See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/243118478](https://www.researchgate.net/publication/243118478_Multiplier_theorems_in_weighted_smirnov_spaces?enrichId=rgreq-c7a18dc235378d8c2a72dea84287c4dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MzExODQ3ODtBUzoxMDMyNTg2ODkzNzYyNjZAMTQwMTYzMDE5OTA2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Multiplier theorems in weighted smirnov spaces](https://www.researchgate.net/publication/243118478_Multiplier_theorems_in_weighted_smirnov_spaces?enrichId=rgreq-c7a18dc235378d8c2a72dea84287c4dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MzExODQ3ODtBUzoxMDMyNTg2ODkzNzYyNjZAMTQwMTYzMDE5OTA2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf)

Article in Journal of the Korean Mathematical Society · November 2008 DOI: 10.4134/JKMS.2008.45.6.1535

Proj

Approximation in Variable Lebesgue and Smirnov Spaces [View project](https://www.researchgate.net/project/Approximation-in-Variable-Lebesgue-and-Smirnov-Spaces?enrichId=rgreq-c7a18dc235378d8c2a72dea84287c4dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MzExODQ3ODtBUzoxMDMyNTg2ODkzNzYyNjZAMTQwMTYzMDE5OTA2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf)

J. Korean Math. Soc. 45 (2008), No. 6, pp. 1535–1548

MULTIPLIER THEOREMS IN WEIGHTED SMIRNOV SPACES

Ali Guven and Daniyal M. Israfilov

Reprinted from the Journal of the Korean Mathematical Society Vol. 45, No. 6, November 2008

°c 2008 The Korean Mathematical Society

MULTIPLIER THEOREMS IN WEIGHTED SMIRNOV SPACES

Ali Guven and Daniyal M. Israfilov

Abstract. The analogues of Marcinkiewicz multiplier theorem and Littlewood-Paley theorem are proved for p-Faber series in weighted Smirnov spaces defined on bounded and unbounded components of a rectifiable Jordan curve.

1. Introduction and the main results

Let Γ be a rectifiable Jordan curve in the complex plane $\mathbb C$, and let $G := \text{Int}\Gamma$, $G^- := \text{Ext}\Gamma$. Without loss of generality we assume that $0 \in G$. Let also

$$
\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}, \quad \mathbb{T} := \partial \mathbb{D}, \quad \mathbb{D}^- := \mathbb{C} \backslash \overline{\mathbb{D}}.
$$

We denote by φ and φ_1 the conformal mappings of G^- and G onto \mathbb{D}^- , respectively, normalized by

$$
\varphi(\infty) = \infty, \quad \lim_{z \to \infty} \frac{\varphi(z)}{z} > 0
$$

and

$$
\varphi_1(0) = \infty, \quad \lim_{z \to 0} z \varphi_1(z) > 0.
$$

The inverse mappings of φ and φ_1 will be denoted by ψ and ψ_1 , respectively. Let $1 \leq p < \infty$. A function f is said to belongs to the Smirnov space $E_p(G)$ if it is analytic in G and satisfies

$$
\sup_{0\leq r<1}\int\limits_{\Gamma_r}|f(z)|^p\,|dz|<\infty,
$$

where Γ_r is the image of the circle $\{z \in \mathbb{C} : |z| = r\}$ under a conformal mapping of $\mathbb D$ onto G. The functions belong to $E_p(G)$ have nontangential limits almost

°c 2008 The Korean Mathematical Society

$$
1535\,
$$

Received June 5, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 42A45, 30E10, 41E10.

Key words and phrases. Carleson curve, p-Faber polynomials, Muckenhoupt weight, weighted Smirnov space.

everywhere (a.e.) on Γ , and these limit functions belong to the Lebesgue space $L_p(\Gamma)$. The Smirnov space $E_p(G)$ is a Banach space with respect to the norm

$$
||f||_{E_p(G)} := ||f||_{L_p(\Gamma)} = \left(\int_{\Gamma} |f(z)|^p |dz|\right)^{1/p}
$$

.

The Smirnov spaces $E_p(G^-)$, $1 \leq p < \infty$ are defined similarly. It is known that $\varphi' \in E_1(G^-), \varphi'_1 \in E_1(G)$ and $\psi', \psi'_1 \in E_1(\mathbb{D}^-)$. The general information about Smirnov spaces can be found in [3, pp. 168–185] and [4, pp. 438–453].

Let ω be a weight function (nonnegative, integrable function) on Γ and let $L_p(\Gamma,\omega)$ be the ω weighted Lebesgue space on Γ, i.e., the space of measurable functions on Γ for which

$$
\|f\|_{L_p(\Gamma,\omega)} := \left(\int\limits_{\Gamma} |f(z)|^p \,\omega(z) \, |dz|\right)^{1/p} < \infty.
$$

The ω -weighted Smirnov spaces $E_p(G, \omega)$ and $E_p(G^-, \omega)$ are defined as

$$
E_p(G,\omega) := \{ f \in E_1(G) : f \in L_p(\Gamma,\omega) \}
$$

and

$$
E_p\left(G^-,\omega\right) := \left\{f \in E_1\left(G^-\right) : f \in L_p\left(\Gamma,\omega\right)\right\}.
$$

We also define the following subspace of $E_p(G^-,\omega)$:

$$
\widetilde{E}_p(G^-,\omega):=\left\{f\in E_p(G^-,\omega):f(\infty)=0\right\}.
$$

Let $1 < p < \infty$. For $k = 0, 1, 2, \ldots$, the functions $\varphi^k (\varphi')^{1/p}$ and $\varphi_1^{k-2/p} (\varphi'_1)^{1/p}$ have poles of order k at the points ∞ and 0, respectively. Hence, there exist polynomials $F_{k,p}$ and $\overline{F}_{k,p}$ of degree k, and functions $E_{k,p}$ and $\overline{E}_{k,p}$ analytic in G^- and G , respectively, such that the following relations holds:

$$
[\varphi(z)]^{k} (\varphi'(z))^{1/p} = F_{k,p}(z) + E_{k,p}(z), \quad z \in G^{-}
$$

$$
[\varphi_{1}(z)]^{k-2/p} (\varphi'_{1}(z))^{1/p} = \tilde{F}_{k,p}(1/z) + \tilde{E}_{k,p}(z), \quad z \in G \setminus \{0\}.
$$

The polynomials $F_{k,p}$ and $\widetilde{F}_{k,p}$ $(k = 0, 1, 2, ...)$ are called the *p*-Faber polynomials for G and G⁻, respectively. It is clear that $\widetilde{F}_{0,p} (1/z) = 0$.

It is known that the integral representations

$$
F_{k,p}(z) = \frac{1}{2\pi i} \int_{|w|=R} \frac{w^k (\psi'(w))^{1-1/p}}{\psi(w) - z} dw, \quad z \in G, \ R \ge 1
$$

$$
\widetilde{F}_{k,p}(1/z) = -\frac{1}{2\pi i} \int_{|w|=R} \frac{w^k w^{-2/p} (\psi_1'(w))^{1-1/p}}{\psi_1(w) - z} dw, \quad z \in G^-, \ R \ge 1
$$

and the expansions

(1)
$$
\frac{\left(\psi'(w)\right)^{1-1/p}}{\psi(w)-z}=\sum_{k=0}^{\infty}\frac{F_{k,p}\left(z\right)}{w^{k+1}}, \quad z \in G, \ w \in \mathbb{D}^{-},
$$

(2)
$$
\frac{w^{-2/p}(\psi_1'(w))^{1-1/p}}{\psi_1(w)-z} = \sum_{k=1}^{\infty} -\frac{\widetilde{F}_{k,p}(1/z)}{w^{k+1}}, \quad z \in G^-, \ w \in \mathbb{D}^-,
$$

holds (see [6]).

Let $f \in E_p(G, \omega)$. Since $f \in E_1(G)$, by Cauchy's integral formula, we have

$$
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma - z} d\varsigma = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\psi(w)) (\psi'(w))^{1/p} (\psi'(w))^{1-1/p}}{\psi(w) - z} dw, \quad z \in G.
$$

Hence, by taking into account (1) we can associate with f the series

(3)
$$
f(z) \sim \sum_{k=0}^{\infty} a_k(f) F_{k,p}(z), \quad z \in G,
$$

where

$$
a_k(f) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(\psi(w))(\psi'(w))^{1/p}}{w^{k+1}} dw, \quad k = 0, 1, 2, \dots
$$

By the Cauchy formula and (2) we can also associate with $f \in \widetilde{E}_p(G^-,\omega)$ the series

(4)
$$
f(z) \sim \sum_{k=1}^{\infty} \widetilde{a}_k(f) \widetilde{F}_{k,p}(1/z), \quad z \in G^-,
$$

where

$$
\widetilde{a}_k(f) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(\psi_1(w)) (\psi_1'(w))^{1/p} w^{2/p}}{w^{k+1}} dw, \quad k = 1, 2, \dots
$$

The series (3) and (4) are called the p-Faber series, and the coefficients $a_k(f)$ and $\tilde{a}_k(f)$ are called the p-Faber coefficients of the corresponding functions.

Definition 1. A rectifiable Jordan curve Γ is called a *Carleson curve* if the condition

$$
\sup_{z \in \Gamma} \sup_{\varepsilon > 0} \frac{1}{\varepsilon} \left| \Gamma \left(z, \varepsilon \right) \right| < \infty
$$

holds, where $\Gamma(z,\varepsilon)$ is the portion of Γ in the open disk of radius ε centered at z, and $|\Gamma(z, \varepsilon)|$ its length.

Definition 2. Let $1 < p < \infty$. A weight function ω belongs to the *Mucken*houpt class $A_p(\Gamma)$ if the condition

$$
\sup_{z \in \Gamma} \sup_{\varepsilon > 0} \left(\frac{1}{\varepsilon} \int_{\Gamma(z,\varepsilon)} \omega(\tau) \, |d\tau| \right) \left(\frac{1}{\varepsilon} \int_{\Gamma(z,\varepsilon)} \left[\omega(\tau) \right]^{-1/(p-1)} |d\tau| \right)^{p-1} < \infty
$$

holds.

The Carleson curves and Muckenhoupt classes $A_n(\Gamma)$ were studied in details in [1].

We consider the sequences $\{\lambda_k\}_0^{\infty}$ \int_{0}^{∞} of complex numbers which satisfies the following conditions for all natural numbers k and m :

(5)
$$
|\lambda_k| \leq c, \quad \sum_{k=2^{m-1}}^{2^m-1} |\lambda_k - \lambda_{k+1}| \leq c.
$$

For a given weight function ω on Γ we define two weights on $\mathbb T$ by setting $\omega_0 := \omega \circ \psi$ and $\omega_1 := \omega \circ \psi_1$.

We shall denote by c_1, c_2, \ldots the constants (in general, different in different relations) depending only on numbers that are not important for the questions of interest.

Our main results are the following:

Theorem 1. Let Γ be a Carleson curve, $1 < p < \infty$, $\omega \in A_p(\Gamma)$ and $\omega_0 \in A_p(\Gamma)$ $A_p(\mathbb{T})$. If $f \in E_p(G, \omega)$ with the p-Faber series (3) and $\{\lambda_k\}_0^{\infty}$ is a sequence of complex numbers which satisfies the condition (5), then there exists a function $F \in E_p(G, \omega)$ which has the p-Faber series

$$
F(z) \sim \sum_{k=0}^{\infty} \lambda_k a_k(f) F_{k,p}(z), \quad z \in G,
$$

and $||F||_{L_p(\Gamma,\omega)} \leq c_1 ||f||_{L_p(\Gamma,\omega)}.$

Similar theorem holds for $f\in \widetilde{E}_p\left(G^{-},\omega\right)$:

Theorem 2. Let Γ be a Carleson curve, $1 \leq p \leq \infty$, $\omega \in A_p(\Gamma)$ and $\omega_1 \in A_p(\mathbb{T})$. If $f \in \widetilde{E}_p(G^-,\omega)$ with the p-Faber series (4) and $\{\lambda_k\}_0^{\infty}$ \int_{0}^{∞} is a sequence of complex numbers which satisfies the condition (5) , then there exists a function $F \in \widetilde{E}_p(G^-,\omega)$ which has the p-Faber series

$$
F(z) \sim \sum_{k=1}^{\infty} \lambda_k \widetilde{a}_k(f) \widetilde{F}_{k,p}(1/z), \quad z \in G^{-1}
$$

and $||F||_{L_p(\Gamma,\omega)} \leq c_2 ||f||_{L_p(\Gamma,\omega)}.$

For Fourier series in Lebesgue spaces on the interval $[0, 2\pi]$ the multiplier theorem was proved by Marcinkiewicz in [11] (see also, [16, Vol. II, p. 232]). For weighted Lebesgue spaces with Muckenhoupt weights the similar theorem can be deduced from Theorem 2 of [9]. The analogue of Theorem 1 in nonweighted Smirnov spaces was cited by V. Kokilashvili without proof in [8].

We introduce the notations

$$
\Delta_{k,p}(f)(z) := \sum_{j=2^{k-1}}^{2^{k}-1} a_j(f) F_{j,p}(z)
$$

and

$$
\widetilde{\Delta}_{k,p}\left(f\right)\left(z\right):=\sum_{j=2^{k-1}}^{2^{k}-1}\widetilde{a}_{j}\left(f\right)\widetilde{F}_{j,p}\left(1/z\right)
$$

for $f \in E_p(G, \omega)$ and $f \in \widetilde{E}_p(G^-,\omega)$, respectively. By virtue of Theorems 1 and 2 we prove the following Littlewood-Paley type theorems:

Theorem 3. Let Γ be a Carleson curve, $1 < p < \infty$, $\omega \in A_p(\Gamma)$ and $\omega_0 \in A_p(\Gamma)$ $A_p(\mathbb{T})$. If $f \in E_p(G, \omega)$, then the two-sided estimate

(6)
$$
c_3 \|f\|_{L_p(\Gamma,\omega)} \le \left\| \left(\sum_{k=0}^{\infty} |\Delta_{k,p}(f)|^2 \right)^{1/2} \right\|_{L_p(\Gamma,\omega)} \le c_4 \|f\|_{L_p(\Gamma,\omega)}
$$

holds.

Theorem 4. Let Γ be a Carleson curve, $1 < p < \infty$, $\omega \in A_p(\Gamma)$ and $\omega_1 \in$ $A_p(\mathbb{T})$. If $f \in \widetilde{E}_p(G^-,\omega)$, then the two-sided estimate $\frac{1}{2}$ ²

$$
(7) \qquad c_{5} \left\|f\right\|_{L_{p}(\Gamma,\omega)} \leq \left\|\left(\sum_{k=0}^{\infty} \left|\widetilde{\Delta}_{k,p}\left(f\right)\right|^{2}\right)^{1/2}\right\|_{L_{p}(\Gamma,\omega)} \leq c_{6} \left\|f\right\|_{L_{p}(\Gamma,\omega)}
$$

holds.

Such theorems were firstly proved by J. E. Littlewood and R. Paley in [10] for the spaces $L_p(\mathbb{T})$, $1 < p < \infty$ (see also, [16, Vol II, pp. 222–241]) and play an important role in the various problems of approximation theory. For example, in [14], M. F. Timan obtained an improvement of the inverse approximation theorems by trigonometric polynomials in Lebesgue spaces $L_p(\mathbb{T})$, $1 < p < \infty$ by aim of the Littlewood-Paley theorems. Timan also improved the direct approximation theorem by using the same results [15]. By considering the analogue of Littlewood-Paley theorems in Smirnov spaces $E_p(G)$, V. Kokilashvili obtained very good results on polynomial approximation in these spaces [8]. For the spaces $L_p(\mathbb{T}, \omega)$, where $\omega \in A_p(\mathbb{T})$, the Littlewood-Paley type theorem can be obtained from Theorem 1 of [9].

In Theorems 1-4, it is assumed that Γ to be a Carleson curve and the weight functions to be Muckenhoupt weights. Because, proofs of Theorems 1-4 depend on the boundedness of the Cauchy singular operator, and the Cauchy singular operator is bounded on the space $L_p(\Gamma,\omega)$ if and only if Γ is a Carleson curve and $\omega \in A_p(\Gamma)$ (see Theorem 5).

2. Auxiliary results

Let Γ be rectifiable Jordan curve and $f \in L_1(\Gamma)$. The functions f^+ and $f^$ defined by

(8)
$$
f^{+}(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s - z} d\varsigma, \quad z \in G,
$$

and

(9)
$$
f^{-}(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s - z} d\varsigma, \quad z \in G^{-},
$$

are analytic in G and G^- , respectively, and $f^-(\infty) = 0$.

It is known that [5, Lemma 3] if Γ is a Carleson curve and $\omega \in A_p(\Gamma)$, then $f^+ \in E_p(G, \omega)$ and $f^- \in E_p(G^-, \omega)$ for $f \in L_p(\Gamma, \omega)$, $1 < p < \infty$.

Since $f \in L_1(\Gamma)$, the limit

$$
S_{\Gamma}(f)(z) := \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\Gamma \backslash \Gamma(z,\varepsilon)} \frac{f(\varsigma)}{\varsigma - z} d\varsigma
$$

exists and is finite for almost all $z \in \Gamma$ (see [1, pp. 117–144]). $S_{\Gamma}(f)(z)$ is called the *Cauchy singular integral* of f at $z \in \Gamma$.

The functions f^+ and f^- have nontangential limits a.e. on Γ and the formulas

(10)
$$
f^+(z) = S_{\Gamma}(f)(z) + \frac{1}{2}f(z), \quad f^-(z) = S_{\Gamma}(f)(z) - \frac{1}{2}f(z)
$$

holds for almost every $z \in \Gamma$ [4, p. 431]. Hence we have

$$
(11)\qquad \qquad f = f^+ - f^-
$$

a.e. on Γ.

For $f \in L_1(\Gamma)$, we associate the function $S_{\Gamma}(f)$ taking the value $S_{\Gamma}(f)(z)$ a.e. on Γ. The linear operator S_{Γ} defined in such way is called the *Cauchy sin*gular operator. The following theorem, which is analogously deduced from David's theorem (see [2]), states the necessary and sufficient condition for boundedness of S_{Γ} in $L_p(\Gamma,\omega)$ (see also [1, pp. 117–144]).

Theorem 5. Let Γ be a rectifiable Jordan curve, $1 < p < \infty$, and let ω be a weight function on Γ . The inequality

$$
||S_{\Gamma}(f)||_{L_p(\Gamma,\omega)} \leq c_7 ||f||_{L_p(\Gamma,\omega)}
$$

holds for every $f \in L_p(\Gamma, \omega)$ if and only if Γ is a Carleson curve and $\omega \in$ $A_p(\Gamma)$.

Let P be the set of all algebraic polynomials (with no restrictions on the degree), and let $\mathcal{P}(\mathbb{D})$ be the set of traces of members of \mathcal{P} on \mathbb{D} . If we define the operators $T_p : \mathcal{P}(\mathbb{D}) \to E_p(G, \omega)$ and $\widetilde{T}_p : \mathcal{P}(\mathbb{D}) \to \widetilde{E}_p(G^-, \omega)$ as

$$
T_p(P)(z) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{P(w) (\psi'(w))^{1-1/p}}{\psi(w) - z} dw, \quad z \in G
$$

and

$$
\widetilde{T}_p(P)(z) := -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{P(w) w^{-2/p} (\psi_1'(w))^{1-1/p}}{\psi_1(w) - z} dw, \quad z \in G^-,
$$

then it is clear that !

$$
T_p\left(\sum_{k=0}^n \alpha_k w^k\right) = \sum_{k=0}^n \alpha_k F_{k,p}\left(z\right), \quad \widetilde{T}_p\left(\sum_{k=0}^n \alpha_k w^k\right) = \sum_{k=1}^n \alpha_k \widetilde{F}_{k,p}\left(1/z\right).
$$

Taking into account (8), we get

$$
T_p(P)(z') = \left[\left(P \circ \varphi \right) \left(\varphi' \right)^{1/p} \right]^+(z')
$$

for $z' \in G$. Taking the limit $z' \to z \in \Gamma$ over all nontangential paths inside Γ , we obtain by (10)

$$
T_p(P)(z) = \frac{1}{2} \left[\left(P \circ \varphi \right) \left(\varphi' \right)^{1/p} \right] (z) + S_\Gamma \left[\left(P \circ \varphi \right) \left(\varphi' \right)^{1/p} \right] (z)
$$

for almost all $z \in \Gamma$. Similarly, by considering (9) and taking the limit along all nontangential paths outside Γ, by (10) we get

$$
\widetilde{T}_{p}(P)(z) = \frac{1}{2} \left[\left(P \circ \varphi_{1} \right) \varphi_{1}^{-2/p} \left(\varphi_{1}' \right)^{1/p} \right] (z) - S_{\Gamma} \left[\left(P \circ \varphi_{1} \right) \varphi_{1}^{-2/p} \left(\varphi_{1}' \right)^{1/p} \right] (z)
$$

a.e. on Γ.

Therefore we can state the following theorem as a corollary of Theorem 5:

Theorem 6. Let Γ be a Carleson curve, $1 < p < \infty$, and let ω be a weight function on Γ . The following assertions hold:

(a) If $\omega \in A_p(\Gamma)$ and $\omega_0 \in A_p(\mathbb{T})$, then the linear operator

$$
T_p: \mathcal{P}(\mathbb{D}) \subset E_p(\mathbb{D}, \omega_0) \to E_p(G, \omega)
$$

is bounded.

(b) If $\omega \in A_p(\Gamma)$ and $\omega_1 \in A_p(\mathbb{T})$, then the linear operator

$$
\widetilde{T}_p : \mathcal{P} \left(\mathbb{D} \right) \subset E_p \left(\mathbb{D}, \omega_1 \right) \to \widetilde{E}_p \left(G^- , \omega \right)
$$

is bounded.

Hence, the operators T_p and \widetilde{T}_p can be extended as bounded linear operators to $E_p(\mathbb{D}, \omega_0)$ and $E_p(\mathbb{D}, \omega_1)$, respectively, and we have the representations

$$
T_p\left(g\right)(z) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g\left(w\right)\left(\psi'\left(w\right)\right)^{1-1/p}}{\psi\left(w\right)-z} dw, \quad g \in E_p\left(\mathbb{D}, \omega_0\right),
$$

and

$$
\widetilde{T}_p\left(g\right)(z) := -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g\left(w\right) w^{-2/p} \left(\psi_1'(w)\right)^{1-1/p}}{\psi_1\left(w\right)-z} dw, \quad g \in E_p\left(\mathbb{D}, \omega_1\right).
$$

Lemma 1. Let Γ be a Carleson curve, $1 < p < \infty$, and $\omega \in A_p(\Gamma)$. Further let g be an analytic function in \mathbb{D} , which has the Taylor expansion $g(w) =$ \approx $\sum_{k=0}^{\infty} \alpha_k(g) w^k.$

- (a) If $g \in E_p(\mathbb{D}, \omega_0)$ and $\omega_0 \in A_p(\mathbb{T})$, then $T_p(g)$ has the p-Faber coefficients $\alpha_k(g), k = 0, 1, 2, ...$
- (b) If $g \in E_p(\mathbb{D}, \omega_1)$ and $\omega_0 \in A_p(\mathbb{T})$, then $\widetilde{T}_p(g)$ has the p-Faber coefficients $\alpha_k(g), k = 0, 1, 2, ...$

Proof. Let's prove the statement (b). The statement (a) can be proved similarly.

If we set

$$
g_r\left(w\right) := g\left(rw\right), \quad 0 < r < 1,
$$

and take into account that every function in $E_1(\mathbb{D})$ coincides with the Poisson integral of its boundary function, we have by [12, Theorem 10]

$$
||g_r - g||_{L_p(\mathbb{T}, \omega_1)} \to 0, \quad r \to 1^-,
$$

and then the boundedness of the operator \widetilde{T}_p yields

(12)
$$
\left\| \widetilde{T}_p(g_r) - \widetilde{T}_p(g) \right\|_{L_p(\Gamma,\omega)} \to 0, \quad r \to 1^-.
$$

The series $\sum_{n=1}^{\infty}$ $\sum_{k=0} \alpha_k(g) r^k w^k$ converges uniformly on \mathbb{T} , hence,

$$
\widetilde{T}_p(g_r)(z) = -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g_r(w) w^{-2/p} (\psi_1'(w))^{1-1/p}}{\psi_1(w) - z} dw
$$
\n
$$
= \sum_{k=0}^{\infty} \alpha_k(g) r^k \left\{ -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{w^k w^{-2/p} (\psi_1'(w))^{1-1/p}}{\psi_1(w) - z} dw \right\}
$$
\n
$$
= \sum_{k=0}^{\infty} \alpha_k(g) r^k \widetilde{F}_{k,p}(1/z)
$$

for $z\in G^-.$ By a simple calculation one can see that

$$
\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\widetilde{F}_{m,p}\left(\frac{1}{\psi_1(w)}\right) w^{2/p} \left(\psi_1'(w)\right)^{1/p}}{w^{k+1}} dw = \begin{cases} 1, & k=m\\ 0, & k \neq m \end{cases}
$$

and as a corollary of this

$$
\widetilde{a}_k\left(\widetilde{T}_p\left(g_r\right)\right) = \alpha_k\left(g\right)r^k, \quad k = 0, 1, 2, \dots.
$$

Therefore,

(13)
$$
\widetilde{a}_k\left(\widetilde{T}_p\left(g_r\right)\right) \to \alpha_k\left(g\right), \quad r \to 1^-.
$$

On the other hand, by Hölder's inequality,

$$
\begin{split}\n&= \left| \frac{\widetilde{a}_{k} \left(\widetilde{T}_{p} \left(g_{r} \right) \right) - \widetilde{a}_{k} \left(\widetilde{T}_{p} \left(g \right) \right) \right| \\
&= \left| \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\left[\widetilde{T}_{p} \left(g_{r} \right) - \widetilde{T}_{p} \left(g \right) \right] (\psi_{1} \left(w \right)) w^{2/p} \left(\psi_{1}' \left(w \right) \right)^{1/p}}{w^{k+1}} dw \right| \\
&\leq \frac{1}{2\pi} \int_{\mathbb{T}} \left| \left(\widetilde{T}_{p} \left(g_{r} \right) - \widetilde{T}_{p} \left(g \right) \right) (\psi_{1} \left(w \right)) \right| \left| (\psi_{1}' \left(w \right))^{1/p} \right| dw \right| \\
&\leq \frac{1}{2\pi} \left(\int_{\mathbb{T}} \left| \left(\widetilde{T}_{p} \left(g_{r} \right) - \widetilde{T}_{p} \left(g \right) \right) (\psi_{1} \left(w \right)) \right|^{p} \omega \left(\psi_{1} \left(w \right) \right) |\psi_{1}' \left(w \right) | \left| dw \right| \right)^{1/p} \\
&\times \left(\int_{\mathbb{T}} \left[\omega \left(\psi_{1} \left(w \right) \right) \right]^{-1/p-1} |dw| \right)^{1-1/p} \\
&= \frac{1}{2\pi} \left\| \widetilde{T}_{p} \left(g_{r} \right) - \widetilde{T}_{p} \left(g \right) \right\|_{L_{p}(\Gamma, \omega)} \left(\int_{\mathbb{T}} \left[\omega_{1} \left(w \right) \right]^{-1/p-1} |dw| \right)^{1-1/p},\n\end{split}
$$

and by (12)

$$
\widetilde{a}_k\left(\widetilde{T}_p\left(g_r\right)\right)\to\widetilde{a}_k\left(\widetilde{T}_p\left(g\right)\right)
$$

as $r \to 1^-$. This and (13) yield that

$$
\widetilde{a}_k \left(\widetilde{T}_p \left(g \right) \right) = \alpha_k \left(g \right), \quad k = 0, 1, 2, \ldots
$$

which proves the part (b) of Lemma 1. \Box

3. Proofs of the main results

We need the following lemma to prove Theorem 1 and Theorem 2.

Lemma 2. Let $\omega \in A_p(\mathbb{T})$, $1 < p < \infty$, and let $\{\lambda_k\}_0^{\infty}$ \int_{0}^{∞} be a sequence which satisfies the condition (5). If the function $g \in E_p(\mathbb{D}, \omega)$ has the Taylor series

$$
g(w) = \sum_{k=0}^{\infty} \alpha_k(g) w^k, \quad w \in \mathbb{D},
$$

then there exists a function $g^* \in E_p(\mathbb{D}, \omega)$ which has the Taylor series

$$
g^*(w) = \sum_{k=0}^{\infty} \lambda_k \alpha_k(g) w^k, \quad w \in \mathbb{D},
$$

and satisfies $||g^*||_{L_p(\mathbb{T}, \omega)} \leq c_8 ||g||_{L_p(\mathbb{T}, \omega)}$.

Proof. Let $c_k(g)$ $(k = \ldots, -1, 0, 1, \ldots)$ denote the Fourier coefficients of the boundary function of g . By Theorem 3.4 in [3, p. 38] we have

$$
c_k(g) = \begin{cases} \alpha_k(g), & k \ge 0 \\ 0, & k < 0. \end{cases}
$$

By Theorem 2 of [9], there is a function $h \in L_p(\mathbb{T}, \omega)$ with Fourier coefficients $c_k(h) = \lambda_k c_k(g)$ and $||h||_{L_p(\mathbb{T}, \omega)} \leq c_9 ||g||_{L_p(\mathbb{T}, \omega)}$. If we take $g^* := h^+$, then $g^* \in E_p(\mathbb{D}, \omega)$. For Taylor coefficients of g^* , we have by (11)

$$
\alpha_{k}(g^{*}) = \alpha_{k}(h^{+}) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{h^{+}(w)}{w^{k+1}} dw = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} dw + \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{h^{-}(w)}{w^{k+1}} dw
$$

$$
= \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} dw = c_{k}(h) = \lambda_{k} c_{k}(g) = \lambda_{k} \alpha_{k}(g)
$$

for $k = 0, 1, 2, \ldots$ On the other hand,

$$
\left\|g^*\right\|_{L_p(\mathbb{T}, \omega)} = \left\|h^+\right\|_{L_p(\mathbb{T}, \omega)} \leq c_{10} \left\|h\right\|_{L_p(\mathbb{T}, \omega)} \leq c_{11} \left\|g\right\|_{L_p(\mathbb{T}, \omega)},
$$

and the lemma is proved. \Box

We set for $f \in E_p(G, \omega)$

$$
f_0(w) := f(\psi(w)) (\psi'(w))^{1/p}, \quad w \in \mathbb{T},
$$

and for $f \in \widetilde{E}_p(G^-,\omega)$

$$
f_1(w) := f(\psi_1(w)) (\psi'_1(w))^{1/p} w^{2/p}, \quad w \in \mathbb{T}.
$$

It is clear that $f_0 \in L_p(\mathbb{T}, \omega_0)$ and $f_1 \in L_p(\mathbb{T}, \omega_1)$. Hence, if $\omega_0, \omega_1 \in A_p(\mathbb{T}),$ then $f_0^+ \in E_p(\mathbb{D}, \omega_0)$, $f_0^- \in E_p(\mathbb{D}^-, \omega_0)$, $f_1^+ \in E_p(\mathbb{D}, \omega_1)$, $f_1^- \in E_p(\mathbb{D}^-, \omega_1)$.

Proof of Theorem 1. Let $f \in E_p(G, \omega)$. By the definitions of the coefficients $a_k(f)$ and f_0 from (11), we get

$$
a_k(f) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_0(w)}{w^{k+1}} dw = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_0^+(w)}{w^{k+1}} dw - \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_0^-(w)}{w^{k+1}} dw
$$

$$
= \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_0^+(w)}{w^{k+1}} dw = \alpha_k \left(f_0^+\right)
$$

for $k = 0, 1, 2, \ldots$. This means that the *p*-Faber coefficients of *f* are the Taylor coefficients of f_0^+ at the origin, that is,

$$
f_0^+(w) = \sum_{k=0}^{\infty} a_k(f) w^k, \quad w \in \mathbb{D}.
$$

By Lemma 2, there is a function $F_0 \in E_p(\mathbb{D}, \omega_0)$ which has the Taylor coefficients α_k $(F_0) = \lambda_k a_k$ (f) for $k = 0, 1, 2, \ldots$, and °∕
∪ ÷ cu

$$
||F_0||_{L_p(\mathbb{T},\omega_0)} \leq c_{12} ||f_0^+||_{L_p(\mathbb{T},\omega_0)}.
$$

Hence, $T_p(F_0) \in E_p(G, \omega)$ and by Lemma 1 the *p*-Faber coefficients of $T_p(F_0)$ are α_k $(F_0) = \lambda_k a_k$ (f) , that is,

$$
T_p(F_0)(z) \sim \sum_{k=0}^{\infty} \lambda_k a_k(f) F_{k,p}(z), \quad z \in G.
$$

On the other hand, boundedness of T_p , (10) and the boundedness of the Cauchy singular operator in $L_p(\mathbb{T}, \omega_0)$ yield

$$
\|T_p(F_0)\|_{L_p(\Gamma,\omega)} \le \|T_p\| \|F_0\|_{L_p(\mathbb{T},\omega_0)} \le c_{13} \|f_0^+\|_{L_p(\mathbb{T},\omega_0)}
$$

$$
\le c_{14} \|f_0\|_{L_p(\mathbb{T},\omega_0)} = c_{14} \|f\|_{L_p(\Gamma,\omega)}.
$$

Hence taking $F := T_p(F_0)$ finishes the proof of Theorem 1.

Proof of Theorem 2. By considering the formula of the p-Faber coefficients of $f \in \widetilde{E}_p(G^-,\omega),$

$$
\tilde{a}_{k}(f) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{1}(w)}{w^{k+1}} dw = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} dw - \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{1}^{-}(w)}{w^{k+1}} dw
$$

$$
= \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} dw = \alpha_{k}(f_{1}^{+}),
$$

i.e., the *p*-Faber coefficients of f are the Taylor coefficients of f_1^+ . By Lemma 2, there exists a function $F_1 \in E_p(\mathbb{D}, \omega_1)$ such that

$$
F_1(w) = \sum_{k=0}^{\infty} \lambda_k \widetilde{a}_k(f) w^k, \quad w \in \mathbb{D},
$$

and

$$
||F_1||_{L_p(\mathbb{T}, \omega_1)} \leq c_{15} ||f_1^+||_{L_p(\mathbb{T}, \omega_1)}
$$

.

Setting $F := \widetilde{T}_p(F_1)$, we obtain by Lemma 1

$$
F(z) \sim \sum_{k=1}^{\infty} \lambda_k \widetilde{a}_k(f) \widetilde{F}_{k,p}(1/z), \quad z \in G^-,
$$

and by boundedness of \widetilde{T}_p and (10) we obtain

$$
\begin{array}{rcl}\n\|F\|_{L_p(\Gamma,\omega)} & = & \left\|\widetilde{T}_p\left(F_1\right)\right\|_{L_p(\Gamma,\omega)} \le \left\|\widetilde{T}_p\right\| \|F_1\|_{L_p(\mathbb{T},\omega_1)} \\
& \le c_{15} \left\|f_1^+\right\|_{L_p(\mathbb{T},\omega_1)} \le c_{16} \left\|f_1\right\|_{L_p(\mathbb{T},\omega_1)} = c_{16} \left\|f\right\|_{L_p(\Gamma,\omega)},\n\end{array}
$$

since the singular operator is bounded in $L_p(\mathbb{T}, \omega_1)$.

Proof of Theorem 3. Let ${r_k}_0^{\infty}$ be the sequence of Rademacher functions and let $t \in [0, 1]$ be not dyadic rational number. If we set $\lambda_0 := r_0(t)$ and

$$
\lambda_j := r_k(t), \quad 2^{k-1} \le j < 2^k,
$$

then the sequence $\{\lambda_j\}_0^\infty$ \int_{0}^{∞} satisfies the condition (5). By Theorem 1 there exists a function $F \in E_p(G, \omega)$ such that

$$
F(z) \sim \sum_{j=0}^{\infty} \lambda_j a_j(f) F_{j,p}(z) = \sum_{k=0}^{\infty} r_k(t) \Delta_{k,p}(f)(z)
$$

and

$$
||F||_{L_p(\Gamma,\omega)} \leq c_{17} ||f||_{L_p(\Gamma,\omega)}.
$$

On the other hand, since

$$
F(z) \sim \sum_{k=0}^{\infty} r_k(t) \,\Delta_{k,p} \left(f\right)\left(z\right)
$$

and $\{\lambda_j\}_0^\infty$ \int_{0}^{∞} satisfies (5), there is $F^* \in E_p(G, \omega)$ for which

$$
F^{*}(z) \sim \sum_{k=0}^{\infty} \lambda_{k} r_{k}(t) \Delta_{k,p}(f)(z) = \sum_{k=0}^{\infty} a_{k}(f) F_{k,p}(z)
$$

and

$$
||F^*||_{L_p(\Gamma,\omega)} \leq c_{18} ||F||_{L_p(\Gamma,\omega)}
$$

holds. Since there is no two different functions in $E_p(G, \omega)$ have the same p-Faber series we have $F^* = f$ and hence

$$
c_{19} ||f||_{L_p(\Gamma,\omega)} \leq ||F||_{L_p(\Gamma,\omega)} \leq c_{17} ||f||_{L_p(\Gamma,\omega)}.
$$

From this we obtain

(14)
$$
c_{20} ||f||_{L_p(\Gamma,\omega)}^p \leq \int_{\Gamma} \left| \sum_{k=0}^{\infty} r_k(t) \Delta_{k,p}(f)(z) \right|^p \omega(z) |dz| \leq c_{21} ||f||_{L_p(\Gamma,\omega)}^p.
$$

By Theorem 8.4 in [16, Vol I, p. 213] we get

(15)
$$
c_{22} \left(\sum_{k=0}^{\infty} |\Delta_{k,p}(f)(z)|^{2} \right)^{1/2} \leq \left(\int_{0}^{1} \left| \sum_{k=0}^{\infty} r_{k}(t) \Delta_{k,p}(f)(z) \right|^{p} dt \right)^{1/p} \leq c_{23} \left(\sum_{k=0}^{\infty} |\Delta_{k,p}(f)(z)|^{2} \right)^{1/2}.
$$

If we integrate all sides of (14) over $[0, 1]$, change the order of integration and use (15) we obtain (6).

Proof of Theorem 4 is similar to that of Theorem 3.

Let Γ be a Carleson curve, $1 < p < \infty$ and $\omega \in A_p(\Gamma)$. For $f \in L_p(\Gamma, \omega)$ we have $f^+ \in E_p(G, \omega)$ and $f^- \in \widetilde{E}_p(G^-,\omega)$. Hence we can associate the series

$$
f^{+}(z) \sim \sum_{k=0}^{\infty} a_{k}(f^{+}) F_{k,p}(z), \quad z \in G
$$

and

$$
f^{-}(z) \sim \sum_{k=1}^{\infty} \widetilde{a}_k(f^{-}) \widetilde{F}_{k,p}(1/z), \quad z \in G^{-}.
$$

Since $f = f^+ - f^-$ almost everywhere on Γ , we can associate with f the formal series

(16)
$$
f(z) \sim \sum_{k=0}^{\infty} a_k (f^+) F_{k,p}(z) - \sum_{k=1}^{\infty} \tilde{a}_k (f^-) \tilde{F}_{k,p}(1/z)
$$

almost everywhere on Γ. This series is called the p-Faber-Laurent series of the function $f \in L_p(\Gamma, \omega)$ (see [6]).

We can state the following corollary of Theorem 1 and Theorem 2.

Corollary. Let Γ be a Carleson curve, $1 < p < \infty$, $\omega \in A_p(\Gamma)$ and $\omega_0, \omega_1 \in$ $A_p(\mathbb{T})$. If $f \in L_p(\Gamma,\omega)$ has the p-Faber-Laurent series (16) and $\{\lambda_k\}_0^{\infty}$ is a sequence of complex numbers which satisfies the condition (5), then there exists a function $F \in L_p(\Gamma, \omega)$ which has the p-Faber-Laurent series

$$
F(z) \sim \sum_{k=0}^{\infty} \lambda_k a_k \left(f^+ \right) F_{k,p}(z) - \sum_{k=1}^{\infty} \lambda_k \widetilde{a}_k \left(f^- \right) \widetilde{F}_{k,p}(1/z)
$$

and satisfies $||F||_{L_p(\Gamma,\omega)} \leq c_{24} ||f||_{L_p(\Gamma,\omega)}$.

References

- [1] A. Böttcher and Yu I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Progress in Mathematics, 154. Birkhauser Verlag, Basel, 1997.
- [2] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), no. 1, 157–189.

- [3] P. L. Duren, *Theory of* H^p *Spaces*, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
- [4] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol.26, Providence, RI, 1969.
- [5] D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E^p(G, \omega)$ and the Bieberbach polynomials, Constr. Approx. 17 (2001), no. 3, 335–351.
- [6] \ldots , Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54(129) (2004), no. 3, 751-765.
- [7] D. M. Israfilov and A. Guven, Approximation in weighted Smirnov classes, East J. Approx. 11 (2005), no. 1, 91–102.
- [8] V. Kokilašhvili, A direct theorem for the approximation in the mean of analytic functions by polynomials, Dokl. Akad. Nauk SSSR 185 (1969), 749–752.
- [9] D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^p spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254.
- [10] J. E. Littlewood and R. Paley, Theorems on Fourier series and power series, Proc. London Math. Soc. 42 (1936), 52–89.
- [11] J. Marcinkiewicz, Sur les Multiplicateurs des Series de Fourier, Studia Math. 8 (1939), 78–91.
- [12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- [13] P. K. Suetin, Series of Faber Polynomials, Gordon and Breach Science Publishers, Amsterdam, 1998.
- [14] M. F. Timan, *Inverse theorems of the constructive theory of functions in* L_p spaces $(1 \le p \le \infty)$, Mat. Sb. N.S. 46(88) (1958), 125–132.
- [15] , On Jackson's theorem in L_p -spaces, Ukrain. Mat. Z . **18** (1966), no. 1, 134–137.
- [16] A. Zygmund, Trigonometric Series, Vol. I-II, Cambridge Univ. Press, 2nd edition, 1959.

Ali Guven Department of Mathematics Faculty of Art and Science Balikesir University 10145, Balikesir, Turkey E-mail address: ag guven@yahoo.com

Daniyal M. Israfilov Department of Mathematics Faculty of Art and Science Balikesir University 10145, Balikesir, Turkey E-mail address: mdaniyal@balikesir.edu.tr

View publication stats