥∥
2m+1−1∑
k=1

f̂ke
ikxσ̂2 (kh)

∥∥∥∥∥∥
p(·)

= c

∥∥∥∥∫ ∞
−∞

(σhS2m+1f) (x, u) dσ2 (u)

∥∥∥∥
p(·)

= c

∥∥∥∥∫ ∞
−∞

S2m+1 (σhf) (x, u) dσ2 (u)

∥∥∥∥
p(·)

= c

∥∥∥∥S2m+1

∫ ∞
−∞

(σhf) (x, u) dσ2 (u)

∥∥∥∥
p(·)
≤
∥∥∥∥∫ ∞
−∞

σhf (x, u) dσ2 (u)

∥∥∥∥
p(·)

.

The last inequality together with (3.4) implies the required relation. �
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