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1Abstract—A parallel genetic algorithm (PGA) conducts a 

distributed meta-heuristic search by employing genetic 
algorithms on more than one subpopulation simultaneously. 
PGAs migrate a number of individuals between subpopulations 
over generations.  The layout that facilitates the interactions of 
the subpopulations is called the topology. Static migration 
topologies have been widely incorporated into PGAs. In this 
article, a PGA with a dynamic migration topology (D-PGA) is 
proposed. D-PGA generates a new migration topology in every 
epoch based on the average fitness values of the 
subpopulations.  The D-PGA has been tested against ring and 
fully connected migration topologies in a Beowulf Cluster.  The 
D-PGA has outperformed the ring migration topology with 
comparable communication cost and has provided competitive 
or better results than a fully connected migration topology with 
significantly lower communication cost. PGA convergence 
behaviors have been analyzed in terms of the diversities within 
and between subpopulations.  Conventional diversity can be 
considered as the diversity within a subpopulation. A new 
concept of permeability has been introduced to measure the 
diversity between subpopulations. It is shown that the success 
of the proposed D-PGA can be attributed to maintaining a high 
level of permeability while preserving diversity within 
subpopulations. 
 

Index Terms—genetic algorithms, network topology, 
message passing, parallel architectures, parallel programming. 

I. INTRODUCTION 

Genetic algorithms (GAs) are evolutionary algorithms 
that collect and combine good genes within a population to 
form better members. The ability of GAs to produce 
successful results for different types of problems has found 
widespread use among researchers. Applying a GA in 
different subpopulations simultaneously is called a Parallel 
Genetic Algorithm (PGA). PGAs have been accepted by 
researchers because generating alternative solutions 
simultaneously makes searching faster, in many cases 
producing better results than single-population GAs [1].  
PGAs are used in many areas, such as multi-objective 
optimization [2], the traveling salesman problem [3-4], 
medical image processing [5-6], and determination of 
control parameters in high-speed vessels [7]. The most 
important factor of PGAs is considered to be the migration, 
defined as the transport of specified individuals at specified 
intervals from one subpopulation to others [8]. Moreover, 
the migration reduces the risk of converging to local optima 
[9]. 

The cluster computing environment gives us the 
opportunity to add topology to the migration policy.  

 
1 

Therefore, the migration policy adopted in this study is 
defined as follows: 
 Migration Topology refers to the interconnection 

network of subpopulations, 
 Migration Interval and Rate describe the amount of 

information to migrate, 
 Migrant Selection and Replacement  

o Select the information to migrate, 
o Replace the local information with 

immigrants, 
 Transfer Mode of Migration indicates the scheme of 

communicating migrants synchronously or 
asynchronously. 

The above factors directly affect the performance of 
PGAs.  These components of the migration policy are 
discussed in the following sections. 

A. Migration Topology 

The migration topology facilitates the interactions of the 
subpopulations.  The topology supports the propagation of 
the information discovered between subpopulations.  PGAs 
with a ring migration topology (R-PGAs) have been widely 
studied in the literature [10] due to their low communication 
cost and easy implementation.  PGAs with a fully connected 
migration topology (FC-PGAs) interconnect all 
subpopulations [11-15]. However, this topological structure 
is costly because it exchanges individuals between all 
subpopulations.  Therefore, the fully connected migration 
topology has been restricted to use in theoretical studies.  In 
our studies, a PGA without migration, running all 
subpopulations independently, called simple PGA (S-PGA) 
was implemented for the experimental comparisons. 

B. Migration Interval and Rate 

The main motivation for tuning the migration interval and 
rate is to enrich the diversity within subpopulations.  The 
migration interval is the number of iterations between two 
migration steps.  The migration occurrences are considered 
to be essential when the variances within the subpopulations 
become sufficiently small.  The migration rate indicates the 
number of immigrants in the literature, commonly used as a 
percent of the subpopulation size.  In practical studies, low 
migration rates are preferred, varying from 1% to 10% [10]. 
Studies dealing with migration rates and intervals can be 
found in [1, 8, 11-13, 16-17]. 

C. Migrant Selection and Replacement  

Migrant selection addresses the selection of the 
individuals to be transferred to other subpopulations, while 
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immigrant replacement handles removing individuals to 
make room for the newcomers.  Exchanging the best 
individuals with the least fit members of the population is 
the most widely used selection and replacement [14].  Alba 
and Troya [1] studied the best and random selections of 
individuals for migration. In Xiao and Armstrong [2], 
migrating individuals were selected by the tournaments 
method.  A study has reported that the choice of migrants 
and replacements affects the convergence time [11]. 

D. Transfer Mode  

The transfer modes are classified as synchronous and 
asynchronous in PGAs.  In the synchronous mode, the 
migration process is performed simultaneously on 
subpopulations in each epoch.  In each migration step, the 
required number of GA iterations for all subpopulations is 
expected to be completed before the migration process 
starts. The asynchronous mode continues to perform the 
migration process when a subpopulation reaches the 
migration step, regardless of other subpopulations. The 
migrated individuals are incorporated into the target 
subpopulation, and its GA continues to process subsequent 
iterations [18].  

This paper is organized as follows. In the next section, a 
new PGA called dynamic migration topology (D-PGA) is 
described, and the performance results are compared with 
other commonly used migration topologies in Section III. In 
Section IV, the concept of diversity and the new concept of 
permeability, as well as the convergence behaviors of PGAs 
with different migration topologies, are discussed. The 
overall discussion and the major contribution of the research 
are summarized in Section V. 

II. PROPOSED DYNAMIC MIGRATION TOPOLOGY PGA 

The migration topology determines the propagation 
velocity of the best individuals among the subpopulations, 
usually referred to as islands, as illustrated in Fig. 1.  In the 
ring migration topology (R-PGA), transferring an individual 
from the top to the very end of the ring requires 
(number of subpopulations -1) migration steps.  Thus, an R-
PGA transfers  

[(number of subpopulations) × (number of migrants)] in 
each epoch (Fig. 1a), whereas an individual in a fully 
connected migration topology (FC-PGA) can penetrate into 
all subpopulations in a single migration step at the expense 
of high communication.  An FC-PGA transfers  

[(number of subpopulations) × 
(number of subpopulations -1) × (number of migrants)] in 

each epoch (Fig. 1b).  In this study, a new migration 
topology that selects a set of target subpopulations for 
immigrating the best individuals dynamically is developed.  
The proposed dynamic migration topology PGA (D-PGA) 
moves the selected individuals to target subpopulations in a 
single migration step.  The D-PGA transfers 

[(number of subpopulations) × (number of migrants)] 
in each epoch (Fig. 1c).  Therefore, the number of utilized 

communication links and the total number of transferred 
individuals of D-PGA are almost equal to those of an 
R-PGA but significantly lower than those of an FC-PGA. 

The main idea behind our proposed D-PGA is to promote 
the delivery of “fit individuals” to “fit subpopulations” 

within a stochastic scheme.  

 
Figure 1. Illustration of communication links of migration topologies a) R-
PGA, b) FC-PGA, c) D-PGA 
 

In D-PGA, a subpopulation with high average fitness 
value has a higher chance of receiving new fit individuals.  
In each generation, each subpopulation is supposed to select 
its elites and transfer their duplicates to a single 
subpopulation of its choice.  That chosen subpopulation is 
called its target subpopulation. A target subpopulation is 
selected based on the average fitness values of 
subpopulations via roulette wheel selection in each epoch, as 
illustrated in Fig. 2.  Additionally, the best subpopulation is 
connected with the inferior subpopulations. The 
communication links established by this scheme are 
collectively called the migration topology of that given 
epoch.  Because the migration topology is subject to change 
in each epoch, this proposed approach is called a dynamic 
topology. 

 
Figure 2. Illustration of D-PGA 
 

Exploration and refinement are the two phases associated 
with a PGA’s performance.  The exploration phase refers to 
the period starting from the beginning of the search to the 
turning point of the performance curve.  The refinement 
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phase can be described as the smoothed inclination region of 
the performance curve following the exploration phase.  Our 
method stimulates the introduction of good schema by 
delivering the better individuals to the better subpopulations 
in the exploration phase.  Additionally, the inferior 
subpopulations are supported by the immigrants of the best 
subpopulation.  Thus, D-PGA improves the exploration 
capability of a PGA by recombining the elite migrated 
building blocks within a fit subpopulation in earlier 
iterations.   

As observed in Fig. 2, genetic algorithm operations and 
the migration policy are executed for each subpopulation.  
Each part of the roulette wheel represents the average fitness 
value of a subpopulation for a given epoch (Fig. 2). The 

average fitness values of the kth subpopulation k
pf  are 

calculated (k=1, 2, . . ., ps) as follows:  
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Each island of a PGA determines a target subpopulation 

by using the roulette wheel selection with the k
pf  values.  

Therefore, those selected fit target subpopulations have a 
greater probability of receiving fit individuals from multiple 
subpopulations within the same epoch.  This selection may 
not migrate any immigrants to some inferior sub-
populations.  To mitigate the further deterioration of inferior 
subpopulations, the fittest subpopulation of D-PGA transfers 
its best individuals to the subpopulations with the lowest 
average fitness.  This recovery of low-fitness, likely 
exhausted, subpopulations are expected to contribute to the 
overall performance by injecting high-quality building 
blocks.  Concisely, the proposed D-PGA’s selection 
mechanism facilitates two contributing operations. One 
operation is to transfer the fit individuals to the fit 
subpopulations. The second operation is to support low-
fitness subpopulations with the elite individuals of the 
current epoch. 

III. ANALYSIS AND RESULTS 

In the study, D-PGA, an R-PGA and an FC-PGA 
(hereafter simply called R-PGA and FC-PGA) have been 
implemented using the MPI 2.0 library. The PGAs have 
been executed on the ESOGU Beowulf cluster system with 
17 computers.  The experimental analyses have been 
conducted to compare the performance of the proposed D-
PGA against R-PGA and FC-PGA. The same number of 
individuals has been migrated for the PGAs. The three 
different test functions have been used in comparing the 
PGAs’ performances. Because this study places emphasis on 
discovering the impact of the migration topologies, the 
crossover rate, the mutation rate, and the selection method 
are kept uniform for all experiments. 

A. Design of the Experiments 

For a fair comparison, we offer a new measure of 
convergence quality that distinguishes a PGA’s performance 
within a range.  The motivation for a new measure can be 
exemplified by using Fig. 3.  The convergence curves of two 
PGAs are given in Fig. 3.  In comparing their overall 
convergence behaviors, a pointwise comparison would be 

inconclusive.  The convergence curves are divided into three 
ranges of generations.  For each range, the proposed 
performance measure of a PGA is computed proportionally 
to the times it has outperformed.  These proportional values 
are represented as percentages in Fig. 3.  According to this 
new measure, the success ratios for PGA1 and PGA2 for the 
first range (0 to 400 generations) are 33% (100x2/6) and 
67% (100x4/6), respectively (Fig. 3).  In the example, it can 
be observed that PGA2 is better than PGA1 in the first 
range, while PGA1 is better than PGA2 in the second range. 
All comparison tables present these outperformance 
percentages in the following sections. 

 
Figure 3. Comparison of the two PGAs over iterations 
  

In Table I, we present the settings and parameters of the 
PGAs for different migration topologies. 

 
TABLE I. PGA PARAMETERS AND SETTINGS 

Name D-PGA R-PGA FC-PGA S-PGA 
Genetic Algorithm Parameters 

Gene length 16 bits 16 bits 16 bits 16 bits 
Number of 
variables 10, 20 10, 20 10, 20 10, 20 
Iteration number 1200 1200 1200 1200 
Crossover rate 100% 100% 100% 100% 
Mutation rate 2% 2% 2% 2% 

Selection method 
Roulette 
Wheel 

Roulette 
Wheel 

Roulette 
Wheel 

Roulette 
Wheel 

Migration Parameters 
Subpopulation 
size 

80,160, 
640 

80,160, 
640 

80,160, 
640 

80,160, 
640 

Subpopulation 
number 16 16 16 16 

Migration Rate 
7.2%, 
14.4% 

10%, 
20% 

1.25%, 
2.5% - 

MigrationInterval 20, 80 20, 80 20, 80 - 
Selection and 
Replacement SB-RWa SB-RWa SB-RWa   
Migration 
Topology Dynamic Ring 

Fully 
Connected 

Not 
Connected 

a : Send the best individuals, replace with the worst individuals 
 

To evaluate the performance of the different migration 
topologies, we have selected well-known test problems with 
multiple local and global optima [8, 17, 19]. They are the 
Rosenbrock Rosf , Rastrigin Rgnf , and Sphere Sphf    

functions. Rosenbrock is a non-convex, continuous, 
inseparable, one-shaped function (2). The number of 
variables for each function is represented by n. 

 
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Rastrigin is a non-convex, continuous, scalable, multi-
shaped function (3). 
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Sphere is a continuous, strictly convex, one-shaped 
function (4). 
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The experiments have been designed to provide a fair 
comparison by (i) initiating each PGA with the same 
population for each trial and (ii) running ten independent 
random trials for each setting.  The performance values are 
obtained by averaging 10 trials measured at migration 
points. The outperformance percentages are given for three 
ranges of 400, 800, and 1200 iterations for all population 
sizes. The steep and slow exploration phase behaviors of a 
PGA can be observed within the range of [0-400] and 
[400-800] for a total of 1200 iterations.  The results 
corresponding to the [800-1200] range show the refinement 
phase (i.e., the steady-state phase) of PGAs for the test 
functions. In the following sections, we provide the 
numerical results first for D-PGA versus R-PGA, and then 
D-PGA versus FC-PGA.   

B. Impact of migration intervals 

The migration interval is one of the parameters that may 
affect the success of a PGA. Therefore, a PGA should be 
robust in producing good results for different migration 
intervals. The impact of different migration intervals was 
investigated for D-PGA and R-PGA performances (Table 
II).  The experiments were performed for the test functions 
with the migration rate of 10%, the gene number of 10, and 
the population sizes of 80, 160, and 640.  

 
TABLE II. COMPARATIVE IMPACTS OF MIGRATIONS INTERVALS ON 

D-PGA AND R-PGA 

Subpopulation size/Number of GA iterations 

80 160 640 

M
ig

ra
ti

on
 

In
te

rv
al

 

M
ig

ra
ti

on
 

T
op

ol
og

y 

400 800 1200 400 800 1200 400 800 1200

Test Function: Rosenbrock 

D-PGA 100 100 100 100 100 100 95 98 98,3 
20 

R-PGA 0 0 0 0 0 0 5 2,5 1,7 

D-PGA 80 90 93,3 80 90 93,3 100 100 100 
80 

R-PGA 20 10 6,7 20 10 6,7 0 0 0 

Test Function: Rastrigin 

D-PGA 95 95 96,6 55 78 85 55 68 78,3 
20 

R-PGA 5 5 3,4 45 23 15 45 33 21,7 

D-PGA 100 100 100 80 90 93,3 80 90 73,3 
80 

R-PGA 0 0 0 20 10 6,7 20 10 26,7 

Test Function: Sphere 

D-PGA 55 78 85 70 85 90 80 90 93,3 
20 

R-PGA 45 23 15 30 15 10 20 10 6,7 

D-PGA 60 50 66,6 100 50 40 60 40 33,3 
80 

R-PGA 40 50 33,4 0 50 60 40 60 66,7 
 

D-PGA and R-PGA transfer different numbers of 
immigrants for a fixed migration interval and a fixed 
migration rate. In our migration policy, PGAs are allowed to 
transfer the same number of individuals for a fair 
comparison throughout the search span.  Therefore, the 
migration rates of 7.2% and 10% were used in D-PGA and 
R-PGA, respectively.  It is observed that D-PGA has 
produced better results than R PGA for all cases except one 
incidence of the Sphere function with a migration interval of 
80. However, D-PGA has achieved better performance than 
R-PGA in the steep exploration phase for even this case. 

C.  Impact of migration rates  

A migration rate determines the number of migrating 
individuals. Usually, it is expressed as a percentage of the 
subpopulation size. The experiments considered two settings 
of the migration rate, 10% and 20%. The results obtained for 
different migration rates under the same conditions are 
given in Table III.  

It is clearly observed that D-PGA has obtained better 
results than R-PGA for all test functions, population sizes, 
and iteration ranges besides two exceptions for the Sphere 
function.   

 
TABLE III. COMPARATIVE IMPACTS OF MIGRATION RATES ON 

D-PGA AND R-PGA 

Subpopulation size/Number of GA iterations 

80 160 640 

M
ig

ra
ti

on
 

R
at

e 
%

 

M
ig

ra
ti

on
 

T
op

ol
og

y 

400 800 1200 400 800 1200 400 800 1200

Test Function: Rosenbrock 

D-PGA 80 90 93,3 80 90 93,3 100 100 100 
10 

R-PGA 20 10 6,7 20 10 6,7 0 0 0 

D-PGA 100 100 100 80 90 93,3 100 100 100 
20 

R-PGA 0 0 0 20 10 6,7 0 0 0 

Test Function: Rastrigin 

D-PGA 100 100 100 80 90 93,3 80 90 73,3 
10 

R-PGA 0 0 0 20 10 6,7 20 10 26,7 

D-PGA 100 100 100 60 80 86,6 60 40 53,3 
20 

R-PGA 0 0 0 40 20 13,4 40 60 46,7 

Test Function: Sphere 

D-PGA 60 50 66,6 100 50 40 60 40 33,3 
10 

R-PGA 40 50 33,4 0 50 60 40 60 66,7 

D-PGA 80 90 93,3 60 70 66,6 80 90 93,3 
20 

R-PGA 20 10 6,7 40 30 33,4 20 10 6,7 

Migration Interval: 80; Number of Variables: 10 

D. Impact of the number of variables 

The chromosomes are composed of genes representing 
the variables in the test function. The increasing number of 
variables indicates the complexity level of the optimization 
problem. In this part of the study, D-PGA vs. R-PGA and D-
PGA vs. FC-PGA tests were conducted for the test functions 
with 10 and 20 variables. The results are given in Tables IV 
and V. 

D-PGA performed significantly better than R-PGA (Table 
IV). According to the results given in Table IV, D PGA 
produced good results on 16 settings, while R PGA did so 
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on two settings. The good results of R-PGA on those two 
exceptional cases may be attributed to the larger populations 
sizes associated with this strictly convex function and single 
extremum. 

 
TABLE IV. COMPARATIVE IMPACTS OF THE NUMBER OF VARIABLES ON 

D-PGA AND R-PGA 

Subpopulation size/Number of GA iterations 

80 160 640 

N
u

m
b

er
 o

f 
V

ar
ia

b
le

s 

M
ig

ra
ti

on
 

T
op

ol
og

y 

400 800 1200 400 800 1200 400 800 1200

Test Function: Rosenbrock 

D-PGA 80 90 93,3 80 90 93,3 100 100 100 
n=10 

R-PGA 20 10 6,7 20 10 6,7 0 0 0 

D-PGA 100 100 100 100 100 100 80 90 80 
n=20 

R-PGA 0 0 0 0 0 0 20 10 20 

Test Function: Rastrigin 

D-PGA 100 100 100 80 90 93,3 80 90 73,3 
n=10 

R-PGA 0 0 0 20 10 6,7 20 10 26,7 

D-PGA 80 90 93,3 60 80 86,6 80 70 53,3 
n=20 

R-PGA 20 10 6,7 40 20 13,4 20 30 46,7 

Test Function: Sphere 

D-PGA 60 50 66,6 100 50 40 60 40 33,3 
n=10 

R-PGA 40 50 33,4 0 50 60 40 60 66,7 

D-PGA 80 90 93,3 40 70 80 20 10 20 
n=20 

R-PGA 20 10 6,7 60 30 20 80 90 80 

Migration Interval: 80; Migration Rate: 10% 

 

Table V shows that D-PGA clearly beats FC-PGA for 
smaller population sizes (i.e. subpopulation size: 80). 
Having considered the larger subpopulation sizes, D-PGA 
exhibited a competitive performance against FC-PGA.  It 
can be observed from Table V that the number of variables 
had no impact on the better performances of D-PGA against 
FC-PGA with few exceptions. 

E. Impact of the subpopulation sizes 

If a PGA has to operate on smaller subpopulation sizes, 
the good schema are expected to be explored by different 
subpopulations.  At that point, the performance of the PGA 
depends on the migration topology to overcome the 
challenge of diffusing good schema among those smaller 
subpopulations.  Therefore, the impact of the migration 
topology can be better observed at smaller subpopulation 
sizes. 

The experiments have been designed for small, medium, 
and large subpopulation sizes.  When all the results are 
examined comparatively, D-PGA outperforms R-PGA and 
FC-PGA for the smaller subpopulation sizes of 80 in all 
ranges of iterations (Table II–V).  Additionally, D-PGA has 
produced better performances than R PGA for medium and 
large population sizes of 160 and 640 in all ranges of 
iterations (Table II: 97%, Table III: 89%, Table IV: 80.5%). 
D-PGA and FC-PGA have produced competitive results for 
medium and large population sizes. 

 
 

TABLE V. COMPARATIVE IMPACTS OF THE NUMBER OF VARIABLES ON 
D-PGA AND FC-PGA 

Subpopulation size/Number of GA iterations 

80 160 640 

N
u

m
b

er
 o

f 
V

ar
ia

b
le

s 

M
ig

ra
ti

on
 

T
op

ol
og

y 

400 800 1200 400 800 1200 400 800 1200

Test Function: Rosenbrock 

D-PGA 100 70 66,6 80 70 46,6 100 100 86,6 
n=10

FCPGA 0 30 33,4 20 30 53,4 0 0 13,4 

D-PGA 60 80 86,6 20 10 6,6 0 0 0 
n=20

FCPGA 40 20 13,4 80 90 93,4 100 100 100 

Test Function: Rastrigin 

D-PGA 100 100 100 80 90 93,3 60 70 46,6 
n=10

FCPGA 0 0 0 20 10 6,7 40 30 53,4 

D-PGA 60 80 80 20 60 73,3 60 60 46,6 
n=20

FCPGA 40 20 20 80 40 26,7 40 40 53,4 

Test Function: Sphere 

D-PGA 100 100 100 100 70 60 20 10 6,6 
n=10

FCPGA 0 0 0 0 30 40 80 90 93,4 

D-PGA 60 70 60 60 80 86,6 20 10 6,6 
n=20

FCPGA 40 30 40 40 20 13,4 80 90 93,4 

Migration Interval: 80; Migration Rate: 10% 

IV. CONVERGENCE ANALYSIS: DIVERSITY AND 

PERMEABILITY 

The previous section has exhibited the outstanding 
performance of the proposed D-PGA versus the well-known 
R-PGA and FC-PGA based on the design settings given in 
Table I.  In this section, these migration topologies will be 
analyzed in terms of the diversity and a new concept of 
permeability as the indicators of their underlying search 
behaviors. 

A. Diversity  

The concept of diversity is an indicator of the similarity 
of the individuals within a population.  Lack of diversity 
may cause premature convergence [20].  Alternately, higher 
levels of diversity may result in slower convergence due to 
random-search-like behavior [21]. Techniques for 
diversifying a population are typically adopted to reduce 
selection pressure. A diverse population is able to address 
multimodal functions and can explore several hills in the 
fitness landscape simultaneously. Diversity-preserving 
methods can therefore support global exploration and help 
to locate several local and global optima.  Consequently, a 
PGA must preserve an adequate level of diversity within its 
subpopulations over generations.  Therefore, numerous 
researchers have studied the diversity of PGAs [22-25].   

The diversity of a PGA can be computed using 
phenotypic or genotypic methods.  Phenotypic methods 
measure the diversity based on the fitness value assuming 
that two individuals with similar fitness values also have 
common features [26]. Genotypic methods calculate the 
diversity based on the entropy, mostly adopting Hamming 
pairwise distances of genes [27]. The entropy values are 
usually computed by counting the sequence of 0s and 1s in 
the bit positions of all chromosomes [18]. In this study, the 
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genotypic diversity measure was adopted using bit-entropy 
values of chromosomes within subpopulations. 

B. Permeability  

The diversity is a necessary measure to observe the 
dispersion within subpopulations.  However, this diversity 
cannot represent the variety and distribution of individuals 
among subpopulations.  The limitations of using the 
diversity by itself in PGAs may result in significant 
anomalies in subpopulations, as illustrated in Fig. 4.  Fig. 4 
represents two pairs of cases, (a-b) and (c-d), which will be 
classified as the lowest and highest level of diversities, 
respectively. From the perspective of a PGA, Fig. 4a and 4b 
should be considered as entirely different cases.  While Fig. 
4a shows an exhaustion of a PGA,  Fig. 4b indicates a lack 
of diversity within each subpopulation of a PGA with a 
totally different collective diversity of subpopulations. Fig. 
4c and 4d illustrate two distinct distributions with the same 
highest-level diversity.  Fig. 4c indicates high diversity 
within subpopulations, although the collective diversity of 
the PGA is reduced to a single subpopulation’s diversity.  
Alternately, Fig. 4d shows high diversity within and 
between subpopulations simultaneously.  In PGAs, the 
diversity is a necessary measure but not sufficient enough to 
differentiate (a) from (b) and (c) from (d). 
 

 
Figure 4. Permeability-diversity relationship (a) low diversity-high 
permeability, (b) low diversity-low permeability, (c) high diversity-high 
permeability, (d) high diversity-low permeability 
 

In this study, a new concept called permeability is devised 
to represent the diversity between subpopulations in addition 
to the diversity within subpopulations.  This new concept of 
permeability enables PGAs to distinguish the subpopulation 
distributions of Fig. 4, i.e., (a) from (b) and (c) from (d).  
The permeability should be considered a complementary 
measure to the diversity in PGAs.  Indeed, the subpopulation 
distributions of Fig. 4, such as those of (a) and (c) and those 
of (b) and (d), cannot be distinguished by the permeability 
itself.  The permeability represents the schema-diffusing 
capability of PGAs between subpopulations, while the 
diversity addresses the schema distribution within a 
subpopulation.  The permeability is calculated by analyzing 
the differences between individuals of all subpopulations. 

C. Convergence behaviors in terms of diversity and 
permeability 

The diversity (variety within subpopulations) and 

permeability (variety between subpopulations) are both 
calculated with the entropy based on the Hamming pairwise 
distances.  

The expression for counting the numbers of 0s and 1s in a 
given bit position is represented in (5). The equation 
represents the bit positions, chromosome length, and size of 
a subpopulation as i, l and n, respectively. If the value at the 

ith bit position of the rth individual is equal to b, ),( brck
i  is 

set to 1; otherwise, it is set to 0. ),( btPk
i  is the proportion of 

0s and 1s at bit position i=1..l for the subpopulation k. 
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The mean entropy of the kth population at time t is defined 
in (6) [18]. 
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 The average diversity of PGA,  DIV , is calculated 
based on the average diversity of all subpopulations, as 
given in (7), where p represents the number of 
subpopulations. 
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The permeability value of a PGA is also calculated by the 
mean bit entropy. The expression for counting the numbers 
of 0s and 1s in a given bit position for all subpopulations is 
represented in (8). Next, the permeability value of a PGA at 
time t is obtained using the mean entropy as formulated in 
(9). 
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It was shown in Section III that D-PGA has outstanding 
performance over the considered PGAs. Here, certain tests 
were carried out to analyze the performances of the 

migration policies in terms of DIV  and PRM .  PGAs were 
implemented using MPI 2.0, and real environment tests 
were conducted on the ESOGU Beowulf cluster. The 

impacts of DIV  and PRM  in maximizing the Rgnf  

function were observed for the migration interval of 80, the 
migration rate of 10%, chromosomes with 10 variables, and 
the subpopulation size of 160 with 10 independent trials of 

D-PGA, R-PGA, FC-PGA and S-PGA. DIV  and PRM  
values are collected at the end of each epoch.  

Fig. 5a illustrates how the migration policies impact the 
diversity within subpopulations.  The graph shows a steep 
decline of the diversity within subpopulations as the 
iterations increased.  This decline indicates the propagation 
of the fit schema at the cost of the diversity loss.  
Consequently, S-PGA lost the diversity faster than the other 
PGAs that preserve the diversity depending on the migration 
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policies designed.   
Fig. 5b illustrates the impact of the migration policies on 

the permeability (diversity between subpopulations) of 
PGAs.  The permeability should be considered a measure of 
schema similarity between subpopulations.  Therefore, S-
PGA working on independent subpopulations exhibits the 
lowest level of permeability over iterations.  However, 
PGAs having different migration policies lead to different 
levels of permeability.  Higher permeability means a higher 
number of similar schemas distributed in different 
subpopulations. It is expected that a PGA with higher 
permeability contains fitter schema than another identical 
PGA with lower permeability because the schema of highly 
permeable subpopulations are constructed based on the 
building blocks of all subpopulations. 

Fig. 5c illustrates the performances of PGAs with 
different migration policies.  D-PGA converged to the 
optimal solution faster than the others.  FC-PGA also 
exhibited close performance to that of D-PGA in the 
refinement phase.  D-PGA and FC-PGA both outperformed 
R-PGA over all iterations.  As expected, S-PGA displayed 
the weakest performance.  

 
a) Diversity curve 

 
b)Permeability curve 

 
c) Performance curve 

Figure 5. Comparison of  D-PGA, R-PGA, FC-PGA, and S-PGA over 
iterations  

 

Fig. 5 reveals some correlations between the fitness, the 
diversity, and the permeability of PGAs.  The diversity 
curves of the three PGAs are almost the same, although the 
performance curves of the PGAs are clearly different from 
each other.  Therefore, an indicator other than the diversity 
should be addressed in explaining these differences.  The 
permeability, however, shows parallel progression to the 
fitness curves.  This observation allows for consideration of 
the permeability as the source of these fitness differences.  
Thus, in the context of the experiment of this section, it can 
be concluded that the higher permeability is associated with 
the better performances as conceptually discussed before.  
Meanwhile, the faster convergence behavior of D-PGA can 
be attributed to its high permeability supporting faster 
diffusion of the fit schema while preserving the diversity. 

V. CONCLUSION  

There are two main ideas behind this research: (i) each 
subpopulation must transfer its best individual to the 
globally best subpopulation in each epoch, and (ii) the 
global best subpopulation must support inferior 
subpopulations by transferring its best individuals in each 
epoch. The implementation of these motivations can only be 
effectively realized with a dynamic topology because the 
global best and the inferior subpopulations are subject to 
change in each epoch. Conventional PGAs are usually 
designed for static connection topologies due to their 
dedicated host architectures, such as ring, mesh, tree, and 
the like.  However, PGAs with any connection topology can 
be programmed by using cluster computing systems. In this 
article, a dynamic topology for PGAs has been proposed 
based on the programmable connection capability of cluster 
computing.   

The proposed dynamic topology is defined as a subset of 
connections among PGA islands subject to change in each 
epoch.  In this context, a connection represents migrating 
individuals from a source to a selected target subpopulation 
in D-PGA.  Three criteria have been considered in building 
the topology: 

(i) Each subpopulation must migrate a portion of their 
best individuals to another subpopulation called the 
target subpopulation, creating connections equal to 
the number of subpopulations, n. 

(ii) A roulette wheel selection picks target 
subpopulations based on their average fitness values. 

(iii) To leverage inferior subpopulations (with poor 
fitness values), the best subpopulation migrates a 
portion of its best individuals to the worst 
subpopulation, creating one connection. 

Thus, these criteria result in (n+1) connections (almost 
equal to the n connections of a ring topology and 
significantly less than the n2 connections of a fully 
connected topology).  Because the selected connections are 
subject to change in each epoch, the topology evolves 
dynamically over generations, presenting the major 
contribution of this research to the domain of PGAs.   

The performance of the proposed D-PGA has been 
compared against R-PGAs and FC-PGAs based on a test bed 
including three test functions and a total of 72 problem 
settings.  The results show that D-PGA has outperformed R-
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PGA and has presented comparable performance with 
FC-PGA. The convergence analysis has revealed that 
D-PGA has outperformed both R-PGA and FC-PGA in the 
exploration phase of the genetic search, which might be vital 
under the pressure of shorter run times. 

Also proposed is the new concept of permeability, which, 
along with the diversity, seems to be a critical indicator in 
predicting the convergence behaviors of PGAs.  
Convergence analyses of R-PGA, FC-PGA and D-PGA 
have been conducted in terms of the diversity and 
permeability measures.  The dynamic topology of D-PGA 
has maintained relatively high levels of diversity and 
permeability simultaneously, which may be construed as the 
underlying factor behind its success.  Therefore, the 
prospect of PGAs having a migration control mechanism to 
ensure high levels of diversity and permeability 
simultaneously throughout the PGA search seems to be a 
promising research area. 
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