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OPTIMAL BOUNDARY CONTROL OF THERMAL
STRESSES IN A PLATE BASED ON TIME-FRACTIONAL
HEAT CONDUCTION EQUATION
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1Department of Mathematics, Faculty of Science and Arts, Balıkesir University,
Balikesir, Turkey
2Institute of Mathematics and Computer Science, Jan Długosz University
in Czȩstochowa, Czȩstochowa, Poland

This article presents an optimal control problem for a fractional heat conduction
equation that describes a temperature field. The main purpose of the research was
to find the boundary temperature that takes the thermal stress under control. The
fractional derivative is defined in terms of the Caputo operator. The Laplace and finite
Fourier sine transforms were applied to obtain the exact solution. Linear approximation
is used to get the numerical results. The dependence of the solution on the order of
fractional derivative and on the nondimensional time is analyzed.
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INTRODUCTION

The classical thermoelasticity is based on the Fourier law, which gives the
relation between the heat flux and the temperature gradient:

q = −k grad T (1)

where k is the thermal conductivity of a solid. In combination with a law of
conservation of energy, Eq. (1) leads to the parabolic heat conduction equation

�T

�t
= a�T (2)

with a being the heat diffusivity coefficient.
From the mathematical point of view the Fourier law in the theory of heat

conduction corresponds to Fick’s law in the theory of diffusion:

J = −k′grad c (3)
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where J is the matter flux, c is the concentration, k′ is the diffusion conductivity.
In combination with the balance equation for mass, Eq. (3) results in the classical
diffusion equation:

�c

�t
= a′�c (4)

with a′ being the diffusivity coefficient.
The classical heat conduction and diffusion equations based on the

Fourier and Fick laws, respectively, are quite acceptable for different physical
situations. However, many theoretical and experimental studies testify that in
media with complex internal structure (porous, random and granular materials,
semiconductores, polymers, glasses, etc.) the standard parabolic equations are no
longer sufficiently accurate. For an extensive bibliography on this subject and
further discussion see Chandrasekharaiah [1], [2], Joseph and Preziosi [3], Ignaczak
[4], Hetnarski and Ignaczak [5], Ignaczak and Ostoja-Starzewski [6] and references
therein.

In nonclassical theories, the Fourier law and the parabolic heat conduction
equation are replaced by more general equations. Gurtin and Pipkin [7] considered
the general time-nonlocal dependence between the heat flux vector and the
temperature gradient:

q�t� = −k
∫ t

0
K�t − ��grad T��� d� (5)

resulting in the heat conduction equation with memory [8], [9]:

�T

�t
= a

∫ t

0
K�t − ���T��� d� (6)

Chandrasekharaiya [1], Nigmatullin [8], and Green and Naghdi [10] proposed
the constitutive equation of heat conduction in the case of constant kernel (full
memory with no memory decay):

q�t� = −k
∫ t

0
grad T���d� (7)

The wave equation for temperature

�2T

�t2
= a�T (8)

obtained from Eq. (7) is a constituent part of thermoelasticity without energy
dissipation [10].

Cattaneo [11], [12] and Vernotte [13] introduced the generalized constitutive
equation for the heat flux, which can be rewritten in a nonlocal form with the
“short-tail” exponential time-nonlocal kernel:

q�t� = −k

�

∫ t

0
exp

(
− t − �

�

)
grad T��� d� (9)
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where � is a nonnegative constant. This equation leads to the telegraph equation for
temperature:

�T

�t
+ �

�2T

�t2
= a�T (10)

The time-nonlocal dependences between the heat flux vector and the
temperature gradient with the “long-tail” power kernel [14], [15]:

q�t� = − k

����

�

�t

∫ t

0
�t − ���−1grad T��� d� 0 < � < 1 (11)

q�t� = − k

���− 1�

∫ t

0
�t − ���−2grad T��� d� 1 < � < 2 (12)

result in the time-fractional heat conduction equation

��T

�t�
= a�T (13)

or in terms of diffusion

��c

�t�
= a′ �c (14)

with the particular cases corresponding to subdiffusion (weak diffusion) (0 < � < 1);
normal diffusion (� = 1); superdiffusion (strong diffusion) (1 < � < 2), and ballistic
diffusion (� = 2).

In Eqs. (13) and (14) ��

�t�
is the Caputo fractional derivative (see Eq. (18)).

The fractional Cattaneo-type equation was considered in [16]:

q�t� = −k

�

∫ t

0
�t − ��	−2 E	−�
	−1

[
− �t − ��	−�

�

]
grad T��� d� (15)

where E�
	�z� is the two-parameter Mittag-Leffler function [17]:

E�
	�z� =
�∑
n=0

zn

���n+ 	�
� > 0 	 > 0 (16)

being the generalization of the exponential function. The constitutive equation (15)
leads to the fractional telegraph equation for temperature:

��T

�t�
+ �

�	T

�t	
= a�T (17)

Several particular cases of Eqs. (15) and (17) corresponding to different choices of
� and 	 were analyzed in [18] (see also [19]).

Povstenko [14] first proposed the theory of thermoelasticity based on the time-
fractional heat conduction equation and investigated the stresses corresponding to
the fundamental solutions to the Cauchy problem for the one and two-dimensional
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fractional heat conduction equations. The central-symmetric thermal stresses in
an infinite medium with a spherical [20] and cylindrical [21] cavity for different
boundary conditions were analyzed. As a further generalization, a theory of thermal
stresses for space-time fractional heat conduction equation was introduced [15].
In recent years, thermal stresses based on the fractional telegraph equation have
also been researched [18], [22], [23]. Further discussion on different theories of
generalized thermoelasticity can be found in references [1], [2], [4]–[6], [24], among
others.

In this article, the fractional heat conduction equation in the case 0<�< 1,
called as “heat subconduction,” is considered. An optimal control problem
formulated on the basis of fractional heat conduction equation is studied.

In the classical scheme, we can cite many articles related to optimal control
problems for thermoelastic structures. For example, the optimal heating mode with
respect to stress over the thickness of a spherical shell in the absence of external
force loading and with the zero initial condition was studied in [25]. The analytical
solution of the optimal control problem with respect to the speed of response by
means of heating and cooling of a body in the case of nonsteady one-dimensional
temperature regime of a plate, a hollow cylinder, and a hollow sphere under the
constraint on the control and on the mean temperature of the body was proposed
in [26]. Similarly, a method was introduced to construct an optimal control for
the heating of solids described by a two-dimensional nonsteady-state equation of
thermal conductivity [27]. The proposed method in [27] was developed to apply to
the solution of the problem of temperature-regime optimization with constraints
on reduced stresses by using a nonlinear expression for energy-based strength
criterion [28].

Another method was developed for stress optimization of the thermal
conditions for heating of the glass plate materials with the constraints on the
temperature of the heaters and the stress state of a plate [29]. A method for
the inverse problem of thermomechanics and heat conduction were successfully
applied to solve the optimal control problem of quasistatic thermoelastic stresses
and displacements in the case of two-dimensional temperature field [30]. A method
of the inverse thermoelasticity problem for investigation of optimal control of a two-
dimensional nonaxisymmetric unsteady thermal regime in a long, hollow cylinder
with the constraints on the thermoelastic stresses was developed, and a numerical
algorithm was also presented for solving the optimization problem [31]. A stress-
optimization problem of heating regimes of a piecewise-homogeneous cylindrical
glass shell was studied and analytical/numerical solutions were obtained [32].

Recently, a mathematical model based on the standard parabolic heat
conduction equation describing the temperature field and assuring the stress under
control with the linear boundary heating has been studied by Knopp [33]. The
fractional generalization of this approach based on the heat conduction equation
with the Caputo time-derivative was formulated in [34]. In the present article, we
aim to develop the results of [34].

PRELIMINARIES

Here, we briefly give the basic definitions and relations necessary for problem
formulation. It is well known in the fractional calculus literature that several
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definitions of a fractional derivative have been proposed: the Riemann–Liouville,
Grünwald–Letnikov, Weyl, Caputo, Riesz derivative, etc. (see [17], [35]). In this
article we use the Caputo derivative of the fractional order � �n− 1 < � ≤ n�, which
is defined as

d�f�t�

dt�
= 1

��n− ��

∫ t

0
�t − ��n−�−1d

nf���

d�n
d� (18)

and the Laplace transform rule for this operator has the form

�
{
d�f�t�

dt�

}
= s���f�t��−

n−1∑
k=0

f �k��0+�s�−1−k (19)

where s is the transform variable.
This operator has wide applications because the initial conditions of fractional

differential equations with Caputo derivatives should be expressed in terms of a
given function and its derivatives of integer order. This allows us to get physically
interpretable initial conditions for fractional differential equations.

The following formula for the inverse Laplace transform [17]:

�−1

{
s�−	

s� + b

}
= t	−1E�
	�−bt�� (20)

is applied in the problem analysis.
The finite Fourier sine transform,

� �f�x�� = f ∗
n = 2

L

∫ L

0
f�x� sin

(n
x
L

)
dx n = 1
 2
 � � � (21)

with the inverse

�−1�f ∗
n � = f�x� =

�∑
n=1

f ∗
n sin

(n
x
L

)
(22)

is used to eliminate the spatial coordinate x.
If f�x
 t� is a function of two variables, then

� �f�x
 t�� = f ∗
n �t� =

2
L

∫ L

0
f�x
 t� sin

(n
x
L

)
dx (23)

and

�
{
�2f�x
 t�

�x2

}
= −

(n

L

)2
� �f�x
 t��+ 2n


L2
�f�0
 t�+ �−1�n+1f�L
 t�� (24)

PROBLEM FORMULATION

The considered uncoupled theory of thermal stresses [14] is governed by the
equation of equilibrium in terms of displacements

��u + ��+ ��grad div u = 	TKT gradT (25)
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the stress-strain-temperature relation

� = 2�e + �� tr e − 	TKTT�I (26)

and the fractional heat conduction equation with the Caputo time-derivative

��T

�t�
= a�T (27)

where u is the displacement vector, � the stress tensor, e the linear strain tensor,
a the diffusivity coefficient, � and � are Lamé constants, KT = �+ 2�/3, 	T is the
thermal coefficient of volumetric expansion, I denotes the unit tensor. In Eq. (27)
we restrict ourselves to the case 0 < � ≤ 1.

Now let us consider a finite plate 0 ≤ x ≤ L with temperature depending
only on the spatial coordinate x and time t, i.e., T�x
 t�. We also assume that the
temperature is symmetric with respect to the middle point x = L/2. In this case,
the thermoelastic stress ��x
 t� is proportional to the distance from the average
temperature [36]:

�yy�x
 t� = − �TE

1− �
�T�x
 t�− Taverage�t�� (28)

where

Taverage�t� =
1
L

∫ L

0
T�x
 t�dx (29)

Here, �T is the linear thermal expansion coefficient, E is Young’s modulus and �
denotes Poisson’s ratio.

The temperature field T�x
 t� satisfies the time-fractional heat conduction
equation:

��T�x
 t�

�t�
= a

�2T�x
 t�

�x2
0 < x < L 0 < t < � 0 < � ≤ 1 (30)

We adopt the following initial:

T�x
 0� = 0 (31)

and boundary conditions:

x = 0 � T = g�t�T0

x = L � T = g�t�T0

(32)

where g�t� is the boundary control function, which we motivate to find the optimal
regime to keep the thermal stress under constraint.

For convenience of calculations we introduce the nondimensional quantities:

x̄ = x

L
� = t

t0
�T = T

T0

�2 = at�0
L2

(33)

where t0 is the characteristic time.
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Hence, the problem is reformulated as follows:

���T�x̄
 ��
���

= �2 �
2�T�x̄
 ��
�x̄2

0 < x̄ < 1 0 < � < � 0 < � ≤ 1 (34)

� = 0 � �T = 0 (35)

x̄ = 0 � �T = g��� (36)

x̄ = 1 � �T = g��� (37)

To solve this problem, the Laplace transform with respect to time � and the
finite Fourier sine transform with respect to the spatial coordinate x̄, respectively,
are used. Applying the integral transforms, we obtain

�T ∗∗ = 2�2�n
s� + �2�2n

g∗n�s��1− �−1�n� (38)

where �n = n
, and each of transforms is denoted by the asterisk. Taking the inverse
Fourier and Laplace transforms leads to

�T = 2�2
�∑
n=1

�n�1− �−1�n� sin�x̄�n�
∫ �

0
��− u��−1E�
�

[−�2�2n��− u��
]
g�u�du (39)

Similarly, we calculate the average value �Taverage��� using Eq. (39):

�Taverage��� = 2�2
�∑
n=1

�1− �−1�n�2
∫ �

0
��− u��−1E�
�

[−�2�2n��− u��
]
g�u�du (40)

Now, nondimensional stress can be introduced as

�̄yy�x̄
 �� =
1− �

�TET0

�yy�x̄
 �� (41)

or

�̄yy�x̄
 �� = − [�T�x̄
 ��−�Taverage���
]

(42)

Next, let us calculate the stress component at the boundary �̄yy�1
 �� and
assume that

��̄yy �1
 �� � = �̄crit (43)

Taking into consideration that the maximal temperature and the maximal
stress are reached at the boundary, ��̄max���� = ��̄yy�1
 ��� we have

g��� = �̄crit + 2�2
∫ �

0

�∑
n=1

�1− �−1�n�2��− u��−1E�
�

[−�2�2n��− u��
]
g�u�du (44)
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Note that Eq. (44) is an integral equation for temperature control g��� for
which we consider the numerical solution.

Numerical Algorithm

Here, we rearrange Eq. (44) by a successive change of variables. In the first
step, we take y = �− u and so the integral in (44) reduces to

I =
∫ �

0

�∑
n=1

cnE�
�

[−�2�2ny
�
]
y�−1g��− y�dy (45)

where cn = �1− �−1�n�2. The second change of variable is z = y�, which leads to

I = 1
�

∫ ��

0

�∑
n=1

cnE�
�

[−�2�2nz
]
g
(
�− z

1
�

)
dz (46)

and so the integral Eq. (44) for g��� becomes

g��� = �̄crit +
2�2

�

∫ ��

0

�∑
n=1

cnE�
�

[−�2�2nz
]
g
(
�− z

1
�

)
dz (47)

Let us explain the numerical iterations applied to Eq. (47). The iterative form
is the following:

gm+1��� = �̄crit +
2�2

�

∫ ��

0

�∑
n=1

cnE�
�

[−�2�2nz
]
gm

(
�− z

1
�

)
dz m = 0
 1
 2
 � � � (48)

where we assume the initial values g0��� = �̄crit = 1. Next, we calculate the iterative
values gm��� �m = 1
 2
 � � � �. Note that we have to know the values of gm��� at

Figure 1 Change of the optimal boundary control with respect to the variation of � for N = 300 and
� = 0�5.
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the time nodes �− z
1
� . They may not be calculated in the first iteration because of

time discretization. If we take the time interval �0
 T� and divide it into N equal
subintervals, we only know the values of gm��� at � = Nh. To calculate the other
values of gm��� for the values lh < �− z

1
� < �l+ 1�h, �l = 1
 2
 � � � 
 N�, we use a

linear approximation. After all, we plot some figures under the variation of problem
parameters. In all the figures, we take the upper limit of the sum in Eq. (48) equal
to 20. First, we show the effect of the variation of fractional order � on g10��� for
the step number N = 300 and � = 0�5 in Figure 1. Note that, we calculate the 10th
iteration value of gm��� because of the convergence reason demonsrated by Figure 2

Figure 2 Convergence of the optimal boundary control with respect to the iteration number for � =
0�5, N = 300, and � = 0�5.

Figure 3 Dependence of the optimal boundary control on the variation of � for � = 0�5 and N = 300.
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Figure 4 Dependence of the optimal boundary control on the variation of time step number for
� = � = 0�5.

that points out the solutions overlap for m ≥ 10. We also take N = 300 and � =
0�5 for Figure 2. In Figure 3, we analyze the dependence of the optimal boundary
control on the nondimensional parameter �. Finally, we evaluate the change of time
step number N using the discretization of integral given by Eq. (46) for the values
� = � = 0�5 in Figure 4.

CONCLUSION

In this work, an optimal control problem for a temperature field defined by a
time-fractional heat subconduction equation has been formulated. In the description
of the problem, the Caputo fractional derivative has been used. The purpose was
to take the thermal stress under control with an optimal boundary temperature
function. Therefore, the problem constructed in [33] has been generalized by the
usage of fractional tools. Successive iterations and linear approximation have been
applied to calculate the solution numerically. MATLAB 7.1 was used to show the
influence of nondimensional parameters on the solution.

REFERENCES

1. D. S. Chandrasekharaiah, Thermoelasticity with Second Sound: A Review, Appl. Mech.
Rev., vol. 39, pp. 355–376, 1986.

2. D. S. Chandrasekharaiah, Hyperbolic Thermoelasticity: A Review of Recent Literature,
Appl. Mech. Rev., vol. 51, pp. 705–729, 1998.

3. D. D. Joseph and L. Preziosi, Heat Waves, Rev. Mod. Phys., vol. 61, pp. 41–73, 1989.
4. J. Ignaczak, Generalized Thermoelasticity and its Applications, in R. B. Hetnarski (ed.),

Thermal Stresses, vol. III, pp. 279–354, North-Holland, Amsterdam, 1989.
5. R. B. Hetnarski and J. Ignaczak, Generalized Thermoelasticity, J. Thermal Stresses,

vol. 22, pp. 451–476, 1999.
6. J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford

University Press, Oxford, NK, 2010.



OPTIMAL BOUNDARY CONTROL OF THERMAL STRESSES 979

7. M. E. Gurtin and A. C. Pipkin, A General Theory of Heat Conduction with Finite
Wave Speeds, Arch. Rat. Mech. Anal., vol. 31, pp. 113–126, 1968.

8. R. R. Nigmatullin, To the Theoretical Explanation of the “Universal Response”, Phys.
Status Solidi (B), vol. 123, pp. 739–745, 1984.

9. R. R. Nigmatullin, On the Theory of Relaxation with “Remnant” Temperature, Phys.
Status Solidi (B), vol. 124, pp. 389–393, 1984.

10. A. E. Green and P. M. Naghdi, Thermoelasticity without Energy Dissipation, J. Elast.,
vol. 31, pp. 189–208, 1993.

11. C. Cattaneo, On the Conduction of Heat, Atti Semin. Mat. Fis. Univ. Modena, vol. 3,
pp. 3–21, 1948.

12. C. Cattaneo, Sur une forme de l’éequation de la chaleur éliminant le paradoxe d’une
propagation instantanée, C.R. Acad. Sci., vol. 247, pp. 431–433, 1958.

13. P. Vernotte, Les paradoxes de la théorie continue de l’équation de la chaleur, C.R. Acad.
Sci., vol. 246, pp. 3154–3155, 1958.

14. Y. Z. Povstenko, Fractional Heat Conduction Equation and Associated Thermal Stress,
J. Thermal Stresses, vol. 28, pp. 83–102, 2005.

15. Y. Povstenko, Theory of Thermoelasticity Based on the Space-Time-Fractional Heat
Conduction Equation, Phys. Scr., vol. T136, 014017 (6 pp), 2009.

16. Y. Povstenko, Theories of Thermal Stresses Based on Space-Time-Fractional Telegraph
Equations, Comp. Math. Appl., vol. 64, pp. 3321–3328, 2012.

17. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

18. Y. Z. Povstenko, Fractional Cattaneo-Type Equations and Generalized Thermoelasticity,
J. Thermal Stresses, vol. 34, pp. 97–114, 2011.

19. A. Compte and R. Metzler, The Generalized Cattaneo Equation for the Description of
Anomalous Transport Processes, J. Phys. A: Math. Gen., vol. 30, pp. 7277–7289, 1997.

20. Y. Z. Povstenko, Fractional Heat Conduction Equation and Associated Thermal
Stresses in an Infinite Solid with Spherical Cavity, Quart. J. Mech. Appl. Math., vol. 61,
pp. 523–547, 2008.

21. Y. Z. Povstenko, Fractional Radial Heat Conduction in an Infinite Medium with
a Cylindrical Cavity and Associated Thermal Stresses, Mech. Res. Commun., vol. 37,
pp. 436–440, 2010.

22. H. M. Youssef, Theory of Fractional Order Generalized Thermoelasticity, J. Heat
Transfer, vol. 132, 061301 (7 pp), 2010.

23. H. H. Sherief, A. M. A. El-Sayed, and A. M. Abd El-Latief, Fractional Order Theory
of Thermoelasticity, Int. J. Solids Struct., vol. 47, pp. 269–275, 2010.

24. H. W. Lord and Y. Shulman, A Generalized Dynamical Theory of Thermoelasticity,
J. Mech. Phys. Solids, vol. 15, pp. 299–309, 1967.

25. Ya. I. Burak and S. F. Budz, Determination of Optimal Heating Modes for a Thin
Spherical Shell, Intl. Appl. Mech., vol. 10, pp. 123–128, 1974.

26. V. M. Vigak, Optimal Control of a Nonsteady Temperature Regime of a Body with a
Constraint on the Mean Temperature, Intl. Appl. Mech., vol. 14, pp. 1084–1089, 1978.

27. V. M. Vigak, A. V. Kostenko, and M. I. Svirida, Optimization of Two-dimensional
Nonsteady-state Temperature Regimes with Limitation Imposed on the Parameters of
the Thermal Process, J. Engng Phys. Thermophys., vol. 56, pp. 463–467, 1989.

28. V. M. Vigak, A. V. Kostenko, and Kh. E. Zasadna, Optimal Control of the Heating
of Inhomogeneous Bodies under Strength Constraints, Intl. Appl. Mech., vol. 27,
pp. 853–858, 1991.

29. S. F. Budz, Ya. I. Bürak, and E. M. Irza, Stress-optimal Loading of Thin Glass Plates
in Conditions of Radiant Heat Transfer, Intl. Appl. Mech., vol. 22, pp. 898–902, 1986.

30. V. M. Vigak, Control of Thermal Stresses and Displacements in Thermoelastic Bodies,
J. Soviet Math., vol. 62, pp. 2506–2511, 1992.



980 N. ÖZDEMIR ET AL.

31. V. M. Vigak and M. I. Svirida, Optimal Control of Two-dimensional Nonaxisymmetric
Temperature Field in a Hollow Cylinder with Thermoelastic Stress Restrictions, Intl.
Appl. Mech., vol. 31, pp. 448–454, 1995.

32. O. R. Gachkevich and M. G. Gachkevich, Optimal Heating of a Piecewise-
homogeneous Cylindrical Glass Shell by the Surrounding Medium and Heat Sources,
J. Math. Sci., vol. 96, pp. 2935–2939, 1999.

33. F. Knopp, Time-Optimal Boundary Condition against Thermal Stress, in 9th
International Congress on Thermal Stresses, Budapest, Hungary, 2011.

34. N. Özdemir, Y. Povstenko, D. Avcı, and B. B. İskender, Time-Fractional Boundary
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