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We introduce the notion of a parametric 𝑆-metric space as generalization of a parametric metric space. Using some expansive
mappings, we prove a fixed-point theorem on a parametric 𝑆-metric space. It is important to obtain new fixed-point theorems on
a parametric 𝑆-metric space because there exist some parametric 𝑆-metrics which are not generated by any parametric metric. We
expect thatmanymathematicians will study various fixed-point theorems using new expansivemappings (or contractivemappings)
in a parametric 𝑆-metric space.

1. Introduction and Backgrounds

Contractive conditions have been started by studying
Banach’s contraction principle. These conditions have been
used in various fixed-point theorems for some generalized
metric spaces.Then expansive conditions were introduced [1]
and new fixed-point results were obtained using expansive
mappings.

Recently, the notion of an 𝑆-metric has been studied by
some mathematicians.This notion was introduced by Sedghi
et al. in 2012 [2] as follows.

Definition 1 (see [2]). Let 𝑋 be a nonempty set and let 𝑆 :
𝑋 ×𝑋×𝑋 → [0,∞) be a function. 𝑆 is called an 𝑆-metric on
𝑋 if,

(𝑆1) 𝑆(𝑎, 𝑏, 𝑐) = 0 if and only if 𝑎 = 𝑏 = 𝑐,
(𝑆2) 𝑆(𝑎, 𝑏, 𝑐) ≤ 𝑆(𝑎, 𝑎, 𝑥) + 𝑆(𝑏, 𝑏, 𝑥) + 𝑆(𝑐, 𝑐, 𝑥),

for each 𝑎, 𝑏, 𝑐, 𝑥 ∈ 𝑋. The pair (𝑋, 𝑆) is called an 𝑆-metric
space.

Using the notion of an 𝑆-metric space, various meaning-
ful fixed-point studieswere obtained by some researchers (see
[2–6] for more details).

The relationship between a metric and an 𝑆-metric was
studied and an example of an 𝑆-metric which is not generated
by any metric was given in [3, 4].

Later, the notion of a parametric metric space was
introduced and some basic concepts such as a convergent
sequence and a Cauchy sequence were defined in [7]. We
recall the following definitions.

Definition 2 (see [7]). Let 𝑋 be a nonempty set and let 𝑃 :
𝑋×𝑋×(0,∞) → [0,∞) be a function.𝑃 is called a parametric
metric on𝑋 if,

(𝑃1) 𝑃(𝑎, 𝑏, 𝑡) = 0 if and only if 𝑎 = 𝑏,
(𝑃2) 𝑃(𝑎, 𝑏, 𝑡) = 𝑃(𝑏, 𝑎, 𝑡),
(𝑃3) 𝑃(𝑎, 𝑏, 𝑡) ≤ 𝑃(𝑎, 𝑥, 𝑡) + 𝑃(𝑥, 𝑏, 𝑡),

for each 𝑎, 𝑏, 𝑥 ∈ 𝑋 and all 𝑡 > 0. The pair (𝑋, 𝑃) is called a
parametric metric space.

Definition 3 (see [7]). Let (𝑋, 𝑃) be a parametric metric space
and let {𝑎𝑛} be a sequence in𝑋:

(1) {𝑎𝑛} converges to 𝑥 if and only if there exists 𝑛0 ∈ N

such that

𝑃 (𝑎𝑛, 𝑥, 𝑡) < 𝜀, (1)
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for all 𝑛 ≥ 𝑛0 and all 𝑡 > 0; that is,

lim
𝑛→∞

𝑃 (𝑎𝑛, 𝑥, 𝑡) = 0. (2)

It is denoted by lim𝑛→∞𝑎𝑛 = 𝑥.
(2) {𝑎𝑛} is called a Cauchy sequence if, for all 𝑡 > 0,

lim
𝑛,𝑚→∞

𝑃 (𝑎𝑛, 𝑎𝑚, 𝑡) = 0. (3)

(3) (𝑋, 𝑃) is called complete if every Cauchy sequence is
convergent.

In the following definition, the concept of a parametric
𝑏-metric space as generalization of a parametric metric space
was given.

Definition 4 (see [8]). Let 𝑋 be a nonempty set, let 𝑠 ≥ 1 be
a real number, and let 𝑃 : 𝑋 × 𝑋 × (0,∞) → [0,∞) be a
function. 𝑃 is called a parametric 𝑏-metric on𝑋 if,

(𝑃𝑏1) 𝑃(𝑎, 𝑏, 𝑡) = 0 if and only if 𝑎 = 𝑏,
(𝑃𝑏2) 𝑃(𝑎, 𝑏, 𝑡) = 𝑃(𝑏, 𝑎, 𝑡),
(𝑃𝑏3) 𝑃(𝑎, 𝑏, 𝑡) ≤ 𝑠[𝑃(𝑎, 𝑥, 𝑡) + 𝑃(𝑥, 𝑏, 𝑡)],

for each 𝑎, 𝑏, 𝑥 ∈ 𝑋 and all 𝑡 > 0. The pair (𝑋, 𝑃) is called a
parametric 𝑏-metric space.

Notice that a parametric 𝑏-metric is sometimes called a
parametric 𝑠-metric according to a real number 𝑠 ≥ 1 in the
above definition (see [9]).

Some fixed-point theorems have been still investigated
using the notions of a parametric metric space and a para-
metric 𝑏-metric space for various contractive or expansive
mappings (see [7–10] for more details). For example, Hus-
sain et al. proved some fixed-point theorems on complete
parametric metric spaces and triangular intuitionistic fuzzy
metric spaces [7]. Also, Hussain et al. introduced the notion
of parametric 𝑏-metric space and investigated some fixed-
point results [8]. Jain et al. established some fixed-point,
common fixed-point, and coincidence point theorems for
expansive type mappings on parametric metric spaces and
parametric 𝑏-metric spaces [10]. Rao et al. obtained two
commonfixed-point theorems on parametric 𝑠-metric spaces
[9].

The aim of this paper is to introduce the concept of a
parametric 𝑆-metric and give some basic facts. We give two
examples of a parametric 𝑆-metric which is not generated
by any parametric metric. We prove some fixed-point results
under various expansive mappings in a parametric 𝑆-metric
space. Also, we verify our results with some examples.

2. Parametric 𝑆-Metric Spaces

In this section, we introduce the notion of “a parametric 𝑆-
metric space” and give some basic properties of this space.
Also, we investigate a relationship between a parametric
metric and a parametric 𝑆-metric (resp., a parametric 𝑏-
metric and a parametric 𝑆-metric).

Definition 5. Let 𝑋 be a nonempty set and let 𝑃𝑆 : 𝑋 × 𝑋 ×
𝑋 × (0,∞) → [0,∞) be a function. 𝑃𝑆 is called a parametric
𝑆-metric on𝑋 if,

(𝑃𝑆1) 𝑃𝑆(𝑎, 𝑏, 𝑐, 𝑡) = 0 if and only if 𝑎 = 𝑏 = 𝑐,
(𝑃𝑆2) 𝑃𝑆(𝑎, 𝑏, 𝑐, 𝑡) ≤ 𝑃𝑆(𝑎, 𝑎, 𝑥, 𝑡) + 𝑃𝑆(𝑏, 𝑏, 𝑥, 𝑡) +
𝑃𝑆(𝑐, 𝑐, 𝑥, 𝑡),

for each 𝑎, 𝑏, 𝑐 ∈ 𝑋 and all 𝑡 > 0. The pair (𝑋, 𝑃𝑆) is called a
parametric 𝑆-metric space.

Now we give the following examples of parametric 𝑆-
metric spaces.

Example 6. Let𝑋 = {𝑓 | 𝑓 : (0,∞) → R be a function} and
let the function 𝑃𝑆 : 𝑋 ×𝑋×𝑋× (0,∞) → [0,∞) be defined
by

𝑃𝑆 (𝑓, 𝑔, ℎ, 𝑡) = 󵄨󵄨󵄨󵄨𝑓 (𝑡) − ℎ (𝑡)󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡) − ℎ (𝑡)󵄨󵄨󵄨󵄨 , (4)

for each 𝑓, 𝑔, ℎ ∈ 𝑋 and all 𝑡 > 0. Then 𝑃𝑆 is a parametric
𝑆-metric and the pair (𝑋, 𝑃𝑆) is a parametric 𝑆-metric space.

Example 7. Let 𝑋 = R and let the function 𝑃𝑆 : 𝑋 × 𝑋 × 𝑋 ×
(0,∞) → [0,∞) be defined by

𝑃𝑆 (𝑎, 𝑏, 𝑐, 𝑡) = 𝑔 (𝑡) (|𝑎 − 𝑏| + |𝑏 − 𝑐| + |𝑎 − 𝑐|) , (5)

for each 𝑎, 𝑏, 𝑐 ∈ R and all 𝑡 > 0, where 𝑔 : (0,∞) → (0,∞) is
a continuous function. Then 𝑃𝑆 is a parametric 𝑆-metric and
the pair (R, 𝑃𝑆) is a parametric 𝑆-metric space.

Example 8. Let 𝑋 = R+ ∪ {0} and let the function 𝑃𝑆 : 𝑋 ×
𝑋 × 𝑋 × (0,∞) → [0,∞) be defined by

𝑃𝑆 (𝑎, 𝑏, 𝑐, 𝑡) =
{
{
{

0; if 𝑎 = 𝑏 = 𝑐,
𝑔 (𝑡)max {𝑎, 𝑏, 𝑐} ; otherwise,

(6)

for each 𝑎, 𝑏, 𝑐 ∈ 𝑋 and all 𝑡 > 0, where𝑔 : (0,∞) → (0,∞) is
a continuous function. Then 𝑃𝑆 is a parametric 𝑆-metric and
the pair (𝑋, 𝑃𝑆) is a parametric 𝑆-metric space.

We prove the following lemma which can be considered
as the symmetry condition in a parametric 𝑆-metric space.

Lemma 9. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space. Then
we have

𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) = 𝑃𝑆 (𝑏, 𝑏, 𝑎, 𝑡) , (7)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0.

Proof. Using the condition (𝑃𝑆2), we obtain

𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) ≤ 2𝑃𝑆 (𝑎, 𝑎, 𝑎, 𝑡) + 𝑃𝑆 (𝑏, 𝑏, 𝑎, 𝑡)
= 𝑃𝑆 (𝑏, 𝑏, 𝑎, 𝑡) ,

𝑃𝑆 (𝑏, 𝑏, 𝑎, 𝑡) ≤ 2𝑃𝑆 (𝑏, 𝑏, 𝑏, 𝑡) + 𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡)
= 𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) .

(8)
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From inequalities (8), we have

𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) = 𝑃𝑆 (𝑏, 𝑏, 𝑎, 𝑡) . (9)

Now we give the relationship between a parametric
metric and a parametric 𝑆-metric in the following lemma.

Lemma 10. Let (𝑋, 𝑃) be a parametric metric space and let the
function 𝑃𝑃𝑆 : 𝑋 × 𝑋 × 𝑋 × (0,∞) → [0,∞) be defined by

𝑃𝑃𝑆 (𝑎, 𝑏, 𝑐, 𝑡) = 𝑃 (𝑎, 𝑐, 𝑡) + 𝑃 (𝑏, 𝑐, 𝑡) , (10)

for each 𝑎, 𝑏, 𝑐 ∈ 𝑋 and all 𝑡 > 0. Then 𝑃𝑃𝑆 is a parametric
𝑆-metric and the pair (𝑋, 𝑃𝑃𝑆 ) is a parametric 𝑆-metric space.

Proof. It can be easily seen from Definitions 2 and 5.

We call the parametric metric 𝑃𝑃𝑆 as the parametric 𝑆-
metric generated by 𝑃. Notice that there exist parametric 𝑆-
metrics 𝑃𝑆 satisfying 𝑃𝑆 ̸= 𝑃𝑃𝑆 for all parametric metrics. We
give some examples.

Example 11. Let𝑋 = R and let the function 𝑃𝑆 : 𝑋 ×𝑋 ×𝑋×
(0,∞) → [0,∞) be defined by

𝑃𝑆 (𝑎, 𝑏, 𝑐, 𝑡) = 𝑡 (|𝑎 − 𝑐| + |𝑎 + 𝑐 − 2𝑏|) , (11)

for each 𝑎, 𝑏, 𝑐 ∈ R and all 𝑡 > 0. Then 𝑃𝑆 is a parametric 𝑆-
metric and the pair (R, 𝑃𝑆) is a parametric 𝑆-metric space.We
have 𝑃𝑆 ̸= 𝑃𝑃𝑆 ; that is, 𝑃𝑆 is not generated by any parametric
metric 𝑃.

Example 12. Let 𝑋 = {𝑓 | 𝑓 : (0,∞) → R be a function}
and let the function 𝑃𝑆 : 𝑋 × 𝑋 × 𝑋 × (0,∞) → [0,∞) be
defined by

𝑃𝑆 (𝑓, 𝑔, ℎ, 𝑡) =
󵄨󵄨󵄨󵄨󵄨𝑒
𝑓(𝑡) − 𝑒ℎ(𝑡)󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨𝑒
𝑓(𝑡) + 𝑒ℎ(𝑡) − 2𝑒𝑔(𝑡)󵄨󵄨󵄨󵄨󵄨 , (12)

for each 𝑓, 𝑔, ℎ ∈ 𝑋 and all 𝑡 > 0. Then 𝑃𝑆 is a parametric 𝑆-
metric and the pair (𝑋, 𝑃𝑆) is a parametric 𝑆-metric space.We
have 𝑃𝑆 ̸= 𝑃𝑃𝑆 ; that is, 𝑃𝑆 is not generated by any parametric
metric 𝑃.

In the following lemma, we see the relationship between
a parametric 𝑏-metric and a parametric 𝑆-metric.

Lemma 13. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space and let
the function 𝑃 : 𝑋 × 𝑋 × (0,∞) → [0,∞) be defined by

𝑃 (𝑎, 𝑏, 𝑡) = 𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) , (13)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0. Then 𝑃 is a parametric 𝑏-metric
and the pair (𝑋, 𝑃) is a parametric 𝑏-metric space.

Proof. Using condition (𝑃𝑆1), we see that conditions (𝑃𝑏1)
and (𝑃𝑏2) are satisfied. Now we show that condition (𝑃𝑏3) is
satisfied. Using condition (𝑃𝑆2) and Lemma 9, we have

𝑃 (𝑎, 𝑥, 𝑡) = 𝑃𝑆 (𝑎, 𝑎, 𝑥, 𝑡)
≤ 2𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) + 𝑃𝑆 (𝑥, 𝑥, 𝑏, 𝑡)
= 2𝑃 (𝑎, 𝑏, 𝑡) + 𝑃 (𝑏, 𝑥, 𝑡) ,

𝑃 (𝑎, 𝑥, 𝑡) = 𝑃𝑆 (𝑥, 𝑥, 𝑎, 𝑡)
≤ 2𝑃𝑆 (𝑥, 𝑥, 𝑏, 𝑡) + 𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡)
= 𝑃 (𝑎, 𝑏, 𝑡) + 2𝑃 (𝑏, 𝑥, 𝑡) ,

(14)

which implies that

𝑃 (𝑎, 𝑥, 𝑡) ≤ 3
2 [𝑃 (𝑎, 𝑏, 𝑡) + 𝑃 (𝑏, 𝑥, 𝑡)] . (15)

Then 𝑃 is a parametric 𝑏-metric with 𝑠 = 3/2.

Remark 14. Notice that the minimum value of 𝑠 is 3/2. So it
should be 𝑠 ̸= 1; that is, 𝑃 does not define a parametric metric
in Lemma 13.

Definition 15. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space and
let {𝑎𝑛} be a sequence in𝑋:

(1) {𝑎𝑛} converges to 𝑥 if and only if there exists 𝑛0 ∈ N

such that

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑥, 𝑡) < 𝜀, (16)

for all 𝑛 ≥ 𝑛0 and all 𝑡 > 0; that is,
lim
𝑛→∞

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑥, 𝑡) = 0. (17)

It is denoted by lim𝑛→∞𝑎𝑛 = 𝑥.
(2) {𝑎𝑛} is called a Cauchy sequence if, for all 𝑡 > 0,

lim
𝑛,𝑚→∞

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑚, 𝑡) = 0. (18)

(3) (𝑋, 𝑃𝑆) is called complete if every Cauchy sequence is
convergent.

Lemma 16. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space. If {𝑎𝑛}
converges to 𝑥, then 𝑥 is unique.

Proof. Let lim𝑛→∞𝑎𝑛 = 𝑥 and let lim𝑛→∞𝑎𝑛 = 𝑦 with 𝑥 ̸= 𝑦.
Then there exists 𝑛1, 𝑛2 ∈ N such that

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑥, 𝑡) <
𝜀
4 ,

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑦, 𝑡) <
𝜀
2 ,

(19)

for each 𝜀 > 0, all 𝑡 > 0, and 𝑛 ≥ 𝑛1, 𝑛2. If we take 𝑛0 =
max{𝑛1, 𝑛2}, then, using condition (𝑃𝑆2) and Lemma 9, we
get

𝑃𝑆 (𝑥, 𝑥, 𝑦, 𝑡) ≤ 2𝑃𝑆 (𝑥, 𝑥, 𝑎𝑛, 𝑡) + 𝑃𝑆 (𝑦, 𝑦, 𝑎𝑛, 𝑡)

< 𝜀
2 + 𝜀

2 = 𝜀,
(20)

for each 𝑛 ≥ 𝑛0. Therefore 𝑃𝑆(𝑥, 𝑥, 𝑦, 𝑡) = 0 and 𝑥 = 𝑦.
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Lemma 17. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space. If {𝑎𝑛}
converges to 𝑥, then {𝑎𝑛} is Cauchy.

Proof. By the similar arguments used in the proof of
Lemma 16, we can easily see that {𝑎𝑛} is a Cauchy se-
quence.

As a consequence of Lemma 10 and Definition 15, we
obtain the following corollary.

Corollary 18. Let (𝑋, 𝑃) be a parametric metric space and let
(𝑋, 𝑃𝑃𝑆 ) be a parametric 𝑆-metric space, where 𝑃𝑃𝑆 is generated
by parametric metric 𝑃. Then we have the following:

(1) {𝑎𝑛} → 𝑥 in (𝑋, 𝑃) if and only if {𝑎𝑛} → 𝑥 in (𝑋, 𝑃𝑃𝑆 ).
(2) {𝑎𝑛} is Cauchy in (𝑋, 𝑃) if and only if {𝑎𝑛} is Cauchy in

(𝑋, 𝑃𝑃𝑆 ).
(3) (𝑋, 𝑃) is complete if and only if (𝑋, 𝑃𝑃𝑆 ) is complete.

Definition 19. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space and
let 𝑇 : 𝑋 → 𝑋 be a self-mapping of 𝑋. 𝑇 is said to be a
continuous mapping at 𝑥 in𝑋 if

lim
𝑛→∞

𝑃𝑆 (𝑇𝑎𝑛, 𝑇𝑎𝑛, 𝑇𝑥, 𝑡) = 0, (21)

for any sequence {𝑎𝑛} in𝑋 and all 𝑡 > 0 such that

lim
𝑛→∞

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑥, 𝑡) = 0. (22)

3. Some Fixed-Point Results

In this section, we give some fixed-point results for expansive
mappings in a complete parametric 𝑆-metric space.

Definition 20. Let (𝑋, 𝑃𝑆) be a parametric 𝑆-metric space and
let 𝑇 be a self-mapping of𝑋.

(𝑆𝑃1)There exist real numbers 𝑘𝑖 (𝑖 ∈ {1, 2, 3}) satisfying
𝑘i ≥ 0 (𝑖 ∈ {2, 3}) and 𝑘1 > 1 such that

𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑇𝑏, 𝑡) ≥ 𝑘1𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡)
+ 𝑘2𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑎, 𝑡)
+ 𝑘3𝑃𝑆 (𝑇𝑏, 𝑇𝑏, 𝑏, 𝑡) ,

(23)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0.

Theorem 21. Let (𝑋, 𝑃𝑆) be a complete parametric 𝑆-metric
space and let 𝑇 be a surjective self-mapping of 𝑋. If 𝑇 satisfies
condition (𝑆𝑃1), then 𝑇 has a unique fixed point in𝑋.

Proof. Using the hypothesis, it can be easily seen that 𝑇 is
injective. Indeed, if we take 𝑇𝑎 = 𝑇𝑏, then, using condition
(𝑆𝑃1), we get

0 = 𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑇𝑎, 𝑡)
≥ 𝑘1𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) + 𝑘2𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑎, 𝑡)

+ 𝑘3𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑏, 𝑡) ,
(24)

for all 𝑡 > 0 and so 𝑃𝑆(𝑎, 𝑎, 𝑏, 𝑡) = 0; that is, we have 𝑎 = 𝑏
since 𝑘1 > 1.

Let us denote the inverse mapping of 𝑇 by 𝐹. Let 𝑎0 ∈ 𝑋
and define the sequence {𝑎𝑛} as follows:

𝑎1 = 𝐹𝑎0,

𝑎2 = 𝐹𝑎1 = 𝐹2𝑎0, . . . , 𝑎𝑛+1 = 𝐹𝑎𝑛 = 𝐹𝑛+1𝑎0, . . . .
(25)

Suppose that 𝑎𝑛 ̸= 𝑎𝑛+1 for all 𝑛. Using condition (𝑆𝑃1) and
Lemma 9, we have

𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛, 𝑡)

= 𝑃𝑆 (𝑇𝑇−1𝑎𝑛−1, 𝑇𝑇−1𝑎𝑛−1, 𝑇𝑇−1𝑎𝑛, 𝑡)

≥ 𝑘1𝑃𝑆 (𝑇−1𝑎𝑛−1, 𝑇−1𝑎𝑛−1, 𝑇−1𝑎𝑛, 𝑡)

+ 𝑘2𝑃𝑆 (𝑇𝑇−1𝑎𝑛−1, 𝑇𝑇−1𝑎𝑛−1, 𝑇−1𝑎𝑛−1, 𝑡)

+ 𝑘3𝑃𝑆 (𝑇𝑇−1𝑎𝑛, 𝑇𝑇−1𝑎𝑛, 𝑇−1𝑎𝑛, 𝑡)

= 𝑘1𝑃𝑆 (𝐹𝑎𝑛−1, 𝐹𝑎𝑛−1, 𝐹𝑎𝑛, 𝑡)

+ 𝑘2𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝐹𝑎𝑛−1, 𝑡)

+ 𝑘3𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝐹𝑎𝑛, 𝑡)

= 𝑘1𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1) + 𝑘2𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛, 𝑡)

+ 𝑘3𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡)

= (𝑘1 + 𝑘3) 𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡)

+ 𝑘2𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛, 𝑡) ,

(26)

which implies that

(1 − 𝑘2) 𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛, 𝑡)

≥ (𝑘1 + 𝑘3) 𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡) .
(27)

Clearly, we have 𝑘1 + 𝑘3 ̸= 0. Hence, we obtain

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡) ≤
1 − 𝑘2
𝑘1 + 𝑘3

𝑃𝑆 (𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛, 𝑡) . (28)

If we put 𝑘 = (1 − 𝑘2)/(𝑘1 + 𝑘3), then we get 𝑘 < 1, since
𝑘1 + 𝑘2 + 𝑘3 > 1. Repeating this process in condition (28), we
find

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡) ≤ 𝑘𝑛𝑃𝑆 (𝑎0, 𝑎0, 𝑎1, 𝑡) , (29)

for all 𝑡 > 0.
Let 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛 ≥ 1. Using inequality (29) and

condition (𝑃𝑆2), we have

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑚, 𝑡) ≤
2𝑘𝑛
1 − 𝑘𝑃𝑆 (𝑎0, 𝑎0, 𝑎1, 𝑡) . (30)

If we take limit for 𝑛,𝑚 → ∞, we obtain

lim
𝑛,𝑚→∞

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑚, 𝑡) = 0. (31)
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Therefore {𝑎𝑛} is Cauchy. Then there exists 𝑦 ∈ 𝑋 such that

lim
𝑛→∞

𝑎𝑛 = 𝑦, (32)

since (𝑋, 𝑃𝑆) is a complete parametric 𝑆-metric space. Using
the surjectivity hypothesis, there exists a point 𝑥 ∈ 𝑋 such
that 𝑇𝑥 = 𝑦. From condition (𝑆𝑃1), we have

𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑦, 𝑡) = 𝑃𝑆 (𝑇𝑎𝑛+1, 𝑇𝑎𝑛+1, 𝑇𝑥, 𝑡)

≥ 𝑘1𝑃𝑆 (𝑎𝑛+1, 𝑎𝑛+1, 𝑥, 𝑡)

+ 𝑘2𝑃𝑆 (𝑎𝑛, 𝑎𝑛, 𝑎𝑛+1, 𝑡)

+ 𝑘3𝑃𝑆 (𝑦, 𝑦, 𝑥, 𝑡) .

(33)

If we take limit for 𝑛 → ∞, we obtain

0 ≥ (𝑘1 + 𝑘3) 𝑃𝑆 (𝑦, 𝑦, 𝑥, 𝑡) , (34)

which implies that 𝑦 = 𝑥 and 𝑇𝑦 = 𝑦.
Now we show the uniqueness of 𝑦. Let 𝑧 be another fixed

point of 𝑇 with 𝑦 ̸= 𝑧. Using condition (𝑆𝑃1) and Lemma 9,
we get

𝑃𝑆 (𝑦, 𝑦, 𝑧, 𝑡) = 𝑃𝑆 (𝑇𝑦, 𝑇𝑦, 𝑇𝑧, 𝑡)

≥ 𝑘1𝑃𝑆 (𝑦, 𝑦, 𝑧, 𝑡) + 𝑘2𝑃𝑆 (𝑦, 𝑦, 𝑦, 𝑡)

+ 𝑘3𝑃𝑆 (𝑧, 𝑧, 𝑧, 𝑡) = 𝑘1𝑃𝑆 (𝑦, 𝑦, 𝑧, 𝑡) ,

(35)

which implies that 𝑦 = 𝑧, since 𝑘1 > 1. Consequently, 𝑇 has a
unique fixed point 𝑦.

We give some examples which satisfy the conditions of
Theorem 21.

Example 22. Let𝑋 = R+∪{0} be the complete 𝑆-metric space
with the 𝑆-metric defined in Example 8. Let us define the self-
mapping 𝑇 : R+ ∪ {0} → R+ ∪ {0} as

𝑇𝑥 = 𝛽𝑥, (36)

for all 𝑥 ∈ R with 𝛽 > 1, and the function 𝑔 : (0,∞) →
(0,∞) as

𝑔 (𝑡) = 𝑡2, (37)

for all 𝑡 ∈ (0,∞). Then 𝑇 satisfies the conditions of
Theorem 21 with 𝑘1 = 𝛽 and 𝑘2 = 𝑘3 = 0. Then 𝑇 has a
unique fixed point 𝑥 = 0 in𝑋.

Example 23. Let𝑋 = R+∪{0} be the complete 𝑆-metric space
with the 𝑆-metric defined in Example 8. Let us define the self-
mapping 𝑇 : R+ ∪ {0} → R+ ∪ {0} as

𝑇𝑥 = 𝑥 + ln (𝑥 + 1) , (38)

for all 𝑥 ∈ R with 𝛽 > 1, and the function 𝑔 : (0,∞) →
(0,∞) as

𝑔 (𝑡) = 𝑡3 + 𝑡2 + 𝑡 + 1, (39)

for all 𝑡 ∈ (0,∞). Then 𝑇 satisfies the conditions of
Theorem 21 with 𝑘1 = min{ln(𝑥 + 1)/𝑥 : 𝑥 ̸= 0 ∈ 𝑋} and
𝑘2 = 𝑘3 = 0. Then 𝑇 has a unique fixed point 𝑥 = 0 in𝑋.

If we take 𝑘2 = 𝑘3 in condition (𝑆𝑃1), then we obtain the
following corollary.

Corollary 24. Let (𝑋, 𝑃𝑆) be a complete parametric 𝑆-metric
space and let 𝑇 be a surjective self-mapping of 𝑋. If there exist
real numbers 𝑘𝑖 (𝑖 ∈ {1, 2}) satisfying 𝑘1 > 1 and 𝑘2 ≥ 0 such
that

𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑇𝑏, 𝑡)
≥ 𝑘1𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡)

+ 𝑘2max {𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑎, 𝑡) , 𝑃𝑆 (𝑇𝑏, 𝑇𝑏, 𝑏, 𝑡)} ,
(40)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0, then 𝑇 has a unique fixed point
in 𝑋.

If we take 𝑘1 = 𝑘 and 𝑘2 = 𝑘3 = 0 and 𝑘1 = 𝑘 and 𝑘2 = 0
in Theorem 21 and Corollary 24, respectively, then we obtain
the following corollaries.

Corollary 25. Let (𝑋, 𝑃𝑆) be a complete parametric 𝑆-metric
space and let 𝑇 be a surjective self-mapping of𝑋. If there exists
a real number 𝑘 > 1 such that

𝑃𝑆 (𝑇𝑎, 𝑇𝑎, 𝑇𝑏, 𝑡) ≥ 𝑘𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) , (41)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0, then 𝑇 has a unique fixed point
in 𝑋.

Corollary 26. Let (𝑋, 𝑃S) be a complete parametric 𝑆-metric
space and let 𝑇 be a surjective self-mapping of 𝑋. If there exist
a positive integer𝑚 and a real number 𝑘 > 1 such that

𝑃𝑆 (𝑇𝑚𝑎, 𝑇𝑚𝑎, 𝑇𝑚𝑏, 𝑡) ≥ 𝑘𝑃𝑆 (𝑎, 𝑎, 𝑏, 𝑡) , (42)

for each 𝑎, 𝑏 ∈ 𝑋 and all 𝑡 > 0, then 𝑇 has a unique fixed point
in 𝑋.

Proof. From Corollary 25, by a similar way used in the proof
ofTheorem 21, it can be easily seen that𝑇𝑚 has a unique fixed
point 𝑎 in𝑋. Also we have

𝑇𝑎 = 𝑇𝑇𝑚𝑎 = 𝑇𝑚+1𝑎 = 𝑇𝑚𝑇𝑎 (43)

and soweobtain that𝑇𝑎 is a fixedpoint for𝑇𝑚.We get𝑇𝑎 = 𝑎,
since 𝑎 is the unique fixed point.
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