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Abstract:We study biharmonic Legendre curves in S−space forms. We find curvature characterizations of these special

curves in 4 cases.
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1. Introduction

Let (M, g) and (N,h) be 2 Riemannian manifolds and f : (M, g) → (N,h) a smooth map. The energy

functional of f is defined by

E(f) =
1

2

∫
M

|df |2 υg.

If f is a critical point of the energy functional E(f), then it is called harmonic [10]. f is called a biharmonic

map if it is a critical point of the bienergy functional

E2(f) =
1

2

∫
M

|τ(f)|2 υg,

where τ(f) is the first tension field of f , which is defined by τ(f) = trace∇df. The Euler-Lagrange equation

of bienergy functional E2(f) gives the biharmonic map equation [16]

τ2(f) = −Jf (τ(f)) = −∆τ(f)− traceRN (df, τ(f))df = 0,

where Jf is the Jacobi operator of f . It is trivial that any harmonic map is biharmonic. If the map is a

nonharmonic biharmonic map, then we call it proper biharmonic. Biharmonic submanifolds have been studied

by many geometers. For example, see [2], [3], [7], [8], [11], [12], [13], [14], [15], [18], [20], [21], [22], and the

references therein. In a different setting, in [9], Chen defined a biharmonic submanifold M ⊂ En of the Euclidean

space as its mean curvature vector field H satisfies ∆H = 0, where ∆ is the Laplacian.

In [12] and [14], Fetcu and Oniciuc studied biharmonic Legendre curves in Sasakian space forms. As a

generalization of their studies, in the present paper, we study biharmonic Legendre curves in S−space forms.

We obtain curvature characterizations of these kinds of curves.

The paper is organized as follows: In Section 2, we give a brief introduction about S−space forms. In

Section 3, we give the main results of the study.

∗Correspondence: cozgur@balikesir.edu.tr

2010 AMS Mathematics Subject Classification: 53C25, 53C40, 53A04.

454
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2. S−space forms and their submanifolds

Let (M, g ) be a (2m+s)-dimensional framed metric manifold [24] with a framed metric structure (f, ξα, η
α, g),

α ∈ {1, ..., s} , that is, f is a (1, 1) tensor field defining an f -structure of rank 2m ; ξ1, ..., ξs are vector fields;

η1, ..., ηs are 1-forms; and g is a Riemannian metric on M such that for all X,Y ∈ TM and α, β ∈ {1, ..., s} ,

f2 = −I +
s∑

α=1
ηα ⊗ ξα, ηα(ξβ) = δαβ , f (ξα) = 0, ηα ◦ f = 0, (2.1)

g(fX, fY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ), (2.2)

dηα(X,Y ) = g(X, fY ) = −dηα(Y,X), ηα(X) = g(X, ξ). (2.3)

(M2m+s, f, ξα, η
α, g) is also called a framed f -manifold [19] or almost r -contact metric manifold [23]. If the

Nijenhuis tensor of f equals −2dηα ⊗ ξα for all α ∈ {1, ..., s} , then (f, ξα, η
α, g) is called S -structure [4].

If s = 1, a framed metric structure is an almost contact metric structure and an S -structure is a Sasakian

structure. If a framed metric structure on M is an S -structure, then the following equations hold [4]:

(∇Xf)Y =

s∑
α=1

{
g(fX, fY )ξα − ηα(Y )f2X

}
, (2.4)

∇ξα = −f, α ∈ {1, ..., s} . (2.5)

In the case of Sasakian structure (s = 1), (2.5) can be calculated using (2.4) .

A plane section in TpM is an f -section if there exists a vector X ∈ TpM orthogonal to ξ1, ..., ξs such

that {X, fX} span the section. The sectional curvature of an f -section is called an f -sectional curvature. In

an S -manifold of constant f -sectional curvature, the curvature tensor R of M is of the form

R(X,Y )Z =
∑
α,β

{
ηα(X)ηβ(Z)f2Y − ηα(Y )ηβ(Z)f2X

−g(fX, fZ)ηα(Y )ξβ + g(fY, fZ)ηα(X)ξβ}
+ c+3s

4

{
−g(fY, fZ)f2X + g(fX, fZ)f2Y

}
c−s
4 {g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ} ,

(2.6)

for all X,Y, Z ∈ TM [6]. An S -manifold of constant f -sectional curvature c is called an S -space form, which

is denoted by M(c). When s = 1, an S -space form becomes a Sasakian space form [5].

A submanifold of an S -manifold is called an integral submanifold if ηα(X) = 0, α = 1, ..., s, for every

tangent vector X [17]. We call a 1-dimensional integral submanifold of an S -space form (M2m+s, f, ξα, η
α, g)

a Legendre curve of M . In other words, a curve γ : I → M = (M2m+s, f, ξα, η
α, g) is called a Legendre curve

if ηα(T ) = 0, for every α = 1, ...s, where T is the tangent vector field of γ.
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3. Biharmonic Legendre curves in S -space forms

Let γ : I → M be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g). If

there exists orthonormal vector fields E1, E2, ..., Er along γ such that

E1 = γ′ = T,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3, (3.7)

...

∇TEr = −κr−1Er−1,

then γ is called a Frenet curve of osculating order r , where κ1, ..., κr−1 are positive functions on I and

1 ≤ r ≤ n.

A Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order 2 is called a circle

if κ1 is a nonzero positive constant; a Frenet curve of osculating order r ≥ 3 is called a helix of order r if

κ1, ..., κr−1 are nonzero positive constants; a helix of order 3 is shortly called a helix.

Now let (M2m+s, f, ξα, η
α, g) be an S -space form and γ : I → M a Legendre Frenet curve of osculating

order r . Differentiating

ηα(T ) = 0 (3.8)

and using (3.7) , we find

ηα(E2) = 0, α ∈ {1, ..., s} . (3.9)

By the use of (2.1), (2.2), (2.3), (2.6), (3.7), and (3.9), it can be seen that

∇T∇TT = −κ2
1E1 + κ′

1E2 + κ1κ2E3,

∇T∇T∇TT = −3κ1κ
′
1E1 +

(
κ′′
1 − κ3

1 − κ1κ
2
2

)
E2

+(2κ′
1κ2 + κ1κ

′
2)E3 + κ1κ2κ3E4,

R(T,∇TT )T = −κ1
(c+ 3s)

4
E2 − 3κ1

(c− s)

4
g(fT,E2)fT.

Thus, we have

τ2(γ) = ∇T∇T∇TT −R(T,∇TT )T

= −3κ1κ
′
1E1

+

(
κ′′
1 − κ3

1 − κ1κ
2
2 + κ1

(c+ 3s)

4

)
E2 (3.10)

+(2κ′
1κ2 + κ1κ

′
2)E3 + κ1κ2κ3E4

+3κ1
(c− s)

4
g(fT,E2)fT.

Let k = min {r, 4} . From (3.10), the curve γ is proper biharmonic if and only if κ1 > 0 and

(1) c = s or fT ⊥ E2 or fT ∈ span {E2, ..., Ek} ; and

(2) g(τ(γ), Ei) = 0, for any i = 1, k .

We can therefore state the following theorem:
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Theorem 3.1 Let γ be a Legendre Frenet curve of osculating order r in an S -space form (M2m+s, f, ξα, η
α, g) ,

α ∈ {1, ..., s} , and k = min {r, 4} . Then γ is proper biharmonic if and only if

(1) c = s or fT ⊥ E2 or fT ∈ span {E2, ..., Ek} ; and
(2) the first k of the following equations are satisfied (replacing κk = 0) :

κ1 = constant > 0,

κ2
1 + κ2

2 = c+3s
4 + 3(c−s)

4 [g(fT,E2)]
2
,

κ′
2 +

3(c−s)
4 g(fT,E2)g(fT,E3) = 0,

κ2κ3 +
3(c−s)

4 g(fT,E2)g(fT,E4) = 0.

Now we give the interpretations of Theorem 3.1.

Case I. c = s.

In this case γ is proper biharmonic if and only if

κ1 = constant > 0,
κ2
1 + κ2

2 = s,
κ2 = constant,

κ2κ3 = 0.

Theorem 3.2 Let γ be a Legendre Frenet curve in an S -space form (M2m+s, f, ξα, η
α, g) , α ∈ {1, ..., s} ,

c = s , and (2m + s) > 3. Then γ is proper biharmonic if and only if either γ is a circle with κ1 =
√
s or a

helix with κ2
1 + κ2

2 = s.

Remark 3.1 If 2m+s = 3 , then m = s = 1 . So M is a 3-dimensional Sasakian space form. Since a Legendre

curve in a Sasakian 3-manifold has torsion 1 (see [1]) , we can write κ1 > 0 and κ2 = 1 , which contradicts

κ2
1 + κ2

2 = s = 1 . Hence, γ cannot be proper biharmonic.

Case II. c ̸= s , fT ⊥ E2 .

In this case, g(fT,E2) = 0. From Theorem 3.1, we obtain

κ1 = constant > 0,
κ2
1 + κ2

2 = c+3s
4 ,

κ2 = constant,
κ2κ3 = 0.

(3.11)

First, we give the following proposition:

Proposition 3.1 Let γ be a Legendre Frenet curve of osculating order 3 in an S -space form (M2m+s, f, ξα, η
α, g) ,

α ∈ {1, ..., s} , and fT ⊥ E2 . Then {T = E1, E2, E3, fT,∇T fT, ξ1, ..., ξs} is linearly independent at any point

of γ . Therefore, m ≥ 3 .

Proof Since γ is a Frenet curve of osculating order 3, we can write

E1 = γ′ = T,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3, (3.12)

∇TE3 = −κ2E2.

457



ÖZGÜR and GÜVENÇ/Turk J Math

The system

S1 = {T = E1, E2, E3, fT,∇T fT, ξ1, ..., ξs}

has only nonzero vectors. Using (2.1), (2.2), (2.3), and (2.4), we find

∇T fT =

s∑
α=1

ξα + κ1fE2. (3.13)

So by the use of (3.8), (3.9), (3.12), and (3.13), we have

T ⊥ E2, T ⊥ E3, T ⊥ E4, T ⊥ fT,

T ⊥ ∇T fT, T ⊥ ξα for all α ∈ {1, ..., s} .

Hence, S1 is linearly independent if and only if S2 = {E2, E3, fT,∇T fT, ξ1, ..., ξs} is linearly independent. From

the assumption we have E2 ⊥ fT . From (3.9), E2 ⊥ ξα for all α ∈ {1, ..., s} . Using (2.3), (3.12), and (3.13), we

have E2 ⊥ E3 and E2 ⊥ ∇T fT. So S2 is linearly independent if and only if S3 = {E3, fT,∇T fT, ξ1, ..., ξs} is

linearly independent. Differentiating g(fT,E2) = 0 and using (3.12) and (3.13) , we find g(fT,E3) = 0. Hence,

fT ⊥ E3. Using (2.1) and (2.3), we find g(fT, ξα) = 0, that is, fT ⊥ ξα for all α ∈ {1, ..., s} . Using (2.2) and

(3.13), we obtain g(fT,∇T fT ) = 0. So S3 is linearly independent if and only if S4 = {E3,∇T fT, ξ1, ..., ξs}
is linearly independent. Differentiating ηα(E2) = 0, we have ηα(E3) = 0, α ∈ {1, ..., s} . Thus E3 ⊥ ξα for

all α ∈ {1, ..., s} . If we differentiate g(fT,E3) = 0, we get g(∇T fT,E3) = 0, that is, E3 ⊥ ∇T fT. So S4 is

linearly independent if and only if S5 = {∇T fT, ξ1, ..., ξs} is linearly independent. Since κ1 ̸= 0 and fE2 ⊥ ξα

for all α ∈ {1, ..., s} , equation (3.13) gives us ∇T fT /∈ span {ξ1, ..., ξs} . So S5 is linearly independent.

Since {T = E1, E2, E3, fT,∇T fT, ξ1, ..., ξs} is linearly independent, dimM = 2m + s ≥ s + 5. Hence,

m ≥ 3. 2

Now we can state the following Theorem:

Theorem 3.3 Let γ be a Legendre Frenet curve in an S -space form (M2m+s, f, ξα, η
α, g) , α ∈ {1, ..., s} ,

c ̸= s , and fT ⊥ E2 . Then γ is proper biharmonic if and only if either

(1) m ≥ 2 and γ is a circle with κ1 = 1
2

√
c+ 3s , where c > −3s and {T = E1, E2, fT, ∇T fT, ξ1, ..., ξs}

is linearly independent; or

(2) m ≥ 3 and γ is a helix with κ2
1 + κ2

2 = c+3s
4 , where c > −3s and {T = E1, E2, E3, fT,

∇T fT, ξ1, ..., ξs} is linearly independent.

If c ≤ −3s , then γ is biharmonic if and only if it is a geodesic.

Case III. c ̸= s , fT ∥ E2 .

In this case, fT = ±E2, g(fT,E2) = ±1, g(fT,E3) = g(±E2, E3) = 0, and g(fT,E4) = g(±E2, E4) = 0.

From Theorem 3.1, γ is biharmonic if and only if

κ1 = constant > 0,
κ2
1 + κ2

2 = c,
κ2 = constant,

κ2κ3 = 0.
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We can assume that fT = E2. From equation (2.1), we get

fE2 = f2T = −T +
s∑

α=1

ηα(T )ξα = −T. (3.14)

From (3.13) and (3.14), we find

∇T fT =
s∑

α=1

ξα − κ1T. (3.15)

Using (3.7) and (3.15), we can write

κ2E3 =
s∑

α=1

ξα,

which gives us

κ2 =

∥∥∥∥∥
s∑

α=1

ξα

∥∥∥∥∥ =
√
s,

E3 =
1√
s

s∑
α=1

ξα,

ηα(E3) =
1√
s
, α ∈ {1, ..., s} .

Thus by the use of Theorem 3.1, we have the following Theorem:

Theorem 3.4 Let γ be a Legendre Frenet curve in an S -space form (M2m+s, f, ξα, η
α, g) , α ∈ {1, ..., s} ,

c ̸= s , and fT ∥ E2 . Then {
T, fT,

1√
s

s∑
α=1

ξα

}

is the Frenet frame field of γ and γ is proper biharmonic if and only if it is a helix with κ1 =
√
c− s and

κ2 =
√
s , where c > s . If c ≤ s , then γ is biharmonic if and only if it is a geodesic.

Case IV. c ̸= s and g(fT,E2) is not constant 0, 1, or −1.

Now, let (M2m+s, f, ξα, η
α, g) be an S -space form, α ∈ {1, ..., s} , and γ : I → M a Legendre curve of

osculating order r, where 4 ≤ r ≤ 2m + s and m ≥ 2. If γ is biharmonic, then fT ∈ span {E2, E3, E4} . Let
θ(t) denote the angle function between fT and E2, that is, g(fT,E2) = cos θ(t). Differentiating g(fT,E2)

along γ and using (2.1), (2.3), (3.7), and (3.13), we find

− θ′(t) sin θ(t) = ∇T g(fT,E2) = g(∇T fT,E2) + g(fT,∇TE2)

= g(
s∑

α=1

ξα + κ1fE2, E2) + g(fT,−κ1T + κ2E3) (3.16)

= κ2g(fT,E3).
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If we write fT = g(fT,E2)E2 + g(fT,E3)E3 + g(fT,E4)E4, Theorem 3.1 gives us

κ1 = constant > 0,

κ2
1 + κ2

2 = c+3s
4 + 3(c−s)

4 cos2 θ,

κ′
2 +

3(c−s)
4 cos θg(fT,E3) = 0,

κ2κ3 +
3(c−s)

4 cos θg(fT,E4) = 0.

If we multiply the third equation of the above system with 2κ2, using (3.16), we obtain

2κ2κ
′
2 +

3(c− s)

4
(−2θ′ cos θ sin θ) = 0,

which is equivalent to

κ2
2 = −3(c− s)

4
cos2 θ + ω0, (3.17)

where ω0 is a constant. If we write (3.17) in the second equation, we have

κ2
1 =

c+ 3s

4
+

3(c− s)

2
cos2 θ + ω0.

Thus, θ is a constant. From (3.16) and (3.17), we find g(fT,E3) = 0 and κ2 =constant> 0. Since ∥fT∥ = 1

and fT = cos θE2 + g(fT,E4)E4, we get g(fT,E4) = sin θ. From the assumption g(fT,E2) is not constant

0, 1, or −1, it is clear that θ ∈ (0, 2π)\
{

π
2 , π,

3π
2

}
. Now we can state the following Theorem:

Theorem 3.5 Let γ : I → M be a Legendre curve of osculating order r in an S -space form (M2m+s, f, ξα, η
α, g) ,

α ∈ {1, ..., s} , where r ≥ 4 , m ≥ 2, c ̸= s , g(fT,E2) is not constant 0, 1 , or −1. Then γ is proper bihar-

monic if and only if

κi = constant > 0, i ∈ {1, 2, 3} ,

κ2
1 + κ2

2 =
1

4

[
c+ 3s+ 3(c− s) cos2 θ

]
,

κ2κ3 =
3(s− c) sin 2θ

8
,

where c > −3s , fT = cos θE2+sin θE4 , θ ∈ (0, 2π)\
{

π
2 , π,

3π
2

}
is a constant such that c+3s+3(c−s) cos2 θ > 0 ,

and 3(s− c) sin 2θ > 0. If c ≤ −3s, then γ is biharmonic if and only if it is a geodesic.
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