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In this Letter, we present analytical and numerical solutions for an axis-symmetric diffusion-wave
equation. For problem formulation, the fractional time derivative is described in the sense of Riemann–
Liouville. The analytical solution of the problem is determined by using the method of separation
of variables. Eigenfunctions whose linear combination constitute the closed form of the solution are
obtained. For numerical computation, the fractional derivative is approximated using the Grünwald–
Letnikov scheme. Simulation results are given for different values of order of fractional derivative. We
indicate the effectiveness of numerical scheme by comparing the numerical and the analytical results for
α = 1 which represents the order of derivative.

© 2008 Published by Elsevier B.V.
1. Introduction

The awareness of the Fractional Diffusion-Wave Equation
(FDWE) has grown during the last decades. These equations pro-
vide more accurate models of systems and processes under con-
sideration. For this reason, there has been an increasing interest to
investigate, in general, the response of the systems, and in partic-
ular, the analytical and numerical solutions of FDWE.

A FDWE is a linear partial integro-differential equation obtained
from the classical diffusion or wave equation by replacing the first
or second-order time derivative by a fractional derivative of order
α > 0, see Mainardi [1].

Mainardi [2] presented the fundamental solutions of the ba-
sic Cauchy and Signalling problems for the evolution of FDWE.
The solutions of central-symmetric signalling, source and Cauchy
problems for fractional diffusion equation in a spatially three-
dimensional sphere were studied by Povstenko [3]. Wyss [4] de-
rived the solution of the Cauchy and Signalling problems in terms
of H-functions using the Mellin transform.

Agrawal [5,6] obtained the fundamental solutions of a FDWE
which contains a fourth order space derivative and a fractional or-
der time derivative. The solution of a FDWE defined in a bounded
space domain was also considered by Agrawal [7]. Mainardi [8]
obtained fundamental solutions for a FDWE and the solutions for
fractional relaxation oscillations by using the Laplace transform
method. The Green’s function and propagator functions in multi-
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dimensions which are obtained for the solution of a general initial
value problem for the time-fractional diffusion-wave equation with
source term and for the anisotropic space–time fractional diffusion
equation were researched by Hanyga [9,10]. Mainardi, Luchko and
Pagnini [11] dealt with the fundamental solution of the space–time
fractional diffusion equation.

Agrawal [12] presented stochastic analysis of FDWEs defined in
one dimension whereas very little work has been done in the area
of stochastic analysis of fractional order engineering systems.

In this Letter, the analytical and numerical solutions of an
axis-symmetric FDWE in cylindrical coordinates are studied. More
recently, the solution of an axis-symmetric fractional diffusion-
wave equation in polar coordinates has been presented in [13].
El-Shahed [14] considered the motion of an electrically conducting,
incompressible and non-Newtonian fluid in the presence of a mag-
netic field acting along the radius of a circular pipe. Furthermore,
El-Shahed selected a cylindrical polar coordinate system with z-
axis in the direction of motion and considered the flow as axially
symmetric. Several axial-symmetric problems for a plane in cylin-
drical coordinates and central-symmetric problems for an infinite
space in spherical coordinates were presented in [15–17]. Radial
diffusion in a cylinder of radius R was considered by Narahari
Achar and Hanneken [18]. Povstenko [19] developed the results of
Narahari Achar and Hanneken. The main problem considered in
[19] is similar to our work. However, the formulation of problem
here differs with [19] in some respects. Firstly, Povstenko [19] for-
mulates the problem by using polar coordinates in terms of Caputo
fractional derivative and finds only the closed form analytic so-
lution, whereas this Letter considers the problem with cylindrical
coordinates in Riemann–Liouville (RL) sense, and also presents nu-
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merical solutions by using Grünwald–Letnikov (GL) approach. The
comparison of analytic and numeric solutions is analyzed by using
simulation results. Therefore, the effectiveness of GL numerical ap-
proach for such a kind of problem is obtained. Secondly, Povstenko
[19] obtains the plots for the solution with respect to distance and
changes the values of fractional order of derivative. However, we
create two and three dimension figures and also obtain the so-
lutions with respect to not only the order of fractional derivative
α but also step size h (the length of subintervals which is men-
tioned in GL numerical algorithm section), the number of Bessel
function’s zeros, time and length of cylinder. Therefore, we analyze
the contribution of number of Bessel function’s zeros to the solu-
tion of the problem and clarify the dependency of the solution to
the step size h. In addition, we explain the behaviour of the system
when α is changed.

This Letter is organized as follows. In Section 2, some basic
definitions used for formulation of the problem are reviewed. The
axis-symmetric FDW problem in cylindrical coordinates is defined
and its analytical solution is obtained in Section 3. Section 4 ex-
plains the numerical approach. The analytical and the numerical
simulation results are compared in Section 5. Finally, Section 6
presents conclusions.

2. Mathematical preliminaries

We begin with the definitions and identities which are neces-
sary for our formulation. Here, we give Riemann–Liouville Frac-
tional Derivative (RLFD) definition of a function f (t) for an arbi-
trary fractional order α > 0:

a Dα
t f (t) =

{
( d

dt )
n f (t), α = n,

1
�(n−α)

( d
dt )

n
∫ t

a (t − τ )n−α−1 f (τ )dτ , n − 1 � α < n,

(1)

where n ∈ Z and �(.) represents the well-known Euler’s gamma
function. In pure mathematics, RLFD is more commonly used than
Caputo fractional derivative. Two definitions have some differences
from the viewpoint of their application in mathematics, physics
and engineering. However, it is well known that these two defi-
nitions coincide for zero initial condition assumptions. We prefer
RLFD to formulate the problem. The main reason of our preference
is the relation between RL and GL definitions. Because, for a wide
class of functions RL and GL definitions are equivalent. This class of
functions is very important for applications, because the character
of the majority of dynamical processes is smooth enough and does
not allow discontinuities [20]. For this propose, we use RL defini-
tion during the analytic solution of our problem and then turn to
GL definition for numerical solution.

The formula of the Laplace transform method of the Mittag–
Leffler function in two-parameters is the basis of the most effec-
tive and easy analytic methods for the solution of the fractional
differential equations. A two-parameter Mittag–Leffler function is
defined in [23] as:

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
(α,β > 0). (2)

In this Letter, the response of the FDW system is described as
a linear combination of the eigenfunctions which are derived by
using the method of separation of variables. We obtain eigenfunc-
tions as the zero-order Bessel function of the first kind given in
[24] as:

J0(x) =
∞∑

m=0

(−1)mx2m

22m(m!)2
. (3)
3. The axis-symmetric FDW problem

In this section, we present an axis-symmetric FDWE in terms of
the RLFD and use cylindrical coordinates to formulate the problem.
However, several definitions of a fractional derivative can also be
applied such as Grünwald–Letnikov, Weyl, Caputo, Marchaud and
Riesz fractional derivatives [20–22].

An axis-symmetric FDWE can be defined as follows:

∂α w

∂tα
= c2

(
∂2 w

∂r2
+ 1

r

∂ w

∂r
+ ∂2 w

∂z2

)
+ u(r, z, t), (4)

where r and z are cylindrical coordinates, c is a constant which
depends on the physical properties of the system and u(r, z, t) is
the external source term.

Here, we consider 0 < α � 2, whereas α can be any positive
number. We further consider the following boundary and initial
conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w = 0 (z = 0, 0 < r < R),

w = 0 (r = R, 0 < z < L),

w = 0 (z = L, 0 < r < R),

w is finite (0 < r < R, 0 < z < L),

(5)

and

w(r, z,0) = ∂ w

∂r
(r, z,0) = ∂ w

∂z
(r, z,0) = 0, (6)

where R is the radius and L is length of the domain.
To find the response of this system, we use the method of sep-

aration of variables and obtain the eigenfunctions

Φi j(r, z) = J0

(
ψ j

R
r

)
sin

(
iπ

L
z

)
, i, j = 1,2, . . . ,∞, (7)

where J0(.) is the zero-order Bessel function of the first kind and
ψ j , j = 1,2, . . . ,∞, are the positive zeros of the equation

J0(ψ j) = 0. (8)

We assume the solution of Eq. (4) as the following series

w(r, z, t) =
∞∑

i, j=1

J0

(
ψ j

R
r

)
sin

(
iπ

L
z

)
qij(t). (9)

By substituting Eq. (9) into Eq. (4), multiplying both sides of the
resulting equation by r J0(

ψk
R r) and integrating the result from 0

to R , respectively, we obtain

dαqij(t)

dtα
= −c2

{(
ψ j

R

)2

+
(

iπ

L

)2}
qij(t) + f i j(t),

i, j = 1,2, . . . ,∞, (10)

with initial conditions

qij(0) = q̇i j(0) = 0 (11)

and

f i j(t) = 2

R2 J 2
1(ψ j/R) sin((iπ/L)z)

R∫
0

r J0

(
ψ j

R
r

)
u(r, z, t)dr, (12)

where J1(.) is the first-order Bessel function of the first kind. The
second condition in Eq. (11) is considered when α > 1.

By applying the Laplace transform to Eq. (10), using Eq. (11) and
then taking the inverse Laplace transform, we get

qij(t) =
t∫

Q ij(t − τ ) f i j(τ )dτ , (13)
0
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where

Q ij(t) = L−1
{

1

sα + c2[(ψ j/R)2 + (iπ/L)2]
}
, (14)

is the fractional Green’s function, which can be written in the
closed form as

Q ij(t) = tα−1 Eα,α

{
−c2

[(
ψ j

R

)2

+
(

iπ

L

)2]
tα

}
. (15)

Here, L−1 represents the inverse Laplace transform operator and
Eα,β is the two-parameter Mittag–Leffler function. Substituting
Eq. (13) into Eq. (9), we take the closed form solution of the axis-
symmetric FDWE defined by Eqs. (4)–(6) as

w(r, z, t) =
∞∑

i, j=1

J0

(
ψ j

R
r

)
sin

(
iπ

L
z

) t∫
0

Q ij(t − τ ) f i j(τ )dτ . (16)

Therefore, w(r, z, t) can be obtained provided u(r, z, t) is known.
In the next section, we explain the Grünwald–Letnikov algo-

rithm to obtain the numerical solution of the fractional diffusion-
wave equations which are defined by Eqs. (10) and (11).

4. Grünwald–Letnikov numerical algorithm

The numerical algorithm given here relies on the Grünwald–
Letnikov approximation of the fractional derivative. We simply
rewrite fractional differential equations and initial conditions de-
fined in Eqs. (10) and (11) as follows

dαq(t)

dtα
= −aq(t) + f (t) (17)

and

q(0) = q̇(0) = 0, (18)

where a = c2{(ψ j/R)2 + (iπ/L)2}. Note that, we drop the subscript
i and j for simplicity.

Then, the algorithm can be explained in 4 steps:

1. Divide the time interval into subintervals of equal size h (also
called step size).

2. Approximation of dαq(t)
dtα at node m using the Grünwald–

Letnikov formula as [20]

dαq(t)

dtα
= 1

hα

m∑
j=0

w(α)
j qm− j, (19)

where q j is the numerically computed value of q at node j,

and w(α)
j are the coefficients defined as [20]

w(α)
0 = 1, w(α)

j =
(

1 − α + 1

j

)
w(α)

j−1, j = 1,2, . . . . (20)

3. Using approximation (19), derive the following algorithm for
obtaining the numerical solution:

h−α
m∑

j=0

w(α)
j qm− j + aqm = fm (m = 1,2, . . .),

q0 = 0, (21)

qm = −ahαqm−1 −
m∑

j=1

w(α)
j qm− j + hα fm,

(m = n,n + 1, . . .), (22)

where n − 1 < α � n, n ∈ Z, and qk = 0 (k = 1,2, . . . ,n − 1).
4. Use Eqs. (21) and (22) to find qm at all nodes m.
Therefore, we obtain the numerical solutions of the problem by
applying these steps to fractional differential equation part of the
system.

5. Numerical results

In this section, we give some simulation results for the axis-
symmetric diffusion-wave system described by Eqs. (4) to (6) for
0 < α � 2, z ∈ [0, L], r ∈ [0, R] and t > 0. To obtain simulation

Fig. 1. Comparison of the analytical and the numerical solution of w(r, z, t) for α =
1, r = 0.5, z = 0.3, M = 5 and h = 0.001.

Fig. 2. Comparison of the analytical and the numerical solution of w(r, z, t) for α =
2, r = 0.5, z = 0.3, M = 5 and h = 0.01.

Fig. 3. The solution of w(r, z, t) for α = 0.5, r = 0.5, z = 0.3 and M = 5,10,20.
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Fig. 4. Evolution of w(r, z, t) for α = 1, r = 0.5, z = 0.3, M = 5 and h =
0.1,0.01,0.001.

Fig. 5. Evolution of w(r, z, t) for r = 0.5, z = 0.3, h = 0.01, M = 5 and α = 0.5,0.7,1.

Fig. 6. Evolution of w(r, z, t) for r = 0.5, z = 0.3, h = 0.01, M = 5 and α = 1.5,1.9,2.

results, we take R = L = c = u(r, z, t) = 1 and change M , h and
α variables. Here, M and h represent the number of the zeros
of Bessel’s function and step size, respectively. We first, compute
f i j(t) using Eq. (12) for i, j = 1,2, . . . , M and then solve Eqs. (10)
and (11) using Grünwald–Letnikov approximation which is dis-
cussed in Section 3. Finally, we obtain analytical solutions of the
system when α = 1 and α = 2 for comparison purpose. The series
described the response of the system in Eq. (16) is truncated af-
Fig. 7. Three-dimensional figure of w(r, z, t) for α = 0.5, h = 0.01, r = 0.5 and M =
5.

Fig. 8. Three-dimensional figure of w(r, z, t) for α = 1.5, h = 0.01, r = 0.5 and M =
5.

ter M terms. Consequently, we explain the results of this work as
follows:

Figs. 1 and 2 are obtained to compare the analytical and the
numerical solutions for α = 1 and α = 2, respectively. In this work,
we take r = 0.5, z = 0.3, M = 5. For α = 1, we take h = 0.001
and for α = 2, we take h = 0.01. For both cases, analytical and
numerical results overlap. This shows that the numerical algorithm
is stable. Note that, Fig. 1 shows that diffusion reaches a steady
state position in a very short time. However, the system shows an
undamped vibrational character in Fig. 2.

Fig. 3 shows the response of the system for α = 0.5, r = 0.5,
z = 0.3, h = 0.01 and different values of M = 5,10,20. While M
values are more than 20, the obtained results converge to the
exact solution. Therefore, we take M = 20. Fig. 4 gives the re-
sponse of w(r, z, t) for α = 1, r = 0.5, z = 0.3, M = 5 and different
h = 0.1,0.01,0.001 values. The solutions converge as the step size
is reduced.

Fig. 5 shows w(r, z, t) for α = 0.5, 0.7, 1. It demonstrates that
this process changes from sub-diffusion to diffusion. Fig. 6 shows
also the response of the system for α = 1.5, 1.9, 2, and process
changes from diffusion-wave to wave. In both figures, not only α
approaches to integer values but also the system approaches to the
integer order system.
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Fig. 9. Three-dimensional figure of w(r, z, t) for α = 2, h = 0.01, r = 0.5 and M = 5.

Figs. 7, 8 and 9 show the whole field response of the system for
α = 0.5, 1.5, and 2, respectively. In these figures, we plot w(r, z, t)
for z, t variables and fixed r. We use M = 5 and h = 0.01 values
for these simulations. These figures show that the behavior of the
system changes as α varies from 0.5 to 2.

6. Conclusions

The solution of an axis-symmetric fractional diffusion-wave
problem defined in cylindrical coordinates was researched. Frac-
tional derivative was defined in the sense of Riemann–Liouville.
The method of separation of variables was used to find the closed
form solution. Grünwald–Letnikov numerical approach was also
used to obtain the numerical solutions of the problem. Simula-
tion results were given for comparison of the numerical and the
analytical solutions and it was showed that both solutions overlap
for α = 1 and 2. Simulation results were presented for different
number of step size, zeros of the J0 Bessel function and order of
fractional derivative.
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