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MULTIPLIER THEOREMS
IN WEIGHTED SMIRNOV SPACES

Ali Guven and Daniyal M. Israfilov

Abstract. The analogues of Marcinkiewicz multiplier theorem and Litt-
lewood-Paley theorem are proved for p-Faber series in weighted Smirnov
spaces defined on bounded and unbounded components of a rectifiable
Jordan curve.

1. Introduction and the main results

Let Γ be a rectifiable Jordan curve in the complex plane C, and let G := IntΓ,
G− := ExtΓ. Without loss of generality we assume that 0 ∈ G. Let also

D := {z ∈ C : |z| < 1} , T := ∂D, D− := C\D.

We denote by ϕ and ϕ1 the conformal mappings of G− and G onto D−,
respectively, normalized by

ϕ (∞) = ∞, lim
z→∞

ϕ (z)
z

> 0

and

ϕ1 (0) = ∞, lim
z→0

zϕ1 (z) > 0.

The inverse mappings of ϕ and ϕ1 will be denoted by ψ and ψ1, respectively.
Let 1 ≤ p < ∞. A function f is said to belongs to the Smirnov space Ep (G)

if it is analytic in G and satisfies

sup
0≤r<1

∫

Γr

|f (z)|p |dz| < ∞,

where Γr is the image of the circle {z ∈ C : |z| = r} under a conformal mapping
of D onto G. The functions belong to Ep (G) have nontangential limits almost
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everywhere (a.e.) on Γ, and these limit functions belong to the Lebesgue space
Lp (Γ) . The Smirnov space Ep (G) is a Banach space with respect to the norm

‖f‖Ep(G) := ‖f‖Lp(Γ) =




∫

Γ

|f (z)|p |dz|



1/p

.

The Smirnov spaces Ep (G−) , 1 ≤ p < ∞ are defined similarly. It is known that
ϕ′ ∈ E1 (G−) , ϕ′1 ∈ E1 (G) and ψ′, ψ′1 ∈ E1 (D−) . The general information
about Smirnov spaces can be found in [3, pp. 168–185] and [4, pp. 438–453].

Let ω be a weight function (nonnegative, integrable function) on Γ and let
Lp (Γ, ω) be the ωweighted Lebesgue space on Γ, i.e., the space of measurable
functions on Γ for which

‖f‖Lp(Γ,ω) :=




∫

Γ

|f (z)|p ω (z) |dz|



1/p

< ∞.

The ω-weighted Smirnov spaces Ep (G, ω) and Ep (G−, ω) are defined as

Ep (G,ω) := {f ∈ E1 (G) : f ∈ Lp (Γ, ω)}
and

Ep

(
G−, ω

)
:=

{
f ∈ E1

(
G−

)
: f ∈ Lp (Γ, ω)

}
.

We also define the following subspace of Ep (G−, ω) :

Ẽp

(
G−, ω

)
:=

{
f ∈ Ep

(
G−, ω

)
: f (∞) = 0

}
.

Let 1 < p < ∞. For k = 0, 1, 2, . . . , the functions ϕk (ϕ′)1/p and ϕ
k−2/p
1 (ϕ′1)

1/p

have poles of order k at the points ∞ and 0, respectively. Hence, there exist
polynomials Fk,p and F̃k,p of degree k, and functions Ek,p and Ẽk,p analytic in
G− and G, respectively, such that the following relations holds:

[ϕ (z)]k (ϕ′ (z))1/p = Fk,p (z) + Ek,p (z) , z ∈ G−

[ϕ1 (z)]k−2/p (ϕ′1 (z))1/p = F̃k,p (1/z) + Ẽk,p (z) , z ∈ G\ {0} .

The polynomials Fk,p and F̃k,p (k = 0, 1, 2, . . .) are called the p-Faber poly-
nomials for G and G−, respectively. It is clear that F̃0,p (1/z) = 0.

It is known that the integral representations

Fk,p (z) =
1

2πi

∫

|w|=R

wk (ψ′ (w))1−1/p

ψ (w)− z
dw, z ∈ G, R ≥ 1

F̃k,p (1/z) = − 1
2πi

∫

|w|=R

wkw−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
dw, z ∈ G−, R ≥ 1
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and the expansions

(1)
(ψ′ (w))1−1/p

ψ (w)− z
=

∞∑

k=0

Fk,p (z)
wk+1

, z ∈ G, w ∈ D−,

(2)
w−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
=

∞∑

k=1

− F̃k,p (1/z)
wk+1

, z ∈ G−, w ∈ D−,

holds (see [6]).
Let f ∈ Ep (G, ω) . Since f ∈ E1 (G) , by Cauchy’s integral formula, we have

f (z) =
1

2πi

∫

Γ

f (ς)
ς − z

dς =
1

2πi

∫

T

f (ψ (w)) (ψ′ (w))1/p (ψ′ (w))1−1/p

ψ (w)− z
dw, z ∈ G.

Hence, by taking into account (1) we can associate with f the series

(3) f (z) ∼
∞∑

k=0

ak (f)Fk,p (z) , z ∈ G,

where

ak (f) :=
1

2πi

∫

T

f (ψ (w)) (ψ′ (w))1/p

wk+1
dw, k = 0, 1, 2, . . . .

By the Cauchy formula and (2) we can also associate with f ∈ Ẽp (G−, ω) the
series

(4) f (z) ∼
∞∑

k=1

ãk (f) F̃k,p (1/z) , z ∈ G−,

where

ãk (f) :=
1

2πi

∫

T

f (ψ1 (w)) (ψ′1 (w))1/p
w2/p

wk+1
dw, k = 1, 2, . . . .

The series (3) and (4) are called the p-Faber series, and the coefficients ak (f)
and ãk (f) are called the p-Faber coefficients of the corresponding functions.

Definition 1. A rectifiable Jordan curve Γ is called a Carleson curve if the
condition

sup
z∈Γ

sup
ε>0

1
ε
|Γ (z, ε)| < ∞

holds, where Γ (z, ε) is the portion of Γ in the open disk of radius ε centered
at z, and |Γ (z, ε)| its length.
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Definition 2. Let 1 < p < ∞. A weight function ω belongs to the Mucken-
houpt class Ap (Γ) if the condition

sup
z∈Γ

sup
ε>0


1

ε

∫

Γ(z,ε)

ω (τ) |dτ |





1

ε

∫

Γ(z,ε)

[ω (τ)]−1/(p−1) |dτ |




p−1

< ∞

holds.

The Carleson curves and Muckenhoupt classes Ap (Γ) were studied in details
in [1].

We consider the sequences {λk}∞0 of complex numbers which satisfies the
following conditions for all natural numbers k and m:

(5) |λk| ≤ c,

2m−1∑

k=2m−1

|λk − λk+1| ≤ c.

For a given weight function ω on Γ we define two weights on T by setting
ω0 := ω ◦ ψ and ω1 := ω ◦ ψ1.

We shall denote by c1, c2, . . . the constants (in general, different in different
relations) depending only on numbers that are not important for the questions
of interest.

Our main results are the following:

Theorem 1. Let Γ be a Carleson curve, 1 < p < ∞, ω ∈ Ap (Γ) and ω0 ∈
Ap (T). If f ∈ Ep (G,ω) with the p-Faber series (3) and {λk}∞0 is a sequence of
complex numbers which satisfies the condition (5), then there exists a function
F ∈ Ep (G,ω) which has the p-Faber series

F (z) ∼
∞∑

k=0

λkak (f) Fk,p (z) , z ∈ G,

and ‖F‖Lp(Γ,ω) ≤ c1 ‖f‖Lp(Γ,ω) .

Similar theorem holds for f ∈ Ẽp (G−, ω):

Theorem 2. Let Γ be a Carleson curve, 1 < p < ∞, ω ∈ Ap (Γ) and
ω1 ∈ Ap (T). If f ∈ Ẽp (G−, ω) with the p-Faber series (4) and {λk}∞0 is a
sequence of complex numbers which satisfies the condition (5), then there exists
a function F ∈ Ẽp (G−, ω) which has the p-Faber series

F (z) ∼
∞∑

k=1

λkãk (f) F̃k,p (1/z) , z ∈ G−

and ‖F‖Lp(Γ,ω) ≤ c2 ‖f‖Lp(Γ,ω) .
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For Fourier series in Lebesgue spaces on the interval [0, 2π] the multiplier
theorem was proved by Marcinkiewicz in [11] (see also, [16, Vol. II, p. 232]). For
weighted Lebesgue spaces with Muckenhoupt weights the similar theorem can
be deduced from Theorem 2 of [9]. The analogue of Theorem 1 in nonweighted
Smirnov spaces was cited by V. Kokilashvili without proof in [8].

We introduce the notations

∆k,p (f) (z) :=
2k−1∑

j=2k−1

aj (f)Fj,p (z)

and

∆̃k,p (f) (z) :=
2k−1∑

j=2k−1

ãj (f) F̃j,p (1/z)

for f ∈ Ep (G,ω) and f ∈ Ẽp (G−, ω) , respectively. By virtue of Theorems 1
and 2 we prove the following Littlewood-Paley type theorems:

Theorem 3. Let Γ be a Carleson curve, 1 < p < ∞, ω ∈ Ap (Γ) and ω0 ∈
Ap (T). If f ∈ Ep (G,ω), then the two-sided estimate

(6) c3 ‖f‖Lp(Γ,ω) ≤
∥∥∥∥∥∥

( ∞∑

k=0

|∆k,p (f)|2
)1/2

∥∥∥∥∥∥
Lp(Γ,ω)

≤ c4 ‖f‖Lp(Γ,ω)

holds.

Theorem 4. Let Γ be a Carleson curve, 1 < p < ∞, ω ∈ Ap (Γ) and ω1 ∈
Ap (T). If f ∈ Ẽp (G−, ω), then the two-sided estimate

(7) c5 ‖f‖Lp(Γ,ω) ≤
∥∥∥∥∥∥

( ∞∑

k=0

∣∣∣∆̃k,p (f)
∣∣∣
2
)1/2

∥∥∥∥∥∥
Lp(Γ,ω)

≤ c6 ‖f‖Lp(Γ,ω)

holds.

Such theorems were firstly proved by J. E. Littlewood and R. Paley in [10] for
the spaces Lp (T) , 1 < p < ∞ (see also, [16, Vol II, pp. 222–241]) and play an
important role in the various problems of approximation theory. For example,
in [14], M. F. Timan obtained an improvement of the inverse approximation
theorems by trigonometric polynomials in Lebesgue spaces Lp (T) , 1 < p < ∞
by aim of the Littlewood-Paley theorems. Timan also improved the direct
approximation theorem by using the same results [15]. By considering the ana-
logue of Littlewood-Paley theorems in Smirnov spaces Ep (G), V. Kokilashvili
obtained very good results on polynomial approximation in these spaces [8].
For the spaces Lp (T, ω), where ω ∈ Ap (T), the Littlewood-Paley type theorem
can be obtained from Theorem 1 of [9].
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In Theorems 1-4, it is assumed that Γ to be a Carleson curve and the weight
functions to be Muckenhoupt weights. Because, proofs of Theorems 1-4 depend
on the boundedness of the Cauchy singular operator, and the Cauchy singular
operator is bounded on the space Lp (Γ, ω) if and only if Γ is a Carleson curve
and ω ∈ Ap (Γ) (see Theorem 5).

2. Auxiliary results

Let Γ be rectifiable Jordan curve and f ∈ L1 (Γ) . The functions f+ and f−

defined by

(8) f+ (z) :=
1

2πi

∫

Γ

f (ς)
ς − z

dς, z ∈ G,

and

(9) f− (z) :=
1

2πi

∫

Γ

f (ς)
ς − z

dς, z ∈ G−,

are analytic in G and G−, respectively, and f− (∞) = 0.
It is known that [5, Lemma 3] if Γ is a Carleson curve and ω ∈ Ap (Γ) , then

f+ ∈ Ep (G,ω) and f− ∈ Ep (G−, ω) for f ∈ Lp (Γ, ω), 1 < p < ∞.
Since f ∈ L1 (Γ) , the limit

SΓ (f) (z) := lim
ε→0

1
2πi

∫

Γ\Γ(z,ε)

f (ς)
ς − z

dς

exists and is finite for almost all z ∈ Γ (see [1, pp. 117–144]). SΓ (f) (z) is
called the Cauchy singular integral of f at z ∈ Γ.

The functions f+ and f− have nontangential limits a.e. on Γ and the for-
mulas

(10) f+ (z) = SΓ (f) (z) +
1
2
f (z) , f− (z) = SΓ (f) (z)− 1

2
f (z)

holds for almost every z ∈ Γ [4, p. 431]. Hence we have

(11) f = f+ − f−

a.e. on Γ.
For f ∈ L1 (Γ), we associate the function SΓ (f) taking the value SΓ (f) (z)

a.e. on Γ. The linear operator SΓ defined in such way is called the Cauchy sin-
gular operator. The following theorem, which is analogously deduced from
David’s theorem (see [2]), states the necessary and sufficient condition for
boundedness of SΓ in Lp (Γ, ω) (see also [1, pp. 117–144]).

Theorem 5. Let Γ be a rectifiable Jordan curve, 1 < p < ∞, and let ω be a
weight function on Γ. The inequality

‖SΓ (f)‖Lp(Γ,ω) ≤ c7 ‖f‖Lp(Γ,ω)
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holds for every f ∈ Lp (Γ, ω) if and only if Γ is a Carleson curve and ω ∈
Ap (Γ).

Let P be the set of all algebraic polynomials (with no restrictions on the
degree), and let P (D) be the set of traces of members of P on D. If we define
the operators Tp : P (D) → Ep (G, ω) and T̃p : P (D) → Ẽp (G−, ω) as

Tp (P ) (z) :=
1

2πi

∫

T

P (w) (ψ′ (w))1−1/p

ψ (w)− z
dw, z ∈ G

and

T̃p (P ) (z) := − 1
2πi

∫

T

P (w)w−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
dw, z ∈ G−,

then it is clear that

Tp

(
n∑

k=0

αkwk

)
=

n∑

k=0

αkFk,p (z) , T̃p

(
n∑

k=0

αkwk

)
=

n∑

k=1

αkF̃k,p (1/z) .

Taking into account (8), we get

Tp (P ) (z′) =
[
(P ◦ ϕ) (ϕ′)1/p

]+

(z′)

for z′ ∈ G. Taking the limit z′ → z ∈ Γ over all nontangential paths inside Γ,
we obtain by (10)

Tp (P ) (z) =
1
2

[
(P ◦ ϕ) (ϕ′)1/p

]
(z) + SΓ

[
(P ◦ ϕ) (ϕ′)1/p

]
(z)

for almost all z ∈ Γ. Similarly, by considering (9) and taking the limit along
all nontangential paths outside Γ, by (10) we get

T̃p (P ) (z) =
1
2

[
(P ◦ ϕ1) ϕ

−2/p
1 (ϕ′1)

1/p
]
(z)− SΓ

[
(P ◦ ϕ1) ϕ

−2/p
1 (ϕ′1)

1/p
]
(z)

a.e. on Γ.
Therefore we can state the following theorem as a corollary of Theorem 5:

Theorem 6. Let Γ be a Carleson curve, 1 < p < ∞, and let ω be a weight
function on Γ. The following assertions hold:

(a) If ω ∈ Ap (Γ) and ω0 ∈ Ap (T), then the linear operator

Tp : P (D) ⊂ Ep (D, ω0) → Ep (G,ω)

is bounded.
(b) If ω ∈ Ap (Γ) and ω1 ∈ Ap (T), then the linear operator

T̃p : P (D) ⊂ Ep (D, ω1) → Ẽp

(
G−, ω

)

is bounded.



1542 ALI GUVEN AND DANIYAL M. ISRAFILOV

Hence, the operators Tp and T̃p can be extended as bounded linear operators
to Ep (D, ω0) and Ep (D, ω1) , respectively, and we have the representations

Tp (g) (z) :=
1

2πi

∫

T

g (w) (ψ′ (w))1−1/p

ψ (w)− z
dw, g ∈ Ep (D, ω0) ,

and

T̃p (g) (z) := − 1
2πi

∫

T

g (w) w−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
dw, g ∈ Ep (D, ω1) .

Lemma 1. Let Γ be a Carleson curve, 1 < p < ∞, and ω ∈ Ap (Γ). Further
let g be an analytic function in D, which has the Taylor expansion g (w) =
∞∑

k=0

αk (g)wk.

(a) If g ∈ Ep (D, ω0) and ω0 ∈ Ap (T), then Tp (g) has the p-Faber coeffi-
cients αk (g), k = 0, 1, 2, . . ..

(b) If g ∈ Ep (D, ω1) and ω0 ∈ Ap (T), then T̃p (g) has the p-Faber coeffi-
cients αk (g), k = 0, 1, 2, . . ..

Proof. Let’s prove the statement (b). The statement (a) can be proved simi-
larly.

If we set
gr (w) := g (rw) , 0 < r < 1,

and take into account that every function in E1 (D) coincides with the Poisson
integral of its boundary function, we have by [12, Theorem 10]

‖gr − g‖Lp(T,ω1)
→ 0, r → 1−,

and then the boundedness of the operator T̃p yields

(12)
∥∥∥T̃p (gr)− T̃p (g)

∥∥∥
Lp(Γ,ω)

→ 0, r → 1−.

The series
∞∑

k=0

αk (g) rkwk converges uniformly on T, hence,

T̃p (gr) (z) = − 1
2πi

∫

T

gr (w)w−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
dw

=
∞∑

k=0

αk (g) rk



−

1
2πi

∫

T

wkw−2/p (ψ′1 (w))1−1/p

ψ1 (w)− z
dw





=
∞∑

k=0

αk (g) rkF̃k,p (1/z)
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for z ∈ G−. By a simple calculation one can see that

1
2πi

∫

T

F̃m,p

(
1

ψ1(w)

)
w2/p (ψ′1 (w))1/p

wk+1
dw =

{
1, k = m
0, k 6= m

and as a corollary of this

ãk

(
T̃p (gr)

)
= αk (g) rk, k = 0, 1, 2, . . . .

Therefore,

(13) ãk

(
T̃p (gr)

)
→ αk (g) , r → 1−.

On the other hand, by Hölder’s inequality,
∣∣∣ãk

(
T̃p (gr)

)
− ãk

(
T̃p (g)

)∣∣∣

=

∣∣∣∣∣∣
1

2πi

∫

T

[
T̃p (gr)− T̃p (g)

]
(ψ1 (w))w2/p (ψ′1 (w))1/p

wk+1
dw

∣∣∣∣∣∣

≤ 1
2π

∫

T

∣∣∣
(
T̃p (gr)− T̃p (g)

)
(ψ1 (w))

∣∣∣
∣∣∣(ψ′1 (w))1/p

∣∣∣ |dw|

≤ 1
2π




∫

T

∣∣∣
(
T̃p (gr)− T̃p (g)

)
(ψ1 (w))

∣∣∣
p

ω (ψ1 (w)) |ψ′1 (w)| |dw|



1/p

×



∫

T

[ω (ψ1 (w))]−1/p−1 |dw|



1−1/p

=
1
2π

∥∥∥T̃p (gr)− T̃p (g)
∥∥∥

Lp(Γ,ω)




∫

T

[ω1 (w)]−1/p−1 |dw|



1−1/p

,

and by (12)

ãk

(
T̃p (gr)

)
→ ãk

(
T̃p (g)

)

as r → 1−. This and (13) yield that

ãk

(
T̃p (g)

)
= αk (g) , k = 0, 1, 2, . . .

which proves the part (b) of Lemma 1. ¤
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3. Proofs of the main results

We need the following lemma to prove Theorem 1 and Theorem 2.

Lemma 2. Let ω ∈ Ap (T), 1 < p < ∞, and let {λk}∞0 be a sequence which
satisfies the condition (5). If the function g ∈ Ep (D, ω) has the Taylor series

g (w) =
∞∑

k=0

αk (g)wk, w ∈ D,

then there exists a function g∗ ∈ Ep (D, ω) which has the Taylor series

g∗ (w) =
∞∑

k=0

λkαk (g) wk, w ∈ D,

and satisfies ‖g∗‖Lp(T,ω) ≤ c8 ‖g‖Lp(T,ω).

Proof. Let ck (g) (k = . . . ,−1, 0, 1, . . .) denote the Fourier coefficients of the
boundary function of g. By Theorem 3.4 in [3, p. 38] we have

ck (g) =
{

αk (g) , k ≥ 0
0, k < 0.

By Theorem 2 of [9], there is a function h ∈ Lp (T, ω) with Fourier coefficients
ck (h) = λkck (g) and ‖h‖Lp(T,ω) ≤ c9 ‖g‖Lp(T,ω) . If we take g∗ := h+, then
g∗ ∈ Ep (D, ω). For Taylor coefficients of g∗, we have by (11)

αk (g∗) = αk

(
h+

)
=

1
2πi

∫

T

h+ (w)
wk+1

dw =
1

2πi

∫

T

h (w)
wk+1

dw +
1

2πi

∫

T

h− (w)
wk+1

dw

=
1

2πi

∫

T

h (w)
wk+1

dw = ck (h) = λkck (g) = λkαk (g)

for k = 0, 1, 2, . . .. On the other hand,

‖g∗‖Lp(T,ω) =
∥∥h+

∥∥
Lp(T,ω)

≤ c10 ‖h‖Lp(T,ω) ≤ c11 ‖g‖Lp(T,ω) ,

and the lemma is proved. ¤

We set for f ∈ Ep (G,ω)

f0 (w) := f (ψ (w)) (ψ′ (w))1/p
, w ∈ T,

and for f ∈ Ẽp (G−, ω)

f1 (w) := f (ψ1 (w)) (ψ′1 (w))1/p
w2/p, w ∈ T.

It is clear that f0 ∈ Lp (T, ω0) and f1 ∈ Lp (T, ω1) . Hence, if ω0, ω1 ∈ Ap (T) ,
then f+

0 ∈ Ep (D, ω0) , f−0 ∈ Ep (D−, ω0) , f+
1 ∈ Ep (D, ω1) , f−1 ∈ Ep (D−, ω1) .
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Proof of Theorem 1. Let f ∈ Ep (G, ω) . By the definitions of the coefficients
ak (f) and f0 from (11), we get

ak (f) =
1

2πi

∫

T

f0 (w)
wk+1

dw =
1

2πi

∫

T

f+
0 (w)
wk+1

dw − 1
2πi

∫

T

f−0 (w)
wk+1

dw

=
1

2πi

∫

T

f+
0 (w)
wk+1

dw = αk

(
f+
0

)

for k = 0, 1, 2, . . . . This means that the p-Faber coefficients of f are the Taylor
coefficients of f+

0 at the origin, that is,

f+
0 (w) =

∞∑

k=0

ak (f) wk, w ∈ D.

By Lemma 2, there is a function F0 ∈ Ep (D, ω0) which has the Taylor coeffi-
cients αk (F0) = λkak (f) for k = 0, 1, 2, . . . , and

‖F0‖Lp(T,ω0)
≤ c12

∥∥f+
0

∥∥
Lp(T,ω0)

.

Hence, Tp (F0) ∈ Ep (G,ω) and by Lemma 1 the p-Faber coefficients of Tp (F0)
are αk (F0) = λkak (f) , that is,

Tp (F0) (z) ∼
∞∑

k=0

λkak (f) Fk,p (z) , z ∈ G.

On the other hand, boundedness of Tp, (10) and the boundedness of the Cauchy
singular operator in Lp (T, ω0) yield

‖Tp (F0)‖Lp(Γ,ω) ≤ ‖Tp‖ ‖F0‖Lp(T,ω0)
≤ c13

∥∥f+
0

∥∥
Lp(T,ω0)

≤ c14 ‖f0‖Lp(T,ω0)
= c14 ‖f‖Lp(Γ,ω) .

Hence taking F := Tp (F0) finishes the proof of Theorem 1. ¤

Proof of Theorem 2. By considering the formula of the p-Faber coefficients of
f ∈ Ẽp (G−, ω) ,

ãk (f) =
1

2πi

∫

T

f1 (w)
wk+1

dw =
1

2πi

∫

T

f+
1 (w)
wk+1

dw − 1
2πi

∫

T

f−1 (w)
wk+1

dw

=
1

2πi

∫

T

f+
1 (w)
wk+1

dw = αk

(
f+
1

)
,

i.e., the p-Faber coefficients of f are the Taylor coefficients of f+
1 . By Lemma 2,

there exists a function F1 ∈ Ep (D, ω1) such that

F1 (w) =
∞∑

k=0

λkãk (f) wk, w ∈ D,
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and
‖F1‖Lp(T,ω1)

≤ c15

∥∥f+
1

∥∥
Lp(T,ω1)

.

Setting F := T̃p (F1) , we obtain by Lemma 1

F (z) ∼
∞∑

k=1

λkãk (f) F̃k,p (1/z) , z ∈ G−,

and by boundedness of T̃p and (10) we obtain

‖F‖Lp(Γ,ω) =
∥∥∥T̃p (F1)

∥∥∥
Lp(Γ,ω)

≤
∥∥∥T̃p

∥∥∥ ‖F1‖Lp(T,ω1)

≤ c15

∥∥f+
1

∥∥
Lp(T,ω1)

≤ c16 ‖f1‖Lp(T,ω1)
= c16 ‖f‖Lp(Γ,ω) ,

since the singular operator is bounded in Lp (T, ω1) . ¤

Proof of Theorem 3. Let {rk}∞0 be the sequence of Rademacher functions and
let t ∈ [0, 1] be not dyadic rational number. If we set λ0 := r0 (t) and

λj := rk (t) , 2k−1 ≤ j < 2k,

then the sequence {λj}∞0 satisfies the condition (5) . By Theorem 1 there exists
a function F ∈ Ep (G,ω) such that

F (z) ∼
∞∑

j=0

λjaj (f)Fj,p (z) =
∞∑

k=0

rk (t)∆k,p (f) (z)

and
‖F‖Lp(Γ,ω) ≤ c17 ‖f‖Lp(Γ,ω) .

On the other hand, since

F (z) ∼
∞∑

k=0

rk (t)∆k,p (f) (z)

and {λj}∞0 satisfies (5) , there is F ∗ ∈ Ep (G,ω) for which

F ∗ (z) ∼
∞∑

k=0

λkrk (t)∆k,p (f) (z) =
∞∑

k=0

ak (f) Fk,p (z)

and
‖F ∗‖Lp(Γ,ω) ≤ c18 ‖F‖Lp(Γ,ω)

holds. Since there is no two different functions in Ep (G,ω) have the same
p-Faber series we have F ∗ = f and hence

c19 ‖f‖Lp(Γ,ω) ≤ ‖F‖Lp(Γ,ω) ≤ c17 ‖f‖Lp(Γ,ω) .

From this we obtain

(14) c20 ‖f‖p
Lp(Γ,ω) ≤

∫

Γ

∣∣∣∣∣
∞∑

k=0

rk (t) ∆k,p (f) (z)

∣∣∣∣∣

p

ω (z) |dz| ≤ c21 ‖f‖p
Lp(Γ,ω) .
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By Theorem 8.4 in [16, Vol I, p. 213] we get

(15)

c22

( ∞∑

k=0

|∆k,p (f) (z)|2
)1/2

≤



1∫

0

∣∣∣∣∣
∞∑

k=0

rk (t)∆k,p (f) (z)

∣∣∣∣∣

p

dt




1/p

≤ c23

( ∞∑

k=0

|∆k,p (f) (z)|2
)1/2

.

If we integrate all sides of (14) over [0, 1] , change the order of integration and
use (15) we obtain (6). ¤

Proof of Theorem 4 is similar to that of Theorem 3.

Let Γ be a Carleson curve, 1 < p < ∞ and ω ∈ Ap (Γ) . For f ∈ Lp (Γ, ω) we
have f+ ∈ Ep (G, ω) and f− ∈ Ẽp (G−, ω) . Hence we can associate the series

f+ (z) ∼
∞∑

k=0

ak

(
f+

)
Fk,p (z) , z ∈ G

and

f− (z) ∼
∞∑

k=1

ãk

(
f−

)
F̃k,p (1/z) , z ∈ G−.

Since f = f+−f− almost everywhere on Γ, we can associate with f the formal
series

(16) f (z) ∼
∞∑

k=0

ak

(
f+

)
Fk,p (z)−

∞∑

k=1

ãk

(
f−

)
F̃k,p (1/z)

almost everywhere on Γ. This series is called the p-Faber-Laurent series of the
function f ∈ Lp (Γ, ω) (see [6]).

We can state the following corollary of Theorem 1 and Theorem 2.

Corollary. Let Γ be a Carleson curve, 1 < p < ∞, ω ∈ Ap (Γ) and ω0, ω1 ∈
Ap (T). If f ∈ Lp (Γ, ω) has the p-Faber-Laurent series (16) and {λk}∞0 is a
sequence of complex numbers which satisfies the condition (5), then there exists
a function F ∈ Lp (Γ, ω) which has the p-Faber-Laurent series

F (z) ∼
∞∑

k=0

λkak

(
f+

)
Fk,p (z)−

∞∑

k=1

λkãk

(
f−

)
F̃k,p (1/z)

and satisfies ‖F‖Lp(Γ,ω) ≤ c24 ‖f‖Lp(Γ,ω) .
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