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Abstract

We study electric dipole moments (EDM) of electron and proton in E(6)–inspired supersymmetric

models with an extra U(1) invariance. Compared to the Minimal Supersymmetric Standard Model

(MSSM), in addition to offering a natural solution to the µ problem and predicting a larger mass

for the lightest Higgs boson, these models are found to yield suppressed EDMs.
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I. INTRODUCTION

While solving the quadratic divergence of radiative corrections to the Higgs boson mass,

the supersymmetrization of the Standard Model with minimal matter content brings a µ

parameter with a completely unknown scale. On the other hand, extending the gauge

structure SU(3)C × SU(2)L ×U(1)Y of the Minimal Supersymmetric Model by a new U(1)

Abelian group provides an effective µ term related with the VEV of some extra singlet

scalar field; thus a scale (∼ TeV ) can be dynamically generated for the µ parameter. The

supersymmetric U(1)′ models have been intensely studied in the literature. While such

models can be motivated by low-energy arguments like µ problem [1] of the MSSM they

also arise at low-energies as remnants of GUTs such as SO(10) and E(6) [2, 3, 4]. These

models necessarily involve an extra neutral vector boson [5, 6] whose absence/presence to

be established at the LHC.

The particle spectrum of U(1)′ models involve bosonic fields Z ′µ and S as well as their

superpartners Z̃ ′ and S̃ in addition to those in the MSSM. Therefore, such models can be

tested in various observables ranging from electroweak precision observables to Z ′µ effects

at the LHC. As a matter of fact, analysis of Higgs sector along with CP violation potential

[7] as well as structure of EDMs [8] suggest several interesting signatures also at collider

experiments [9]. One of the most important spots of these models is that the lower bound of

the lightest Higgs boson mass (mh ≥114 GeV) can be satisfied already at the tree level, and

radiative corrections (dominantly the top–stop mass splitting) is not needed to be as large

as in the MSSM. This feature can have important implications also for the little hierarchy

problem [10].

In this work we will study EDMs of electron and neutron in U(1)′ models stemming from

E(6) GUT. Our main interest is to look at the reaction of EDMs to gauge extensions in

comparison to the MSSM. The paper is organized as follows. In the next section we introduce

the models. Section III is devoted to EDM predictions and their numerical analysis. In

Section IV we conclude.
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II. THE U(1)′ MODELS

The model is characterized by the gauge structure

SU(3)C × SU(2)L × U(1)Y × U(1)Y ′ (1)

where g3, g2, gY and gY ′ are gauge coupling constants respectively. Here the extra U(1) sym-

metry can be a light (broken at a TeV) linear combination of a number of U(1) symmetries

(in effective string models there are several U(1) factors whose at least one combination can

survive down to the TeV scale). There are a number of U(1)′ models studied in literature, all

of them offer a dynamical solution to the µ problem of the MSSM via spontaneous breaking

of extra U(1) Abelian factor at the TeV scale depending on the model, and many of them

respecting gauge couplings unification predicts extra fields in order to sort out gauge and

gravitational anomalies from the theory. These models typically arise from SUSY GUTs

and strings. From E(6) GUT, for example, two extra U(1) symmetries appear in the break-

ing E6 → SO(10) × U(1)ψ followed by SO(10) → SU(5) × U(1)χ where U(1)Y ′ is a linear

combination of ψ and χ symmetries:

U(1)Y ′ = cos θE6 U(1)χ − sin θE6 U(1)ψ (2)

which, supposedly, is broken spontaneously at a TeV. There arises, in fact, a continuum

of U(1)′ models depending on the value of mixing angle θE6 . However, for convenience and

traditional reasons, one can pick up specific values of θE6 to form a set of models serving

a testing ground. We thus collected some well-known models in Table I with the relevant

normalization factors and a common gauge coupling constant

gY ′ =

√
5

3
g2 tan θW (3)

In theories involving more than one U(1) factor the kinetic terms can mix since for such

symmetries the field strength tensor itself is invariant. In U(1)′ model, involving hypercharge

U(1)Y and U(1)Y ′ , the gauge part of the Lagrangian takes the form

− Lgauge =
1

4
F µν
Y FY µν +

1

4
F µν
Y ′ FY ′µν +

sinχ

2
F µν
Y FY ′µν (4)

where Fµν = ∂µZν − ∂νZµ is the field strength tensor of the corresponding U(1) symmetry.

Kinetic part of Lagrangian can be brought into canonical form by a non-unitary transfor-
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2
√

15 Qη 2 QI 2
√

6 Qψ 2
√

10 QN 2
√

15 QS

uL, dL -2 0 1 1 -1/2

uR 2 0 -1 -1 1/2

dR -1 1 -1 -2 -4

eL 1 -1 1 2 4

eR 2 0 -1 -1 1/2

Hu 4 0 -2 -2 1

Hd 1 1 -2 -3 -7/2

S -5 -1 4 5 5/2

TABLE I: Gauge quantum numbers of several U(1)′ models [11]

mation  ŴY

ŴY ′

 =

 1 − tanχ

0 1/ cosχ

 ŴB

ŴB′

 (5)

where ŴY and ŴY ′ are the chiral superfields associated with the two U(1) gauge symmetries.

This transformation also acts on the gauge boson and gaugino components of the chiral

superfields in the same form. The U(1)Y × U(1)Y ′ part of covariant derivative in the case

of no kinetic mixing is given by

Dµ = ∂µ + igY Y Bµ + igY ′QY ′B
′
µ (6)

however, with the presence of kinetic mixing this covariant derivative is changed to

Dµ = ∂µ + igY Y Bµ + i

(
−gY Y tanχ+

gY ′

cosχ
QY ′

)
B′µ (7)

where gY ′ is gauge coupling constant and QY ′ is fermion charges of U(1)Y ′ symmetry. With

a linear transformation of charges the covariant derivative takes the form [12]

Dµ = ∂µ + igY Y Bµ + igY ′Q
′
Y ′B

′
µ (8)

in which the effective U(1)Y ′ charges are shifted from its original value QY ′ to

Q′Y ′ =
QY ′

cosχ
− gY
gY ′

Y tanχ (9)
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For the proper treatment of the models the most general superpotential should be con-

sidered [9], but for simplicity we parametrized U(1)′ models by the following superpotential

Ŵ = huQ̂ · ĤuÛ c + hdQ̂ · ĤdD̂c + heL̂ · ĤdÊc + hSŜĤu · Ĥd (10)

where we discarded additional field (assuming that they are relatively heavy compared to this

very spectrum) that are necessary for the unification of gauge couplings. Our conventions

are such that, for instance Q̂ · Ĥu ≡ Q̂T (iσ2) Ĥu = εijQ̂
iĤj

u with ε12 = −ε21 = 1. The right-

handed fermions are contained in the chiral superfields Û , D̂, Ê via their charge-conjugates

e.g. Û =
(
ũR

?, (uR)C
)

. What a U(1)′ model does is basically to allow a dynamical effective

µeff = hs〈S〉 related to the scale of U(1)′ breaking instead of an elementary µ term which

troubles supersymmetric Higgsino mass in the MSSM. Notice that a bare µ term cannot

appear in the superpotential due to U(1)′ invariance.

At this point, it is useful to explicitly state the soft breaking terms, the most general

holomorphic structures are

− Lsoft = (
∑
i

Miλiλi − AShsSHdHu − Aiju hijuU c
jQiHu

− Aijd h
ij
dD

c
jQiHd − Aije hije Ec

jLiHd + h.c.)

+ m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2

+ m2
Qij
Q̃iQ̃

∗
j +m2

Uij
Ũ c
i Ũ

c∗
j +m2

Dij
D̃c
i D̃

c∗
j +m2

Lij
L̃iL̃

∗
j

+ m2
Eij
Ẽc
i Ẽ

c∗
j + h.c. (11)

where the sfermion mass-squareds m2
Q,...,Ec and trilinear couplings Au,...,e are 3× 3 matrices

in flavor space. All these soft masses will be taken here to be diagonal. In general, all

gaugino masses, trilinear couplings and flavor-violating entries of the sfermion mass-squared

matrices are source of CP violation. However, for simplicity and definiteness we will assume

a basis in which entire CP violating effects are confined into the gaugino mass M1 (with

M1 = M ′
1), and the rest are all real (interested readers can chief to [13]).

These soft SUSY breaking parameters are generically nonuniversal at low energies. We

will not address the origin of these low energy parameters as to how they follow via RG

evolution from high energy boundary conditions, instead we will perform a general scan of

the parameter space.
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III. CONSTRAINTS AND IMPLICATIONS FOR EDMS

Due to the extra U(1) symmetry, associated Z ′ boson can be expected to weigh around

the electroweak bosons, and can exhibit significant mixing with the ordinary Z boson. The

LEP data and other low-energy observables forbid Z–Z ′ mixing to exceed one per mill level.

Indeed, precision measurements have shown that Z ′ mass should not be less than ∼ 700

GeV for any of the models under concern (excluding leptophobic Z ′’s). Indeed, mixing of

the Z and Z ′ puts important restrictions on the mass and the mixing angle of the extra

boson and this can be studied from the following Z − Z ′ mixing matrix;

M2
Z−Z′ =

M2
Z ∆2

∆2 M2
Z′

 (12)

with MZ being the usual SM Z mass in the absence of mixing and

M2
Z =

1

4
G2(|vu|2 + |vd|2)

∆2 =
1

2
GgY ′(Q

′
Hu
|vu|2 −Q′Hd

|vd|2) (13)

M2
Z′ = g2

Y ′(Q
′2
Hu
|vu|2 +Q′

2
Hd
|vd|2 +Q′

2
s|vS|2)

where G2 = g2
Y + g2

2 and gY ′ is the gauge coupling constant of the extra U(1). The mixing

matrix can be diagonalized by an orthogonal transformation; Z1

Z2

 =

 cosφ sinφ

− sinφ cosφ

 Z

Z ′

 (14)

giving the mass eigenstates Z1,2 with masses MZ1,Z2 where α is given by

tan 2α =
2∆2

M2
Z −M2

Z′
(15)

In the numerical analysis we considered α < 3× 10−3 and confined MZ′ > 700 GeV. Notice

that when ∆ vanishes (tan β ∼
√
Q′Hu

/Q′Hd
) Z1,2 can be identified with the ordinary Z and

Z ′ bosons; since we considered low tan β values, we will use the term Z ′ for the heavy extra

boson.

Besides this, the implication of the extra gauge boson can also be seen in sfermion sector,

that is sfermion mass matrix is modified due to the presence of Z ′ boson as;

M2
f̃

=

M2
f̃LL
M2

f̃LR

M2?
f̃LR
M2

f̃RR


(16)
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M2
f̃LL

= M2
f̃L

+ h2
f |H0

f |2 +
1

2

(
YfL

g2
Y − T3fg

2
2

) (
|H0

u|2 − |H0
d |2
)

+ g2
Y ′Q

′
fL

(
|H0

u|2Q′Hu
+ |H0

d |2Q′Hd
+ |S|2Q′s

)
M2

f̃LR
= hf

(
A?fH

0
f
?

+ hsSH
0
f

)
(17)

M2
f̃RR

= M2
f̃R

+ h2
f |H0

f |2 +
1

2

(
YfR

g2
Y

) (
|H0

u|2 − |H0
d |2
)

+ g2
Y ′Q

′
fR

(
|H0

u|2Q′Hu
+ |H0

d |2Q′Hd
+ |S|2Q′s

)
in terms of shifted charge assignments. Sfermion mass matrix is hermitian and can be

diagonalized by the unitary transformation

D†M2
f̃
D = diag(m2

f̃1
,m2

f̃2
) (18)

where D is the L−R mixing matrix for sfermions and is parametrized as

D =

 cos θ sin θ e−iφ

sin θ eiφ cos θ

 (19)

It is worth to note that sfermion mass eigenvalues in U(1)′ models will be different than

in the MSSM due to the contribution of extra gauge boson and kinetic mixing. In general

DU(1)′ 6= DMSSM and the MSSM results can be recovered by assuming no kinetic mixing

(sinχ = 0) and no charges under U(1)′ at all.
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FIG. 1: Impact of selectron U(1)′ charge Q′ on the selectron masses (In GeVs).

But the existence of the U(1)′ charges have profound impact on the sfermion eigenvalues.

To show this we present Fig. 1 in which selectron mass eigenvalues are plotted against

U(1)′ charges for two different cases. In panel a) we assumed Q′eL = −Q′eR = Q′ to be

compared with panel b) in which Q′eL = Q′eR = Q′, with the following inputs: hs = 0.5,

vs = 5 TeV, Q′Hu
= Q′Hd

= −0.05 and the rest of the parameters are taken as in SPS1a′

7



reference point [14], and additionally we assumed As = At. Notice that Q′ = 0 corresponds

to MSSM prediction. This figure illustrates the difference between the MSSM and of the

U(1)′ sfermion mass predictions, for the same input parameters. As should be inferred from

this figure, opposite values of Q′fL and Q′fR can violate collider bounds for some of the

U(1)′ models while this selection is current for the MSSM, that will be important in the

numerical analysis and we will consider somewhat larger values of sfermion gauge eigenstates

to overcome this issue.

In U(1)′ models compared to MSSM, there is an extra single scalar state in Higgs sec-

tor, an additional pair of higgsino and gaugino states are covered in neutralino sector and

chargino sector is kept structurally unaltered though it is different than the MSSM due to

the effective µ term. Now we will deal with these sectors.

A. Higgs Sector

The Higgs sector in U(1)′ models compared to MSSM is extended by a single scalar state

S whose VEV breaks the U(1)′ symmetry and generates a dynamical µeff = hS〈S〉. For a

detailed analysis of the Higgs sector with CP violating phases we refer to [15] and references

therein. The tree level Higgs potential gets contributions from F terms, D terms and soft

supersymmetry breaking terms:

Vtree = VF + VD + Vsoft, (20)

in which

VF = |hs|2
[
|Hu ·Hd|2 + |S|2(|Hu|2 + |Hd|2)

]
, (21)

VD =
G2

8

(
|Hu|2 − |Hd|2

)2
+
g2
2

2
(|Hu|2|Hd|2 − |Hu ·Hd|2)

+
g2
Y ′

2

(
Q′Hu
|Hu|2 +Q′Hd

|Hd|2 +Q′S|S|2
)2
, (22)

Vsoft = m2
u|Hu|2 +m2

d|Hd|2 +m2
s|S|2 + (AshsSHu ·Hd + h.c.). (23)

where G2 = g2
2 + g2

Y and gY =
√

3/5g1, g1 is the GUT normalized hypercharge coupling.
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At the minimum of the potential, the Higgs fields can be expanded as follows (see [16]

for a detailed discussion):

〈Hu〉 =
1√
2

 √
2H+

u

vu + φu + iϕu

 , 〈Hd〉 =
1√
2

 vd + φd + iϕd
√

2H−d


〈S〉 =

1√
2

(vs + φs + iϕs) , (24)

in which v2 ≡ v2
u + v2

d = (246 GeV)2. In the above expressions, a phase shift eiθ can be

attached to 〈S〉 which can be fixed by true vacuum conditions considering loop effects (see

[15] for details). Here it suffices to state that the spectrum of physical Higgs bosons consist

of three neutral scalars (h, H, H′), one CP odd pseudoscalar (A) and a pair of charged

Higgses H± in the CP conserving case. In total, the spectrum differs from that of the MSSM

by one extra CP-even scalar.

Notice that, the composition, mass and hence the couplings of the lightest Higgs boson

of U(1)′ models can exhibit significant differences from the MSSM, and this could be an

important source of signatures in the forthcoming experiments. It is necessary to emphasize

that these models can predict larger values for mh, which hopefully will be probed in near

future at the LHC. In the numerical analysis we considered mh > 90 GeV as the lower limit.

Besides this, as we will see, it is possible to obtain larger values such as mh ∼ 140 GeV

within some of these E(6) based models.

B. Neutralino Sector

In U(1)′ models the neutralino sector of the MSSM gets enlarged by a pair of higgsino and

gaugino states, namely S̃ (which we call as ‘singlino’) and B̃′ (which we call as bino-prime or

zino-prime depending on the state under concern). The mass matrix for the six neutralinos

in the (B̃, W̃ 3, H̃0
d , H̃

0
u, S̃, B̃

′) basis is given by

Mχ0 =



M1 0 −mZcβsW mZsβsW 0 MK

0 M2 mZcβcW −mZsβcW 0 0

−mZcβsW mZcβcW 0 −µeff −µλsβ Q′Hd
mvcβ

mZsβsW −mZsβcW −µeff 0 −µλcβ Q′Hu
mvsβ

0 0 −µλsβ −µλcβ 0 Q′Sms

MK 0 Q′Hd
mvcβ Q′Hu

mvsβ Q′Sms M ′
1


9



(25)

with gaugino mass parameters M1 , M2 , M ′
1 and MK [12] for B̃ , W̃ 3 , B̃′ and B̃−B̃′ mixing

respectively. There arise two additional mixing parameters after electroweak breaking:

mv = gY ′v and ms = gY ′vs (26)

Moreover, supersymmetric higgsino mass and doublet-singlet higgsino mixing masses are

generated to be

µeff = hS
vS√

2
, µλ = hS

v√
2

(27)

where v =
√
v2
u + v2

d. The neutralino mass matrix can be diagonalized by a unitary matrix

such that

N †Mχ0N = diag(m̃χ0
1
, ..., m̃χ0

6
) (28)

The additional neutralino mass eigenstates due to new higgsino and gaugino fields encode

effects of U(1)′ models wherever neutralinos play a role such as magnetic and electric dipole

moments.

In fact, the neutralino-sfermion exchanges contribute to EDMs of quarks and leptons as

follows:

dEf−χ0

e
=

αEM
4π sin2 θW

2∑
k=1

6∑
i=1

Im(ηfik)
m̃χ0

i

m2
f̃k

Qf̃B

(
m̃2
χ0

i

m2
f̃k

)
(29)

where the neutralino vertex is,

ηfik =

[
−
√

2{tan θW (Qf − T3f )N1i +
gY ′

g2

Q′fL
N6i + T3fN2i}D?

f1k − κf NbiD
?
f2k

]
× (
√

2(tan θW Qf N1i +
gY ′

g2

Q′fR
N6i)Df2k − κfNbiDf1k) (30)

and

κu =
mu√

2MW sin β
, κd,e =

md,e√
2MW cos β

(31)

A(x) =
1

2(1− x)2

(
3− x+

2 ln x

1− x

)
, B(x) =

1

2(x− 1)2

(
1 + x+

2x lnx

1− x

)
(32)

Since Hu and Hd couple fermions differently due to their hypercharges, the b index in neu-

tralino diagonalizing matrix must be carefully chosen in numerical analysis.
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C. Chargino sector

Unlike the Higgs and Neutralino sectors, chargino sector is structurally unchanged in

U(1)′ models compared to MSSM. However, chargino mass eigenstates become dependent

upon U(1)′ breaking scale through µeff parameter in their mass matrix:

Mχ± =

 M2 MW

√
2 sin β

MW

√
2 cos β µeff

 (33)

which can be diagonalized by biunitary transformation

U?Mχ±V
−1 = diag(m̃χ+

1
, m̃χ+

2
) (34)

where U and V are unitary mixing matrices. Since the chargino sector is structurally the

same as with the MSSM, the fermion EDMs through fermion-sfermion-chargino interactions

are given by

dEe−χ±

e
=

αEM
4π sin2 θW

κe
m2
ν̃e

2∑
i=1

m̃χ+
i
Im(U?

i2 V
?
i1)A

(
m̃2
χ+

i

mν̃e
2

)
(35)

dEd−χ±
e

= − αEM
4π sin2 θW

2∑
k=1

2∑
i=1

Im(Γdik)
m̃χ+

i

m2
ũk

[
QũB

(
m̃2
χ+

i

m2
ũk

)
+ (Qd −Qũ)A

(
m̃2
χ+

i

m2
ũk

)]
(36)

dEu−χ±

e
= − αEM

4π sin2 θW

2∑
k=1

2∑
i=1

Im(Γuik)
m̃χ+

i

m2
d̃k

[
Qd̃B

(
m̃2
χ+

i

m2
d̃k

)
+ (Qu −Qd̃)A

(
m̃2
χ+

i

m2
d̃k

)]
(37)

where the chargino vertices are,

Γuik = κuV
?
i2Dd1k(U

?
i1D

?
d1k − κdU?

i2D
?
d2k) (38)

Γdik = κdU
?
i2Du1k(V

?
i1D

?
u1k − κuV ?

i2D
?
u2k) (39)

D. Electron and Neutron EDMs

Total EDMs for electron and neutron is therefore the sum of all individual interactions,

the electron EDM arises from CP-violating 1-loop diagrams with the neutralino and chargino

exchanges

dEe = dEe−χ0 + dEe−χ± (40)

11



While studying neutron EDMs, besides neutralino and chargino diagrams, 1-loop gluino

exchange contribution must also be taken into account, thus the EDM for quark- squark-

gluino interaction can be written as;

dEq−g̃
e

= −2αs
3π

2∑
k=1

Im(Γ1k
q )

mg̃

m2
q̃k

Qq̃B

(
m2
g̃

m2
q̃k

)
(41)

with the gluino vertex,

Γ1k
q = Dq2kD

?
q1k (42)

However, for neutron EDM there are additionally two other contributions arising from quark

chromoelectric dipole moment of quarks;

dCq−g̃ =
gsαs
4π

2∑
k=1

Im(Γ1k
q )

mg̃

m2
q̃k

C

(
m2
g̃

m2
q̃k

)
(43)

dCq−χ0 =
gsg

2

16π2

2∑
k=1

6∑
i=1

Im(ηqik)
m̃χ0

i

m2
q̃k

B

(
m̃2
χ0

i

m2
q̃k

)
(44)

dCq−χ± =
−gsg2

16π2

2∑
k=1

2∑
i=1

Im(Γqik)
m̃χ±i

m2
q̃k

B

(
m̃2
χ±i

m2
q̃k

)
(45)

where,

C(x) =
1

6(x− 1)2

(
10x− 26 +

2x lnx

1− x
− 18 lnx

1− x

)
(46)

and the CP violating dimension-six operator from 2-loop gluino-top-stop diagram is

dG = −3αsmt

( gs
4π

)3

Im(Γ12
t )
z1 − z2

m3
g̃

H(z1, z2, zt) (47)

with

zi =

(
Mt̃i

mg̃

)2

, zt =

(
mt

mg̃

)2

(48)

and the 2-loop function is given by [17]

H(z1, z2, zt) =
1

2

∫ 1

0

dx

∫ 1

0

du

∫ 1

0

dy x (1− x)u
N1N2

D4
(49)

12



with

N1 = u (1− x) + zt x (1− x)(1− u)− 2ux [z1 y + z2(1− y)],

N2 = (1− x)2(1− u)2 + u2 − 1

9
x2(1− u)2,

D = u (1− x) + zt x (1− x)(1− u) + ux [z1 y + z2 (1− y)] (50)

Therefore total neutron EDM is written with the help of non-relativistic SU(6) coefficients

of chiral quark model [18]

dn =
1

3
(4 dd − du) (51)

in which all the contributions are gathered into u and d quark interactions

dEu = dEu−χ0 + dEu−χ± + dEu−g̃ + dCu−χ0 + dCu−χ± + dCu−g̃ + dG (52)

dEd = dEd−χ0 + dEd−χ± + dEd−g̃ + dCd−χ0 + dCd−χ± + dCd−g̃ + dG (53)

The above analysis is at the electroweak scale and the evolution of dE,C,G’s down to hadronic

scale is accomplished via Naivë Dimensional Analysis

dq = ηEdEq + ηC
e

4π
dCq + ηG

eΛ

4π
dG (54)

where the QCD correction factors are ηE = 1.53, ηC ' 3.4 and Λ ' 1.19 GeV is the chiral

symmetry breaking scale [19].

For the sake of generality, we give all the formulae which may contribute to electron

and neutron EDM’s, however, depending on the origin of CP violating phases, some of

above equations may yield no contributions to the EDM’s, as in our numerical analysis we

considered only one CP-odd phase corresponding to complex bino (and bino-prime) mass,

for simplicity. Therefore in our analysis contributions of gluinos for quark-squark-gluino

interaction (dEq−g̃), chromoelectric dipole moment of quarks (dCq−g̃) and the CP violating

dimension-six operator from the 2-loop gluino-top-stop diagram (dG) will be missing. Care

should be paid to the point that this phase can only provide a subleading contribution to

the neutron EDM, for a complete treatment those missing contributions should be added

too.
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E. Numerical Analysis

In this part we will perform a detailed numerical study of various E(6)–based U(1)′ models

in regard to their predictions for electron and neutron EDMs. We will compare the models

given in Tab. I with each other and with the MSSM. In doing this, we consider bino (and

bino-prime) mass to be complex and assume the rest of the parameters as real quantities

(though this simplification might seem somewhat unrealistic we expect that results can still

reveal certain salient features in such models).

During the analysis, to respect the collider bounds, we require the masses satisfy

mh > 90, msfermions > 100, mχ±1
> 105, MZ′ > 700 (55)

(all in GeV) and the Z−Z ′ mixing angle to be less than 3 × 10−3. Bounds from naturalness

and perturbativity constraint are respected by considering 0.1 ≤ hs ≤ 0.75 [15, 20, 21].

Additionally, to make Z ′ sufficiently heavy vs is scanned up to 10 TeV and low tan β regime

is analyzed which is the preferred domain for the models and for which consideration of stop

corrections suffice.

Imprints of different U(1)′ models related with electron and neutron EDM reactions are

presented in Fig. 2. This figure depicts variations of EDMs with µeff in S, I, N , ψ and η

models. In this figure and in the followings, since we did not take into consideration renor-

malization group running, we scanned the related parameters randomly. But we carefully

used the same data points in each of the models. As can be seen from Fig. 2, with increasing

µeff , eEDM (left panels) predictions start to raise from S to η model. Additionally, as the

effective µ parameter deviates from the EW scale, eEDM predictions seem promising to

bound the effective µ term in η and ψ models. But when it comes to nEDM (right panels)

as the µeff increases predictions for neutron EDM decreases from S to η model, respectively.

In other words, in terms of the difference between electron and neutron EDM predictions,

the η model is the most striking one and the S model is the mildest model.

It is also useful to probe how EDM predictions vary with the mass of Z ′ boson, which

is given in Fig. 3. The left η panel of Fig 3 shows that it may be possible to bound Z ′

mass from above once the eEDM predictions near the present experimental value (at least

for certain range of parameters), whereas some models like S and I do not seem to react

significantly to this variation. The most sensitive models to bound Z ′ mass using the eEDM

14



eEDM nEDM

S

I

N

ψ

η

FIG. 2: µeff versus eEDM (left panels) and nEDM (right panels) in U(1)′ models (top to bottom:

S, I, N, ψ and η models). As inputs, all trilinears are scanned in -2 to 2 TeV, all sfermions are

scanned in 0.5 to 1 TeV separately. The resulting data sets are used to obtain in every model with

tanβ = 3. Absolute value of EDM predictions are given in log10 base, µeff values are given in GeVs.

Straight lines in this and following figures denote corresponding eEDM and nEDM experimental

constraints [27, 28].

results are η, ψ and N models. On the other hand, it may also be possible to bound the

mass of Z ′ in S model using the nEDM measurements, as can be seen from the bottom S

panel of Fig. 3.
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eEDM nEDM

S

I

N

ψ

η

FIG. 3: MZ′ versus eEDM (left panels) and nEDM (right panels) in U(1)′ models, as in Fig. 2.

Our next figure is Fig. 4 in which electron and neutron EDM predictions are presented

for the MSSM and for the aforementioned U(1)′ models against variations in the phase of

bino. In S and I models eEDM predictions are generally well below the MSSM predictions.

On the other hand, in η model it is possible to get lower predictions for nEDM. Notice that

while majority of the points obtained are above the MSSM predictions there are regions

where it is possible to obtain smaller EDM values for both of the electron and neutron (i.e.

see the gray crosses in N and ψ panels).

As can be deduced from the previous figures there is a hierarchy among the models. This
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eEDM nEDM

S

I

N

ψ

η

FIG. 4: The phase of M1 versus eEDM (left panels) and nEDM (right panels) in U(1)′ models.

Here our shading convention is such that dark triangles correspond to MSSM and gray crosses are

for U(1)′ models. Inputs are as in Fig. 2.

situation is also shared by the mass of the lightest Higgs boson. We provide Fig. 5 in which

mass of the lightest Higgs boson is plotted against variations of µeff . Here again, predictions

for the mass of the lightest Higgs boson are in an order increasing from S to η model. Notice

that while the LEP2 bound on SM like Higgs boson confines its mass to be larger than 114

GeV it can not be used directly in U(1)′ models, so we accepted 90 GeV as the lower bound.

But all of the models are capable of satisfying mh > 114 GeV. Additionally, compared to

17



the MSSM, in these U(1)′ models it is possible to find larger mh predictions for mh i.e. see

η or ψ panels.

S I N ψ η

FIG. 5: Effective µ versus mh in U(1)′ models (All in GeVs). Inputs are the same with Fig. 2.

Another important issue worth noticing within these models is the possibility of kinetic

mixing. As should be predicted it modifies EDM predictions (as well as many other prop-

erties of the models) in accordance with its magnitude. To give a concrete example of its

impact, we selected N model for which eEDM and nEDM predictions are generally larger

than the MSSM. So, we provide Fig. 6 for electron and neutron EDMs. As can be seen

the very figure, even very small values of the kinetic mixing angle (i.e. χ=-0.1) can yield

sizable variations for the EDM predictions of the electron, but, its impact on the neutron

EDM is rather small. Meanwhile, nonzero choices of the mass terms MK (see the c panels)

can also reduce both of the eEDM and nEDM predictions. When both of the χ and MK are

in charge (see the d panels), we see that, both of the eEDM and nEDM predictions in the

N model can be smaller than the MSSM predictions.

A rather interesting effect of the kinetic mixing can be investigated on the composition of

the LSP candidate of the U(1)′ models. For the selected range of the parameters, all U(1)′

models share the same LSP candidate with the MSSM, which is bino. But also notice that

singlino dominated neutralino can be a good candidate for the LSP [22, 23], for this kind of

models.

In our domain, without the kinetic mixing its composition can be expected to be very

similar to the MSSM’s lightest neutralino. This can be inferred from Fig. 7 where singlino

(gray crosses) and Z ′-ino (dark triangles) compositions of the LSP candidate are plotted

against varying MK with (left panel) and without (right panel) the kinetic mixing scanned

randomly in [-0.3,0]. Notice that when MK ∼ 0 GeV, even if the kinetic mixing is turned

on, the composition of the LSP candidate can not be expected to be very different from

the MSSM. For a clear picture of this phenomena we support Figs. 6 and 7 with Fig. 8,

where the mass eigenvalues of the N model neutralinos are plotted against varying MK with
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eEDM nEDM

a)

b)

c)

d)

FIG. 6: The eEDM (left panels) and the nEDM (right panels) versus argument of M1 in N model

(Dark triangles : MSSM, gray crosses : N model). Here we fixed tanβ = 5, msleptons = 400 GeV,

msquarks = 750 GeV, all trilinars=-1500 GeV, M2 = 190 GeV (M1 = 0.56M2, M3 = 2.8M2) In

panel a) mixing angle χ = 0, MY X = 0, b) mixing angle χ = −0.3,−0.2,−0.1, 0 and MY X = 0,

c) mixing angle χ = 0 but MY X scanned randomly in 0 to 0.5 TeV d) χ = −0.3,−0.2,−0.1, 0 and

MY X scanned randomly in 0 to 0.5 TeV. Notice that MY X ∼ MK for small χ values as in our

cases (see [12] for details)

(panel b)) and without (panel a)) mixing angle. As can be seen from Fig 8, mass of the LSP

candidate of the related model is sensitive to MK . This tendency reduces as we go away
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a) b)

FIG. 7: Singlino (gray crosses: |N1,5|2) and Z ′-ino (dark tringles: |N1,6|2) compositions of the

lightest neutralino against MK in N model. Inputs are from c) and d) panels of Fig. 6. (for a) and

b) panels they are of the order 10−7).

from the lightest neutralino up to 5th and 6th neutralinos. For those two heavy neutralinos

impact of nonzero mixing angle can dominate the effect of MK if both of them are in charge

(see panel b) of Fig 8). For the selected range of parameters lightest neutralino is very

similar to the MSSM’s neutralino as far as the mentioned variables are off; when they are

on, their corresponding impact on the composition and on the mass of the lightest neutralino

can be ∼ 10-20 % as can be seen from the very figures.

a) b)

FIG. 8: Neutralino masses versus MK corresponding to the same panels of Fig. 7 (All in GeVs).

Our last figure is Fig. 9 where we present tan β dependencies of the electron and neutron

EDMs. Here tan β is scanned up to 10 and the most striking difference between the MSSM

and U(1)′ models, for the models under concern, turns out to be the smallness of tan β (can

be as small as 0.5), which is ruled out for the MSSM. Additionally, for most of the models

eEDM and nEDM predictions decrease with decreasing tan β as in the MSSM. The only

exception to this observation is found for η model where the sensitivity of eEDM predictions

are very small. But, in general, this common tendency of U(1)′ models show that it is easier

to evade EDM constraints in such models where tan β ∼ 1 is actually the natural value.
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eEDM nEDM

S

I

N

ψ

η

FIG. 9: tanβ versus eEDM (left panels) and nEDM (right panels) predictions in different U(1)′

models. We used the conventions of Fig. 3. Here again straight lines denotes the corresponding

EDM bounds.

As can be seen from the figures presented in this section, we did not try to constrain

complex phases but instead we tried to demonstrate the general tendencies in U(1)′ models,

and apparently all the examples given here are well below the experimental bounds.
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IV. CONCLUSION

In this work we have performed a study of EDMs (of electron and neutron) in U(1)′

models descending from E(6) SUSY GUT. With anticipated increase in precision of EDM

measurements, our results show that these models give rise to observable signatures not

shared by the MSSM. Indeed, U(1)′ models generically possess different predictions for

EDMs compared to MSSM (see Fig. 4). This very feature provides a way of determining

nature of the supersymmetric model at the TeV scale via EDM measurements.

Apart from comparisons with the MSSM, different E(6)–based U(1)′ models are found

to have different predictions for various observables studied in the text. Indeed, sensitivity

of EDMs to µ parameter (see Fig. 2), to Z ′ mass (see Fig. 3), and to tan β are different for

different models. Furthermore, eEDM and nEDM are found to exhibit different dependencies

in each case. These features establish the fact that, once precise measurements are attained

(presumably at a high-energy linear collider) one can determine likely breaking directions

for E(6) grand unified group down to that of the MSSM.

Fig. 6 makes it clear that the soft-breaking mass that mix U(1)Y and U(1)′ gauginos is

a sensitive source of EDMs. Indeed, as happens in models of paraphotons, entire matter

can be neutral under U(1)′ symmetry yet such a kinetic mixing (that mix gauge bosons and

gauginos ) can exist and can have important implications. These figures make it clear that

EDMs vary significantly with this parameter.

Also interesting are the predictions of different U(1)′ models for mh (which is plotted

against µeff in Fig. 5). Indeed, both range and shape of the allowed domain are different

for different models, and this feature also helps determining the correct model (of E(6)

origin) once precise measurements of associated quantities are available.

It is not surprising that these models can have important implications also for FCNC

observables (including their CP asymmetries) [24]. Moreover, the EDMs discussed above

can be correlated with the CP asymmetries (of B meson decays [25]) or with the Higgs

sector itself [26] so as to further bound such models with the information available from B

factories and Tevatron. This kind of analysis will be given elsewhere.

To conclude, the problem of CP violation (in particular EDMs) is a particularly important

issue of U(1)′ models for various reasons, most notably, the approximate reality of the

effective µ parameter. Analyses of various observables (including the FCNC ones) can shed
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further light on the origin and structure of such models.
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