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1. Introduction

A non-flat n-dimensional Riemannian manifold ðM; gÞ is said to be quasi Einstein [1] if its Ricci tensor S satisfies
SðX;YÞ ¼ agðX;YÞ þ bgðXÞgðYÞ; X; Y 2 TM ð1:1Þ
for some smooth functions a and b 6¼ 0, where g is a nonzero 1-form such that
gðX; nÞ ¼ gðXÞ; gðn; nÞ ¼ gðnÞ ¼ 1 ð1:2Þ
for the associated vector field n. The 1-form g is called the associated 1-form and the unit vector field n is called the generator
of the manifold. For more details about quasi Einstein manifolds see also [2–7,9]. Quasi Einstein manifolds arose during the
study of exact solutions of the Einstein field equations. There are many studies about Einstein field equations. For example, in
[11], El Naschie turned the tables on the theory of elementary particles and showed that we could derive the expectation
number of elementary particles of the standard model using Einstein’s unified field equation or more precisely his somewhat
forgotten strength criteria directly and without resorting to quantum field theory [8]. In [10], possible connections between
Gödel’s classical solution of Einstein’s field equations and E-infinity were discussed.

If the generator n belongs to some k-nullity distribution NðkÞ then the quasi Einstein manifold is called an NðkÞ-quasi Ein-
stein manifold [15]. In [15], it was shown that an n-dimensional conformally flat quasi Einstein manifold is an N aþb

n�1

� �
-quasi

Einstein manifold and in particular a 3-dimensional quasi Einstein manifold is an N aþb
2

� �
-quasi Einstein manifold. In [13], it

was proved that in an n-dimensional NðkÞ-quasi Einstein manifold k ¼ aþb
n�1. In [7], De, Sengupta and Saha studied conformally

flat and semisymmetric quasi Einstein manifolds. Motivated by the above studies, in this study, we consider NðkÞ-quasi Ein-
stein manifolds satisfying the conditions Rðn;XÞ �P ¼ 0;Pðn;XÞ � S ¼ 0 and Pðn;XÞ �P ¼ 0, where P denotes the projective
curvature tensor. We also present physical examples of NðkÞ-quasi Einstein manifolds. The paper is organized as follows:
In Section 2, we give basic definitions and notions for an NðkÞ-quasi Einstein manifold. In Section 3, we construct examples
of NðkÞ-quasi Einstein space–times. In Section 4, we consider NðkÞ-quasi Einstein manifolds satisfying the conditions
Rðn;XÞ �P ¼ 0;Pðn;XÞ � S ¼ 0 and Pðn;XÞ �P ¼ 0.
. All rights reserved.
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2. NðkÞ-quasi Einstein manifolds

The Ricci operator Q of a Riemannian manifold ðM; gÞ is defined by
SðX;YÞ ¼ gðQX;YÞ:
For a quasi Einstein manifold [1] the Ricci operator Q satisfies
Q ¼ aI þ bg� n: ð2:1Þ
From (2.1) and (1.2) it follows that
SðX; nÞ ¼ ðaþ bÞgðXÞ; ð2:2Þ
r ¼ naþ b; ð2:3Þ
where r is the scalar curvature of M.
Let R denote the Riemannian curvature tensor of a Riemannian manifold M. The k-nullity distribution NðkÞ [14] of a Rie-

mannian manifold M is defined by
NðkÞ : p! NpðkÞ ¼ fU 2 TpMjRðX;YÞU ¼ kðgðY;UÞX � gðX;UÞYÞg
for all X;Y 2 TM, where k is some smooth function. In a quasi Einstein manifold M, if the generator n belongs to some k-nul-
lity distribution NðkÞ, then M is said to be an NðkÞ-quasi Einstein manifold [15]. In fact, k is not arbitrary as the following:

Lemma 2.1 [13]. In an n-dimensional NðkÞ-quasi Einstein manifold it follows that
k ¼ aþ b
n� 1

: ð2:4Þ
Now, it is immediate to note that in an n-dimensional NðkÞ-quasi Einstein manifold (see [13])
RðX;YÞn ¼ aþ b
n� 1

fgðYÞX � gðXÞYg; ð2:5Þ
which is equivalent to
RðX; nÞY ¼ aþ b
n� 1

fgðYÞX � gðX;YÞng ¼ �Rðn;XÞY: ð2:6Þ
From (2.5) we get
Rðn;XÞn ¼ aþ b
n� 1

fgðXÞn� Xg: ð2:7Þ
3. Physical examples of NðkÞ-quasi Einstein manifolds

In [15], Tripathi and Kim proved that an n-dimensional conformally flat quasi Einstein manifold is an NðkÞ-quasi Einstein
manifold. Now we consider a conformally flat perfect fluid space–time ðM4; gÞ satisfying Einstein’s equation without cosmo-
logical constant. Further, let n be the unit time-like velocity vector of the fluid. It is known that Einstein’s equation without
cosmological constant can be written as (see [12])
SðX;YÞ � 1
2

rgðX;YÞ ¼ jTðX;YÞ; ð3:1Þ
where j is the gravitational constant and T is the energy momentum tensor of type (0,2). In the present case (3.1) can be
written as follows:
SðX;YÞ � 1
2

rgðX;YÞ ¼ j½ðrþ pÞgðXÞgðYÞ þ pgðX;YÞ�;
where r is the energy density and p is the isotropic pressure of the fluid. Then we have (see [12])
SðX;YÞ ¼ jpþ 1
2

r
� �

gðX;YÞ þ jðrþ pÞgðXÞgðYÞ: ð3:2Þ
Since the space–time is conformally flat, by [15], it is NðkÞ-quasi Einstein. From (3.2), by a contraction we get
r ¼ jðr� 3pÞ:
Hence the Eq. (3.2) can be written as
SðX;YÞ ¼ j
2
ðr� pÞ

� �
gðX;YÞ þ jðrþ pÞgðXÞgðYÞ:
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So from (1.1) we have
a ¼ j
2
ðr� pÞ
and
b ¼ jðrþ pÞ:
In view of (2.4), since k ¼ aþb
3 we obtain
k ¼ jð3rþ pÞ
6

:

Hence we can state the following example:

Example 3.1. A conformally flat perfect fluid space–time ðM4; gÞ satisfying Einstein’s equation without cosmological
constant is an N jð3rþpÞ

6

� �
-quasi Einstein manifold.

Now we consider a perfect fluid space–time ðM4; gÞ satisfying Einstein’s equation with cosmological constant. Then Ein-
stein’s equation can be written as
SðX;YÞ � 1
2

rgðX;YÞ þ kgðX;YÞ ¼ j½ðrþ pÞgðXÞgðYÞ þ pgðX;YÞ�;
which gives us
SðX;YÞ ¼ 1
2

r � kþ pj

� �
gðX;YÞ þ jðrþ pÞgðXÞgðYÞ: ð3:3Þ
So from (3.3), by a contraction, we get
r ¼ 4kþ jðr� 3pÞ:
Hence the Eq. (3.3) turns into
SðX;YÞ ¼ kþ j
2
ðr� pÞ

� �
gðX;YÞ þ jðrþ pÞgðXÞgðYÞ:
Then from (1.1) we have
a ¼ kþ j
2
ðr� pÞ
and
b ¼ jðrþ pÞ:
In view of (2.4), since k ¼ aþb
3 we obtain
k ¼ k
3
þ jð3rþ pÞ

6
:

So as a generalization of Example 3.1, we obtain the following example.

Example 3.2. A conformally flat perfect fluid space–time ðM4; gÞ satisfying Einstein’s equation with cosmological constant is

an N k
3þ

jð3rþpÞ
6

� �
-quasi Einstein manifold.
4. The projective curvature tensor of an NðkÞ-quasi Einstein manifold

The projective curvature tensor P in an n-dimensional Riemannian manifold ðM; gÞ is defined by (see [16])
PðX;YÞZ ¼ RðX;YÞZ � 1
n� 1

fSðY ; ZÞX � SðX; ZÞYg ð4:1Þ
for all vector fields X;Y; Z on M.
Now, we prove the following Proposition for later use.

Proposition 4.1. In an n-dimensional NðkÞ-quasi Einstein manifold M, the projective curvature tensor P satisfies
PðX;YÞn ¼ 0; ð4:2Þ

Pðn;XÞY ¼ b
n� 1

fgðX;YÞn� gðXÞgðYÞng; ð4:3Þ

gðPðX;YÞZÞ ¼ b
n� 1

fgðY ; ZÞgðXÞ � gðX; ZÞgðYÞg ð4:4Þ
for all vector fields X;Y ; Z on M.
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Proof. From (2.2), (4.1), (2.5) and (2.6) the Eqs. (4.2)–(4.4) follow easily. h

Theorem 4.2. Let M be an n-dimensional NðkÞ-quasi Einstein manifold. Then M satisfies the condition Rðn;XÞ �P ¼ 0 if and only if
aþ b ¼ 0.

Proof. Let M be an n-dimensional NðkÞ-quasi Einstein manifold. Since M satisfies the condition Rðn;XÞ �P ¼ 0 we can write
0 ¼ Rðn;XÞPðY; ZÞW �PðRðn;XÞY; ZÞW �PðY;Rðn;XÞZÞW �PðY; ZÞRðn;XÞW
for all vector fields X;Y; Z;W on M. So from (2.6) we get
0 ¼ aþ b
n� 1

fPðY ; Z;W;XÞn� gðPðY ; ZÞWÞX � gðX;YÞPðn; ZÞW þ gðYÞPðX; ZÞW � gðX; ZÞPðY ; nÞW þ gðZÞPðY ;XÞW

� gðX;WÞPðY; ZÞnþ gðWÞPðY; ZÞXg;
which implies either aþ b ¼ 0 or
0 ¼ PðY ; Z;W;XÞn� gðPðY; ZÞWÞX � gðX;YÞPðn; ZÞW þ gðYÞPðX; ZÞW � gðX; ZÞPðY; nÞW þ gðZÞPðY;XÞW
� gðX;WÞPðY; ZÞnþ gðWÞPðY; ZÞX ð4:5Þ
holds on M, where PðY ; Z;W;XÞ ¼ gðPðY; ZÞW;XÞ. Taking the inner product of both sides of (4.5) with n we have
0 ¼ PðY ; Z;W;XÞ � gðPðY ; ZÞWÞgðXÞ � gðX;YÞgðPðn; ZÞWÞ þ gðYÞgðPðX; ZÞWÞ � gðX; ZÞgðPðY ; nÞWÞ
þ gðZÞgðPðY;XÞWÞ � gðX;WÞgðPðY; ZÞnÞ þ gðWÞgðPðY; ZÞXÞ: ð4:6Þ
Hence in view of (4.2)–(4.4) the Eq. (4.6) is reduced to
0 ¼ PðY ; Z;W;XÞ þ b
n� 1

fgðX; ZÞgðY ;WÞ � gðX;YÞgðZ;WÞg:
Then by the use of (4.1) we obtain
0 ¼ RðY; Z;W;XÞ � 1
n� 1

fSðZ;WÞgðX;YÞ � SðY ;WÞgðX; ZÞg þ b
n� 1

fgðX; ZÞgðY;WÞ � gðX;YÞgðZ;WÞg: ð4:7Þ
So by a suitable contraction of (4.7) we get
bgðZ;WÞ ¼ 0;
which gives us b ¼ 0. This contradicts to our assumption that M is an NðkÞ-quasi Einstein manifold. The converse statement is
trivial. This completes the proof of the theorem. h

Next, we have the following theorem.

Theorem 4.3. Let M be an n-dimensional NðkÞ-quasi Einstein manifold. Then M satisfies the condition Pðn;XÞ � S ¼ 0 if and only if
aþ b ¼ 0.

Proof. From the condition Pðn;XÞ � S ¼ 0, we get
SðPðn;XÞY; ZÞ þ SðY;Pðn;XÞZÞ ¼ 0;
which in view of (4.3) gives
0 ¼ b
n� 1

fgðX;YÞSðn; ZÞ � gðXÞgðYÞSðn; ZÞ þ gðX; ZÞSðY ; nÞ � gðXÞgðZÞSðY ; nÞg:
Since b 6¼ 0, using (2.2) we have
0 ¼ ðaþ bÞfgðX;YÞgðZÞ þ gðX; ZÞgðYÞ � 2gðXÞgðYÞgðZÞg: ð4:8Þ
From (4.8), by a contraction, we get
ðn� 1Þðaþ bÞ ¼ 0;
which gives us aþ b ¼ 0. The converse statement is trivial. Our theorem is thus proved. h

So by Theorem 2 in [7], Theorem 3.3 in [15], Theorem 4.2 and Theorem 4.3 we state the following corollary.

Corollary 4.4. Let M be an n-dimensional NðkÞ-quasi Einstein manifold. Then the following statements are equivalent:

(i) Rðn;XÞ �R ¼ 0
(ii) Rðn;XÞ �P ¼ 0

(iii) Pðn;XÞ � S ¼ 0
(iv) aþ b ¼ 0

for every vector field X on M.
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Theorem 4.5. There is no NðkÞ-quasi Einstein manifold satisfying Pðn;XÞ �P ¼ 0.

Proof. From the condition Pðn;XÞ �P ¼ 0 we can write
0 ¼ Pðn;XÞPðY; ZÞW �PðPðn;XÞY; ZÞW �PðY;Pðn;XÞZÞW �PðY; ZÞPðn;XÞW:
So from (4.3) we have
0 ¼ b
n� 1

fPðY ; Z;W;XÞn� gðXÞgðPðY ; ZÞWÞn� gðX;YÞPðn; ZÞW þ gðXÞgðYÞPðn; ZÞW � gðX; ZÞPðY; nÞW

þ gðXÞgðZÞPðY; nÞW � gðX;WÞPðY ; ZÞnþ gðXÞgðWÞPðY ; ZÞng: ð4:9Þ
Since b 6¼ 0 taking the inner product of (4.9) by n, in view of (4.2)–(4.4) we get
0 ¼ PðY; Z;W;XÞ � b
n� 1

fgðZ;WÞgðX;YÞ � gðX;YÞgðZÞgðWÞ þ gðX; ZÞgðYÞgðWÞ � gðX; ZÞgðY ;WÞg: ð4:10Þ
So by the use of (4.1) the last equation turns into
0 ¼ RðY ; Z;W;XÞ � 1
n� 1

fSðZ;WÞgðX;YÞ � SðY ;WÞgðX; ZÞg � b
n� 1

fgðZ;WÞgðX;YÞ � gðX;YÞgðZÞgðWÞ þ gðX; ZÞgðYÞgðWÞ

� gðX; ZÞgðY ;WÞg:
From the last equation by a contraction one can easily get
bðgðZ;WÞ � gðZÞgðWÞÞ ¼ 0:
Since M is not an Einstein manifold this is not possible. This completes the proof of the theorem. h
5. Conclusions

Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field equations. In the present paper, we
consider an NðkÞ-quasi Einstein manifold, which is a special class of a quasi Einstein manifold. Examples of NðkÞ-quasi Ein-
stein manifolds are given as perfect fluid space–times. We have proved that if an NðkÞ-quasi Einstein manifold satisfies the
condition Rðn;XÞ �P ¼ 0 or Pðn;XÞ � S ¼ 0 then the sum of the associated scalars is zero. We also show that there is no NðkÞ-
quasi Einstein manifold satisfying Pðn;XÞ �P ¼ 0.
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