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ABSTRACT

Objective: The aim was to study the effects of boric acid (BA) and

2-aminoethoxydiphenyl borate (2-APB) on oxidative stress and inflam-

mation in an experimental necrotizing enterocolitis (NEC) rat model.

Methods: Experimental NEC was induced in 40 newborn Sprague-Dawley

rats by asphyxia and hypothermia applied in 3 consecutive days. Rats were

subdivided into 4 subgroups as NEC, NECþBA, NECþ 2-APB, and

controls. BA and 2-APB were applied daily before the procedure. Serum

total antioxidant status, superoxide dismutase (SOD), tumor necrosis factor

(TNF)-a, interleukin (IL)-6, and erythrocyte glutathione (GSH) levels were

measured. Pathological changes for NEC in intestinal architecture were

evaluated by a grading system.

Results: Pretreatment with BA and 2-APB resulted in a decrease in NEC

incidence. In all of the NEC groups, decreased serum levels of GSH and

SOD were measured. Boron limited GSH consumption but had no effect on

SOD levels. Total antioxidant status levels were not statistically different

among groups. In our experimental NEC model, BA, but not 2-APB,

prevented the increase of TNF-a. Pretreatment with BA and 2-APB

downregulated the activity levels of IL-6 in NEC.

Conclusions: In the experimental NEC model, BA and 2-APB partly

prevent NEC formation, modulate the oxidative stress parameters, bring

a significant decrease in GSH consumption, and enhance the antioxidant

defense mechanism, but have no effect on total antioxidant status. BA

inhibits the hypoxia and hypothermia-induced increase in both IL-6 and

TNF-a, but 2-APB only in IL-6. Boron may be beneficial in preventing NEC.
Key Words: Boron, inflammation, necrotizing enterocolitis

(JPGN 2014;58: 61–67)
N ecrotizing enterocolitis (NEC) is the most common life-
threatening condition of the gastrointestinal tract in new-

borns (1). NEC is a multifactorial disease, and the risk factors for
NEC are controversial. The triad of intestinal ischemia, enteral
nutrition, and bacterial translocation has been linked to NEC. In
most cases of NEC, no pathogen has been identified. Early and/or
Loss of mucosal integrity because of a variety of factors (ischemia,
infection, and inflammation) and the host response to injury
(circulatory, immunologic, and inflammatory) are the leading
causes of necrosis of the affected area (1). Oxidative stress is
implicated in the pathogenesis of NEC, and oxidative damage
could be enhanced by a relative deficiency in the oxidant/anti-
oxidant balance (2).

Glutathione (GSH) is the major intracellular antioxidant that
protects against free radical–mediated damage (3). As in other
tissues of the body, the GSH antioxidant detoxifying system has
been proven to be of great importance in the gut barrier response to
toxic oxidants (4). At birth, smaller preterm infants have signifi-
cantly lower levels of GSH than do larger preterm infants, and full-
term small-for-gestational-age (SGA) infants have significantly
lower levels of GSH than do full-term appropriate-for-gesta-
tional-age (AGA) infants (5). The GSH concentrations in the cord
blood are higher in preterm infants than in term infants; however,
GSH levels fall rapidly in preterm infants within a few days of birth,
possibly as a consequence of increased oxidative stress (6).

Superoxide dismutases (SODs) are enzymes that catalyze the
dismutation of superoxide into oxygen and hydrogen peroxide.
High levels of SODs of the immature and newborn intestine are
well known to exert a protective effect against intestinal ischemia
and reperfusion (I/R) injury (7–9).

Interleukin (IL)-6 and tumor necrosis factor (TNF)-a are
produced locally, but have significant effects on the induction and
regulation of systemic infection and are well known to be involved
in NEC pathogenesis (10–12). In particular, IL-6 is a more reliable
indicator of NEC than TNF-a (13).

Mucins are produced and secreted by epithelial goblet cells
as a component of the immune system and possess a barrier function
for bacterial invasion (14). Alternations in goblet cell morphology
and mucin production are a component of NEC pathogenesis (15).
TNF-a causes a loss of goblet cells only in immature mice, which
may contribute to NEC formation, and induces Muc2 and Muc3
mRNA upregulation only in the mature ileum, which may be
protective (14).

Boron is involved in a substantial number of metabolic
processes in humans. Therefore, boron deficiency and supplement-
ation have many effects. By means of an enzyme or hormone
system, boron can affect aspects of vitamin D3 metabolism, can
affect bone and cartilage mineralization and growth, and can
influence the metabolisms of some minerals (lithium, calcium,
phosphorus, and especially magnesium) (16–18). Boron is also
important for the replication and development of animal cells (19).
Boron has some beneficial effects on preventing lipid peroxidation
and DNA damage, strengthening tissue antioxidant defenses
(20–22), and reducing the genotoxic effects of heavy metals
(23). Boron plays an important role in anti-inflammatory processes
(22,24–26). Antimicrobial activity has also been reported (27).
duction of this article is prohibited.
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decapitation. Two tubes were used for blood collection. One tube
contained sodium citrate and was used to measure the level of GSH.
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FIGURE 1. Box plots demonstrating the initial and final weights in

grams for each group (group I—subjected to the necrotizing enter-
ocolitis [NEC] procedure; group II—pretreated with boric acid and

subjected to the NEC procedure; group III—pretreated with 2-APB

and subjected to the NEC procedure; group IV—breast-fed freely by

their mothers and not subjected to the NEC procedure). There was no
difference in the initial weights among the 4 groups (P¼0.09). The

final weights in all groups did not differ significantly different

(P¼0.17); however, when the initial and final weights were com-

pared, there was a statistically significant weight loss in group I
osteoporosis, and arthritis) (28). Boron may also affect insulin and
energy metabolism, and the metabolic aspects of boron may be
attributable to its overall effect on energy substrate use (16,29).
Animal studies using high doses of boron reported that boron is
toxic to reproduction and development; however, recent human
studies performed on workers exposed to high levels of boron did
not conclude that boron is toxic to reproduction (30–32). The
biological functions of boron may act via the cell signaling mole-
cules capable of complexing with boron (33). There is growing
evidence of the essentiality of boron in humans and animals, but the
mechanism of action underlying the benefits of boron is not well
defined.

The antioxidant role of boron compounds has been previously
reported in several studies (20,21,34). The use of natural or synthetic
free radical scavengers could be a potential chemoprotective strategy
for NEC. In the present study, the efficacy of 2 boron compounds
(boric acid [BA] and 2-aminoethoxydiphenyl borate [2-APB]) in
protecting rodents from NEC was examined. This relation has not
been previously studied. We examined the hypothesis that rats with
NEC would exhibit lower levels of GSH and total antioxidant status
(TAS) and higher levels of SOD, TNF-a, and IL-6 compared with
controls. Furthermore, we predicted that pretreatment with boron
compounds would prevent the decrease in GSH and TAS as well as
prevent the increase in SOD, TNF-a, and IL-6.

METHODS

Experimental Design
The study was conducted at the Balıkesir University Veter-

inary Faculty Animal Research Laboratory. The study was under-
taken after obtaining approval from the experimental animal ethics
committee at Balıkesir University. A total of 40 term newborn
Sprague-Dawley rats (15 days old, 20–35 g) were enrolled in the
study. All of the study subjects were healthy. The animals were kept
in an environmentally controlled room at room temperature
(248C� 0.58C) in a 12-hour light and 12-hour dark cycle. Rats
were given 3 days to adapt to the animal room conditions. The
newborn rats were kept in identical cages (1 per group with 10 pups)
with their mothers. A standard rodent diet and tap water were used
for feeding the mothers. Diet and water for the mothers were
provided ad libitum. During the study period, newborn rats were
fed freely on breast milk by their mothers.

Rats were subdivided into 4 subgroups: NEC (group I—
subjected to the NEC procedure), NECþBA (group II—pretreated
with BA and subjected to the NEC procedure), NECþ 2-APB
(group III—pretreated with 2-APB and subjected to the NEC
procedure), and controls (group IV—breast-fed freely by their
mothers and not subjected to the NEC procedure). Each subgroup
included 10 newborn rats.

NEC Procedure

Experimental NEC was induced by asphyxia (breathing 100%
nitrogen gas for 120 seconds) and hypothermia (48C for 10 minutes)
twice daily for 3 consecutive days (35,36). The NEC procedure was
not performed on the control group (group IV). All of the animals
were weighed daily, and weight gain or loss was recorded. On the
fourth day, the animals were sacrificed via decapitation, and the
biochemical estimations were completed on the same day.

BA and 2-APB Application

Yazıcı et al
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BA and 2-APB were applied by intraperitoneal injection
once daily to avoid absorption differences of the gastrointestinal
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tract. BA (H3(BO)3, 4% solution; Sigma Aldrich, CAS no. 10043–
35–3) and 2-APB ((C6H5)2BOCH2CH2NH2, Sigma Aldrich, CAS
no. 524958) was obtained from Sigma Chemical Co (St Louis, MO).

The dose for BA was 4 mg/kg, the dose mentioned to be the
most protective by Pawa and Ali (37). The dose for 2-APB was
2 mg/kg, which was reported to be effective for I/R injury (38).

Biochemical Analysis

A total of 2 mL of blood was obtained from each subject via

JPGN � Volume 58, Number 1, January 2014
authorized reproduction of this article is prohibited.

(P<0.01) and a significant weight gain in groups II, III, and IV (group

II, P<0.01; group III, P¼0.03; and group IV, P<0.01).
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FIGURE 2. Representative histological injury scores of the terminal ileum damage in hematoxylin & eosin–stained sections. A, This figure belongs

to a sample from the control group. Normal intestinal histology seen in the figure is graded as grade 0. B, This figure belongs to a sample from
necrotizing enterocolitis (NEC)þboric acid group. Slight submucosal and/or lamina propria separation seen in the figure is graded as grade 1.

C, This figure belongs to a sample from the NEC group. Moderate separation of submucosa and/or lamina propria and/or edema in the

2.
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The other tube included no chemicals and was used to measure
levels of TAS, SOD, TNF-a, and IL-6. The blood samples were
centrifuged at 3000g at 48C for 10 minutes. The samples were
analyzed at the Balıkesir University veterinary faculty.

Commercially available kits were used to measure the total
antioxidant status (Total Antioxidant Status Assay Kit, Rel Assay
Diagnostics, RL0017, Gaziantep, Turkey), SOD (OxiSelect Super-
oxide Dismutase Activity Assay, STA-340, Cell Biolabs, San
Diego, CA), TNF-a (Rat TNF-a platinum ELISA, BMS622,
eBioscience, San Diego, CA), and IL-6 (Rat IL-6 platinum ELISA,
eBioscience) in the serum. GSH was measured in whole blood by
the method described by Fairbanks and Klee (39).

Histological Injury Grading and NEC Evaluation

Upon sacrifice, the intestines from the rats in all of the groups
were resected. A 2-cm piece of distal ileum was removed and
formalin-fixed, paraffin-embedded, sectioned at 5-mm thickness
and stained with hematoxylin and eosin for histological evaluation.
Pathological changes in intestinal architecture were evaluated by
the use of the NEC histologic injury scoring system described by
Dvorak et al (40). The grading system was as follows: 0 (normal), no
damage; 1 (mild), slight submucosal and/or lamina propria separ-
ation; 2 (moderate), moderate separation of the submucosa and/or
lamina propria and/or edema in submucosal and muscular layers; 3
(severe), severe separation of the submucosa and/or lamina propria,

submucosal and muscular layers seen in the figure is graded as grade
pyright 2013 by ESPGHAN and NASPGHAN. Un

severe edema in submucosa and muscular layers and/or region
villous sloughing; and 4 (necrosis), loss of villi and necrosis.

TABLE 1. Histological NEC scoring in each group

Grade 0 Grade 1 Grade 2 Any injury NEC þ

Control, % 90 10 0 10 0

NEC, % 0 40 60 100 60
�

Boric acid, % 50 40 10 50 10

2-APB, % 60 30 10 40 10

2-APB¼ 2-aminoethoxydiphenyl borate; NEC¼ necrotizing entero-
colitis.�

P< 0.05 vs control.

www.jpgn.org
Tissues were graded by the same histologist, who was blinded to
the experiment. Animals with histologic scores<2 were considered
negative for NEC, and animals with histological scores �2 were
considered positive for NEC.

TUNEL Staining for the Detection of Apoptotic
Cells

Apoptotic cells in the ileum sections were detected with
transferase-mediated dUTP nick end labeling (TUNEL) assay by an
observer who was blinded to the group assignment. The TUNEL
staining was conducted using a TUNEL assay kit according to the
manufacturer’s instructions (ApopTaq Peroxidase In Situ Apoptosis
Detection Kit; S7101-KIT, Merck Millipore, Billerica, MA).

Statistical Analysis

The statistical analyses were performed using SPSS version
20.0 (SPSS, Chicago, IL). The Mann-Whitney U and Kruskal-
Wallis tests were used for comparisons between groups. The
Wilcoxon test was used for interpreting the data in each group.
The x2 test and Fisher exact test were also used where appropriate.
Nonparametric tests were used, and the descriptive statistics are
expressed as the median (minimum–maximum). A P value <0.05
was considered statistically significant.

RESULTS
All of the newborn rats survived until the end of the study. On

the third day, hypotonia, hypoactivity, lack of appetite, and partial
hair loss were observed only in the NEC group (group I). The other
groups exhibited none of those changes.

There was no difference in the initial weights among the 4
groups (P¼ 0.09). During the procedure, only the NEC group lost
weight; the other groups gained weight. At the end of the procedure,
the final weights in all of the groups did not significantly differ
(P¼ 0.17); however, when compared with the initial weights, there
was a statistically significant weight loss in group I (P< 0.01) and a

The bars at the bottom of the figures represent 50 mm.
authorized reproduction of this article is prohibited.

weight gain in the other groups (group II, P< 0.01; group III,
P¼ 0.03; and group IV, P< 0.01) (Fig. 1).
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Effect of BA and 2-APB on the Incidence of NEC

In this study, the severity of the histological changes of the
ileal segments and the incidence of NEC in all of the groups were
determined by using a scoring system from 0 to 4 (Fig. 2). Ileal
damage in group II (NECþBA) and group III (NECþ 2-APB) was
reduced to a median histological NEC score of 0.5 and 0, respec-
tively, compared with a median score of 2 in group I (NEC group).
The incidences of NEC were 60% (6/10) in group I and 10% (1/10)
in group II and group III. NEC did not develop in the control group.
The incidence of NEC was significantly higher in group I when
compared with the control group (P< 0.05), but there were no
significant differences among the NEC incidences of group II,
group III, and the control group (Table 1).

TUNEL Staining

The ileum sections from all of the groups were stained by
TUNEL staining to investigate apoptosis. There were no differences
among the groups (Fig. 3).

Effect of BA and 2-APB on Oxidative Stress

A significant decrease in the serum levels of GSH was
observed in groups I, II, and III when compared with the controls,
implicating oxidative stress (P< 0.01). Both group II (NECþBA)
and group III (NECþ 2-APB) exhibited significantly lower GSH
levels than did the controls (group II–IV; P< 0.01 and group III–
IV; P< 0.01), and significantly higher GSH levels than did the NEC
group (group I–II; P< 0.01 and group I–III; P< 0.01). Interest-
ingly, GSH levels were not significantly different between groups II
and III (P¼ 0.07) (Fig. 4).

There was no significant difference in the total antioxidant

Yazıcı et al
pyright 2013 by ESPGHAN and NASPGHAN. Un

status of the groups subjected to the NEC procedure (groups I, II,
and III) compared with the controls (P¼ 0.906).

20 µm

A B

FIGURE 3. Representative transferase-mediated dUTP nick end labeling (T

groups: A, Control group; B, NEC group; and C, necrotizing enterocolitis (N
lamina propria separation, are seen in the NEC group, there is no differenc

3 groups. The bars at the bottom of the figures represent 20 mm.
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A significant decrease was present in the SOD levels in
groups subjected to the NEC procedure (groups I, II, and III) when
compared with the controls (P< 0.01). In the control group, SOD
levels were significantly higher than in group I (P< 0.01), group II
(P< 0.01), and group III (P< 0.01). The differences between
groups I and II (P¼ 0.063), between groups I and III
(P¼ 0.057), and between groups II and III (P¼ 0.21) were not
statistically significant (Fig. 4).

Effect of BA and 2-APB on the Activity Levels of
TNF-a and IL-6

TNF-a levels in the NEC group were significantly higher
than in the controls (P< 0.01). TNF-a levels in group II
(NECþBA) were significantly lower than in the NEC group
(P< 0.01) and group III (NECþ 2-APB) (P< 0.01), but did not
differ from the controls (P¼ 0.57). The levels in group III were
higher than in groups II (P> 0.01) and IV (P¼ 0.01). The NEC and
NECþ 2-APB groups exhibited no difference in their TNF-a levels
(P¼ 0.57) (Fig. 4).

IL-6 levels in group I were significantly higher than in group
II (group I–II; P< 0.01), group III (group I–III; P< 0.01), and
group IV (group I–IV; P< 0.01). IL-6 levels in the groups pre-
treated with BA and 2-APB were similar to those of the controls
(group II–IV; P¼ 0.97 and group III–IV; P¼ 0.06). The IL-6
levels did not differ between groups II and III (P¼ 0.21) (Fig. 4).

The present study demonstrated that the NEC procedure
increased TNF-a and IL-6 levels, preadministered BA prevented
this increase, 2-APB was effective in normalizing IL-6 levels but
not TNF-a levels, and the ILs involved in the inflammation process
appear to be normalized by pretreatment with boron compounds.

DISCUSSION

JPGN � Volume 58, Number 1, January 2014
authorized reproduction of this article is prohibited.

Several studies have used hypoxia and hypothermia to
produce a model of NEC in rats (35,36,41). To date, many

20 µm 20 µm

C

UNEL) staining sections of the terminal ileum from the experimental

EC)þboric acid group. Although some histological findings, the slight
e between the numbers of TUNEL-positive apoptotic cells among the

www.jpgn.org
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FIGURE 4. Box plots for the glutathione (GSH) (mg/dL), superoxide dismutase (SOD) (İnhibition %), tumor necrosis factor (TNF)-a (pg/mL), and

interleukin (IL)-6 (pg/mL) levels in each group (group I—subjected to the NEC procedure; group II—pretreated with boric acid and subjected to

the NEC procedure; group III—pretreated with 2-aminoethoxydiphenyl borate and subjected to the NEC procedure; group IV—breast-fed freely

by their mothers and not subjected to the NEC procedure). GSH levels were lower in groups I, II and III than they were in the controls (P<0.01).
GSH levels in group II and group III did not significantly differ (P¼0.07) but were lower than in the controls (group II–IV; P<0.01 and group III–IV;

P<0.01) and higher than in the NEC group (group I–II; P<0.01 and group I–III; P<0.01). SOD levels in groups I, II, and III were lower than

controls (P<0.01) but were not from each other (group I–II, P¼0.063; group I–III, P¼0.057; and group II–III, P¼0.21). TNF-a levels in group I

were significantly higher than those of the controls (P<0.01). TNF-a levels in group II were significantly lower than those in group I (P<0.01) and
group III (P<0.01) but did not differ from levels in the controls (P¼0.57). TNF-a levels in group III were higher than in groups II (P>0.01) and IV

(P¼0.01) and did not differ from those of group I (P¼0.57). IL-6 levels in group I were significantly higher than those in group II (group I–II;

P<0.01), group III (group I–III; P<0.01), and group IV (group I–IV; P<0.01). The IL-6 levels did not differ among groups II, III, and IV

(group II–III, P¼0.21; group II–IV, P¼0.97; and group III–IV, P¼0.06).
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compounds have been tested, but no drug has been approved to
prevent NEC. In the English-language literature, no study has been
published on the effects of boron compounds on NEC. We used a
rodent model to examine the probable protective, antioxidant, and
anti-inflammatory effects of 2 different boron compounds.

In our rodent model, the NEC incidence was lower in the
boron-pretreated groups, suggesting that boron exerts protective
effects. Histologic scoring revealed that the protective effects of
both boron compounds on NEC development are certain. The
mechanism remains unclear. TUNEL staining to investigate apop-
tosis revealed no difference between the groups. Lipid peroxidation,
pyright 2013 by ESPGHAN and NASPGHAN. Un

an important potential mechanism of boron protection against cell
damage, was not studied in the present work.

www.jpgn.org
In the present study, there was a strong correlation between
boron pretreatment and a reduction in oxidative stress. The total
antioxidant status in experimental NEC models has been reported as
increased (2), decreased (42), or unchanged (21). A study per-
formed on peripheral human blood cultures involving 4 boron
compounds revealed an increase in the levels of GSH, SOD, and
TAS up to a dose of 20 mg/kg (22). The effects were dose related
and higher doses contributed to oxidative stress and a decrease in
GSH, SOD, and TAS levels. Our doses of 4-mg/kg BA and 2-mg/kg
2-APB resulted in an increase in GSH levels and a decrease in SOD
levels. Interestingly, the total antioxidant status did not change. The
authorized reproduction of this article is prohibited.

results of the present study revealed that boron compounds appear
to normalize the antioxidant defense in our experimental NEC
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model and the effects may be dose dependent. Further studies with
various doses are needed.

Previous reports have suggested that NEC pathogenesis is
related to a decrease in GSH levels, as expected in oxidative stress,
and that GSH supplementation may be protective in animal models
of intestinal ischemia (4). Data from our NEC model are consistent
with the study of Kelly et al (4). Interestingly, Hall et al (3) reported
a trend toward lower GSH levels in infants with more extensive
NEC stages, but the decrease was not significant.

SOD levels in our model were significantly lower in all NEC
groups than in controls. The results are consistent with similar
studies in the English-language literature (43,44). In previous
reports, the stimulatory effect of BA on SOD in human blood
has been reported (34). Unexpectedly, boron pretreatment had no
effect on SOD levels in our NEC model.

Several studies investigated the relation of boron and
inflammation (24,25,45,46). Cao et al (24) found that BA had
no significant effect on TNF-a formation or intracellular GSH
contents in THP-1 cells; however, BA administration led to a
decrease in lipopolysaccharide (LPS)-induced TNF-a formation.
The study of Benderdour et al (45) reported that BA acts as a
stimulus for the release of TNF-a from cultured human fibroblasts
and chick embryo cartilage. Armstrong et al (46) reported that pigs
that consumed a boron-supplemented diet exhibited a decreased
local inflammatory response to an intradermal injection of
phytohemagglutinin. Following stress in pigs, Armstrong and
Spears (25) reported an increase of TNF-a after dietary boron
intake, implicating an increase in the systemic inflammatory
response. Finally, Armstrong et al concluded that models of
localized tissue inflammation are most likely not equivalent to
whole-body inflammatory disease models. Conversely, our study
demonstrated a limitation of systemic inflammation. The results
revealed that in our experimental NEC model, pretreatment with
BA prevented the increase of TNF-a, but pretreatment with 2-APB
did not result in the same effect. The study clearly revealed that
pretreatment with BA or 2-APB downregulated the activity levels
of IL-6 in NEC. This result confirms the finding that IL-6 is more
specific than TNF-a in NEC pathogenesis (11,13). Our route of
administration was intraperitoneal, and we did not assess local
tissue inflammation.

The data in our rodent model suggest that boron pretreatment
could temper the decrease in GSH and inhibit the increase in the
proinflammatory cytokines TNF-a and IL-6. Unfortunately, there is
no similar experimental NEC study in the English-language litera-
ture to which our results can be compared.

CONCLUSIONS
Our results provide the first data on the effects of boron

compounds (BA and 2-APB) on NEC. The data clearly demon-
strate that BA and 2-APB modulate oxidative stress parameters,
enhance the antioxidant defense mechanism, and partly prevent
NEC formation. In rats with NEC, pretreatment with BA or
2-APB resulted in a significant decrease in GSH consumption
but had no effect on total antioxidant status. The inhibition
of hypoxia- and hypothermia-induced increases in serum proin-
flammatory cytokines and the enhancement of antioxidant
defense suggested that boron could help prevent systemic inflam-
mation and maintain the oxidant/antioxidant balance of the
affected tissue. Although limited conclusions can be drawn from
animal studies, boron may be beneficial for protection against
NEC. Further characterization of the cell-signaling molecules
capable of complexing with boron should provide insights into

Yazıcı et al
pyright 2013 by ESPGHAN and NASPGHAN. Un

the effects of boron. The exact mechanisms need to be further
elucidated.
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