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ON SLANT CURVES IN TRANS-SASAKIAN MANIFOLDS

ŞABAN GÜVENÇ AND CIHAN ÖZGÜR

Abstract. We find the characterizations of the curvatures of slant curves in

trans-Sasakian manifolds with C-parallel and C-proper mean curvature vector

field in the tangent and normal bundles.

1. Introduction

Let γ be a curve in an almost contact metric manifold (M,ϕ, ξ, η, g). In [14],
Lee, Suh and Lee introduced the notions of C-parallel and C-proper curves in the
tangent and normal bundles. A curve γ in an almost contact metric manifold
(M,ϕ, ξ, η, g) is defined to be C -parallel if ∇TH = λξ, C -proper if ∆H = λξ,
C-parallel in the normal bundle if ∇⊥TH = λξ, C-proper in the normal bundle if
∆⊥H = λξ, where T is the unit tangent vector field of γ, H is the mean curvature
vector field, ∆ is the Laplacian, λ is a non-zero differentiable function along the
curve γ, ∇⊥ and ∆⊥ denote the normal connection and Laplacian in the normal
bundle, respectively [14]. For a submanifold M of an arbitrary Riemannian mani-

fold M̃ , if ∆H = λH, then M is a submanifold with proper mean curvature vector
field H [7]. If ∆⊥H = λH, then M is a submanifold with proper mean curvature
vector field H in the normal bundle [1].

Let M be an almost contact metric manifold and γ(s) a Frenet curve in M
parametrized by the arc-length parameter s. The contact angle α(s) is a function
defined by cos[α(s)] = g(T (s), ξ). A curve γ is called a slant curve [8] if its contact
angle is a constant. Slant curves with contact angle π

2 are traditionally called
Legendre curves [4].

In [18], Srivastava studied Legendre curves in trans-Sasakian 3-manifolds. In
[11], Inoguchi and Lee studied almost contact curves in normal almost contact 3-
manifolds. In [12], the same authors studied slant curves in normal almost contact
metric 3-manifolds. In [14], Lee, Suh and Lee studied slant curves in Sasakian
3-manifolds. They find the curvature characterizations of C-parallel and C-proper
curves in the tangent and normal bundles. In the present study, our aim is to
generalize results of [14] to a curve in a trans-Sasakian manifold.
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2. Preliminaries

A (2n+ 1)-dimensional Riemannian manifold M is said to be an almost contact
metric manifold [4], if there exist on M a (1, 1) tensor field ϕ, a vector field ξ, a
1-form η and a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for any vector fields X,Y on M . Such a manifold is said to be a contact metric
manifold if dη = Φ, where Φ(X,Y ) = g(X,ϕY ) is called the fundamental 2-form
of M [4].

The almost contact metric structure of M is said to be normal if

[ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ,

for any vector fields X,Y on M , where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ.
A normal contact metric manifold is called a Sasakian manifold [4]. It is easy to
see that an almost contact metric manifold is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

An almost contact metric manifold M is called a trans-Sasakian manifold [17] if
there exist two functions α and β on M such that

(∇Xϕ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX], (2.1)

for any vector fields X,Y on M . From (2.1), it is easily obtained that

∇Xξ = −αϕX + β[X − η(X)ξ]. (2.2)

If β = 0 (resp. α = 0), then M is said to be an α-Sasakian manifold (resp. β-
Kenmotsu manifold). Sasakian manifolds (resp. Kenmotsu manifolds [13]) appear
as examples of α-Sasakian manifolds (resp. β-Kenmotsu manifolds), with α = 1
(resp. β = 1). For α = β = 0, we get cosymplectic manifolds [15]. From (2.2), for
a cosymplectic manifold we obtain

∇Xξ = 0.

Hence ξ is a Killing vector field for a cosymplectic manifold [3].

Proposition 2.1. [16] A trans-Sasakian manifold of dimension greater than or
equal to 5 is either α-Sasakian, β-Kenmotsu or cosymplectic.

From now on, we state “(α, β)-trans-Sasakian manifold”, when the dimension of
the manifold is 3 and α 6= 0, β 6= 0.

The contact distribution of an almost contact metric manifold M with an almost
contact metric structure (ϕ, ξ, η, g) is defined by

{X ∈ TM : η(X) = 0}

and an integral curve of the contact distribution is called a Legendre curve [4].
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3. Slant curves with C-parallel mean curvature vector field

Let (M, g) be an m-dimensional Riemannian manifold and γ : I → M a curve
parametrized by arc length. Then γ is called a Frenet curve of osculating order r,
1 ≤ r ≤ m, if there exists orthonormal vector fields E1, E2, . . . , Er along γ such
that

E1 = γ′ = T,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3,

. . .

∇TEr = −κr−1Er−1,

(3.1)

where κ1, . . . , κr−1 are positive functions on I.
A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet curve of

osculating order 2 such that κ1 is a non-zero positive constant; a helix of order r,
r ≥ 3, is a Frenet curve of osculating order r such that κ1, . . . , κr−1 are non-zero
positive constants; a helix of order 3 is called simply a helix.

Now let (M, g) be a Riemannian manifold and γ : I → M a Frenet curve of
osculating order r. By the use of (3.1), it can be easily seen that

∇T∇TT = −κ2
1E1 + κ′1E2 + κ1κ2E3,

∇T∇T∇TT = −3κ1κ
′
1E1 +

(
κ′′1 − κ3

1 − κ1κ
2
2

)
E2

+ (2κ′1κ2 + κ1κ
′
2)E3 + κ1κ2κ3E4,

∇⊥T∇⊥T T = κ′1E2 + κ1κ2E3,

∇⊥T∇⊥T∇⊥T T =
(
κ′′1 − κ1κ

2
2

)
E2 + (2κ′1κ2 + κ1κ

′
2)E3 + κ1κ2κ3E4.

So we have (see [1])

∇TH = −κ2
1E1 + κ′1E2 + κ1κ2E3, (3.2)

∆H = −∇T∇T∇TT
= 3κ1κ

′
1E1 +

(
κ3

1 + κ1κ
2
2 − κ′′1

)
E2

− (2κ′1κ2 + κ1κ
′
2)E3 − κ1κ2κ3E4,

(3.3)

∇⊥TH = κ′1E2 + κ1κ2E3, (3.4)

∆⊥H = −∇⊥T∇⊥T∇⊥T T
=
(
κ1κ

2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3

− κ1κ2κ3E4.

(3.5)

By the use of equations (3.2), (3.3), (3.4) and (3.5), we can directly state the
following proposition:

Proposition 3.1. Let γ : I ⊆ R → M be a non-geodesic Frenet curve in a trans-
Sasakian manifold M . Then
i) γ has C-parallel mean curvature vector field if and only if

− κ2
1E1 + κ′1E2 + κ1κ2E3 = λξ; or (3.6)
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ii) γ has C-proper mean curvature vector field if and only if

3κ1κ
′
1E1 +

(
κ3

1 + κ1κ
2
2 − κ′′1

)
E2− (2κ′1κ2 + κ1κ

′
2)E3− κ1κ2κ3E4 = λξ; or (3.7)

iii) γ has C-parallel mean curvature vector field in the normal bundle if and
only if

κ′1E2 + κ1κ2E3 = λξ; or (3.8)

iv) γ has C-proper mean curvature vector field in the normal bundle if and only
if (

κ1κ
2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 − κ1κ2κ3E4 = λξ, (3.9)

where λ is a non-zero differentiable function along the curve γ.

Now, let γ : I ⊆ R → M be a non-geodesic slant curve of order r with contact
angle α0 in an n-dimensional trans-Sasakian manifold. By the use of (2.1), (2.2)
and (3.1), we obtain

η(T ) = cosα0, (3.10)

κ1η(E2) = −β sin2 α0, (3.11)

∇T ξ = −αϕT + β[T − cosα0ξ], (3.12)

∇TϕT = α[ξ − cosα0T ]− β cosα0ϕT + κ1ϕE2. (3.13)

So we have the following theorem:

Theorem 3.1. Let γ : I ⊆ R → M be a non-geodesic slant curve of order r in
a trans-Sasakian manifold. If γ has C-parallel or C-proper mean curvature vector
field in the normal bundle, then it is a Legendre curve.

Proof. By the use of (3.8), (3.9) and (3.10), the proof is clear. �

We consider the following cases:

Case I. The osculating order r = 2.
For this case, we have the following results:

Theorem 3.2. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 2
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-parallel mean
curvature vector field if and only if it satisfies

κ1 =
∓ cotα0

c− s
, (3.14)

λ =
− cotα0 cscα0

(c− s)2
, (3.15)

where c is an arbitrary constant and s is the arc-length parameter of γ. In this
case, M becomes an (α, β)-trans-Sasakian or a β-Kenmotsu manifold with

β =
cotα0 cscα0

c− s
.
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Proof. Let γ have C-parallel mean curvature vector field. From (3.6), we have

− κ2
1E1 + κ′1E2 = λξ. (3.16)

If α0 = π
2 , we find κ1 = 0, which is a contradiction. Thus, α0 6= π

2 .
Let β 6= 0. Hence M is an (α, β)-trans-Sasakian or a β-Kenmotsu manifold.

Since η(E2) = ± sinα0, (3.11) gives us

κ1 = ∓β sinα0. (3.17)

By the use of (3.10), (3.11) and (3.16), we get

λ =
−κ2

1

cosα0
, (3.18)

κ′1 = κ1β sinα0 tanα0. (3.19)

Differentiating (3.17) and using (3.19), we have

β′ = β2 sinα0 tanα0,

which gives us

β =
cotα0 cscα0

c− s
, (3.20)

where c is an arbitrary constant. Using (3.20) in (3.18) and (3.19), we obtain (3.14)
and (3.15).

Now, let β = 0. Hence M is an α-Sasakian or cosymplectic manifold. In this
case, we have η(E2) = 0. Thus (3.16) gives us κ1 =constant. So we get

−κ2
1E1 = λξ.

Thus ξ = ±E1. From (3.1) and (3.12), we have

∇T ξ = −αϕT = 0 = ±κ1E2. (3.21)

Since γ is non-geodesic, (3.21) causes a contradiction.
Conversely, if the above conditions are satisfied, one can easily show that γ has

C-parallel mean curvature vector field. �

Using the proof of Theorem 3.2, we have the following corollary:

Corollary 3.1. There does not exist any non-geodesic slant curve of order 2 with
C-parallel mean curvature vector field in an α-Sasakian or a cosymplectic manifold.

In the normal bundle, we can state the following theorem:

Theorem 3.3. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 2
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-parallel mean
curvature vector field in the normal bundle if and only if it is a Legendre curve with

κ1 = ∓β, ξ = ±E2, λ = ±β′. (3.22)

In this case, α = 0 and β is not a constant along the curve γ.
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Proof. Let γ have C-parallel mean curvature vector field in the normal bundle.
From (3.8) and Theorem 3.1, we have

κ′1E2 = λξ. (3.23)

So we have

λ = ±κ′1,
ξ = ±E2. (3.24)

Differentiating (3.24), we find

− αϕE1 + βE1 = ∓κ1E1. (3.25)

(3.25) gives us (3.22) and α = 0 along the curve. �

Case II. The osculating order r = 3.
For slant curves of order 3, we have the following theorem:

Theorem 3.4. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 3
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-parallel mean
curvature vector field if and only if
i) it is a curve with

κ1 = c.esinα0 tanα0

∫
β(s)ds, (3.26)

κ2 = |tanα0|
√
κ2

1 − β2 sin2 α0, (3.27)

ξ = cosα0E1 −
β sin2 α0

κ1
E2 −

κ2 cosα0

κ1
E3 (3.28)

and

λ =
−κ2

1

cosα0
, (3.29)

where κ2
1 > β2 sin2 α0, α0 6= π

2 , c is an arbitrary constant, s is the arc-length
parameter of γ, (in this case, M becomes an (α, β)-trans-Sasakian or a β-Kenmotsu
manifold); or
ii) it is a helix with

λ =
−κ2

1

cosα0
, α0 6=

π

2
,

κ2 = −κ1 tanα0

and

ξ = cosα0E1 + sinα0E3.

(In this case, α 6= 0 and β = 0 along the curve.)

Proof. Let γ have C-parallel mean curvature vector field. From (3.6), we have

− κ2
1E1 + κ′1E2 + κ1κ2E3 = λξ. (3.30)

If α0 = π
2 , we find κ1 = 0, which is a contradiction. Thus, α0 6= π

2 .
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Let β 6= 0. So M is an (α, β)-trans-Sasakian or a β-Kenmotsu manifold. (3.30)
gives us ξ ∈ span {E1, E2, E3}. Thus, we can write

ξ = cosα0E1 + sinα0 (cos θE2 + sin θE3) , (3.31)

where θ is the angle function between E2 and the orthogonal projection of ξ onto
span {E2, E3}. From (3.30) and (3.31), we find

cos θ =
−β sinα0

κ1
, sin θ =

−κ2 cotα0

κ1
.

So we obtain (3.28). We also have (3.29) using (3.30). Since λη(E2) = κ′1, we can
calculate

κ′1 = κ1β sinα0 tanα0, (3.32)

which gives us (3.26). Using (3.32) in (3.30), we find (3.27).
Now, let α 6= 0, β = 0 along the curve. Since η(E2) = 0, (3.30) and (3.31) give

us κ1 > 0 is a constant, θ = π
2 and

− κ2
1E1 + κ1κ2E3 = λ(cosα0E1 + sinα0E3). (3.33)

From (3.33), we find κ2 = −κ1 tanα0. So κ2 is also a constant. Hence γ is a helix.
Finally, let α = β = 0 along the curve. In this case, (3.30) and (3.31) give us

− κ2
1E1 + κ1κ2E3 = λξ, (3.34)

ξ = cosα0E1 + sinα0E3. (3.35)

Differentiating (3.35) along γ, we have

κ2

κ1
= cotα0. (3.36)

From (3.34), we get
κ2

κ1
= − tanα0. (3.37)

By the use of (3.36) and (3.37), we obtain cotα0 = − tanα0, which has no solution.
The converse statement is clear. �

Using Theorem 3.4, we give the following corollary:

Corollary 3.2. There does not exist any non-geodesic slant curve of order 3 with
C-parallel mean curvature vector field in a cosymplectic manifold.

In the normal bundle, we can state the following theorem:

Theorem 3.5. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 3
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-parallel mean
curvature vector field in the normal bundle if and only if
i) it is a Legendre curve with

κ1 6= constant,

κ2 =
κ′1
√
κ2

1 − β2

κ1β
,
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ξ =
−β
κ1

E2 −
√
κ2

1 − β2

κ1
E3 (3.38)

and

λ =
−κ′1κ1

β
,

(in this case, M becomes an (α, β)-trans-Sasakian or a β-Kenmotsu manifold); or
ii) it is a Legendre helix with

ξ = E3, κ2 = α > 0, λ = κ1κ2,

(in this case, M becomes an α-Sasakian or an (α, β)-trans-Sasakian manifold).

Proof. From (3.8), we have

κ′1E2 + κ1κ2E3 = λξ. (3.39)

Then we get

η(E1) = 0,

κ1η(E2) = −β. (3.40)

Firstly, let β 6= 0. Then M is an (α, β)-trans-Sasakian or a β-Kenmotsu manifold.
From (3.39) and (3.40), we have

λ =
−κ′1κ1

β
,

which gives us κ1 6= constant. We also have

η(E3) =
−βκ2

κ′1
. (3.41)

By the use of (3.40) and (3.41), we can write

ξ =
−β
κ1

E2 −
βκ2

κ′1
E3. (3.42)

Since ξ is a unit vector field, we obtain

κ2 =
κ′1
√
κ2

1 − β2

κ1β
. (3.43)

Finally, let β = 0 along the curve. Then (3.40) gives us η(E2) = 0. From (3.39),
we find κ1 = constant, ξ = E3 and λ = κ1κ2. Differentiating ξ = E3 along the
curve γ, we get κ2 = α. Thus γ is a Legendre helix. Since κ2 = α > 0, M cannot
be cosymplectic.

The converse statement is trivial. �

Case III. The osculating order r ≥ 4.
For non-geodesic slant curves of osculating order r ≥ 4, we give the following

theorem:
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Theorem 3.6. Let γ : I ⊆ R → M be a non-geodesic slant curve of order r ≥ 4
with contact angle α0 in a trans-Sasakian manifold with dimM ≥ 5. Then γ has
C-parallel mean curvature vector field if and only if it satisfies

κ1 = constant,

κ2 = −κ1 tanα0 = constant,

κ3 =
−αg(ϕE1, E4)

sinα0
=

√
α2 − 4κ2

1

sin2(2α0)
= constant,

ξ = cosα0E1 + sinα0E3,

ϕE1 ∈ span {E2, E4} , g(ϕE1, E4) 6= 0

and

λ =
−κ2

1

cosα0
= constant.

In this case, M becomes an α-Sasakian manifold.

Proof. Let γ be a curve with C-parallel mean curvature vector field. From (3.6),
we have

− κ2
1E1 + κ′1E2 + κ1κ2E3 = λξ. (3.44)

Moreover, from Proposition 2.1, M is either α-Sasakian, β-Kenmotsu or cosym-
plectic. Firstly, let us consider α-Sasakian case. We have

η(E2) = 0, (3.45)

∇T ξ = −αϕE1. (3.46)

(3.44) and (3.45) give us κ1 is a constant. The Legendre case causes a contradiction
with γ being non-geodesic; so, α0 6= π

2 . From (3.44), we obtain

λ =
−κ2

1

cosα0
= constant, (3.47)

ξ = cosα0E1 + sinα0E3. (3.48)

Differentiating (3.48) and using (3.46), we get

− αϕE1 = (κ1 cosα0 − κ2 sinα0)E2 + κ3 sinα0E4, (3.49)

which gives us
ϕE1 ∈ span {E2, E4} , (3.50)

κ3 =
−αg(ϕE1, E4)

sinα0
. (3.51)

Since κ3 > 0, we have g(ϕE1, E4) 6= 0. Using (3.44), (3.47) and (3.48), we find

κ2 = −κ1 tanα0 = constant. (3.52)

Thus, from (3.49) and (3.52), we get

κ1 cosα0 − κ2 sinα0 =
κ1

cosα0

and
− αϕE1 =

κ1

cosα0
E2 + κ3 sinα0E4. (3.53)
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Since g(ϕE1, ϕE1) = sin2 α0, using equation (3.53), we have

κ3 =

√
α2 − 4κ2

1

sin2(2α0)
= constant.

So the necessity condition is proved. Conversely, if γ is the above curve, (3.44) is
satisfied.

Now, let us consider the β-Kenmotsu case. The proof is done as in the proof of
Theorem 3.4 and same results are found with some extra conditions which cause
contradiction. Firstly, we have

κ1η(E2) = −β sin2 α0, (3.54)

and

∇T ξ = β[T − cosα0ξ]. (3.55)

Since ξ ∈ span{E1, E2, E3}, we can write

ξ = cosα0E1 + sinα0 {cos θE2 + sin θE3} , (3.56)

where θ = θ(s) is the angle function between E2 and the orthogonal projection of
ξ onto span {E2, E3}. Since κ3 > 0 and sinα0 6= 0; differentiating (3.56) and using
(3.55), one can easily find that sin θ = 0. So we have

ξ = cosα0E1 + sinα0E2. (3.57)

From (3.44) and (3.57), we have κ2 = 0, a contradiction.
Finally, let us consider the cosymplectic case. In this case, we have

η(E2) = 0, (3.58)

∇T ξ = 0. (3.59)

(3.44) and (3.58) give us

ξ = cosα0E1 + sinα0E2, (3.60)

κ1 = constant.

Differentiating (3.60) and using (3.59), we obtain κ3 = 0, which is also a contra-
diction. �

The following corollaries are direct consequences of Theorem 3.6:

Corollary 3.3. If the osculating order r = 4 in Theorem 3.6, then γ is a helix.

Corollary 3.4. There does not exist a non-geodesic slant curve of osculating order
r ≥ 4 with C-parallel mean curvature vector field in a β-Kenmotsu or a cosymplectic
manifold.

In the normal bundle, we can state the following theorem:
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Theorem 3.7. Let γ : I ⊆ R → M be a non-geodesic slant curve of order r ≥ 4
with contact angle α0 in a trans-Sasakian manifold with dimM ≥ 5. Then γ has
C-parallel mean curvature vector field in the normal bundle if and only if it is a
Legendre curve with

κ1 = constant,

κ2 = αg(ϕE1, E2), (3.61)

κ3 = −αg(ϕE1, E4), (3.62)

κ2
2 + κ2

3 = α, (3.63)

λ = κ1κ2,

ξ = E3, α 6= 0

and

ϕE1 =
κ2

α
E2 −

κ3

α
E4. (3.64)

In this case, M becomes an α-Sasakian manifold.

Proof. From (3.8), we have

κ′1E2 + κ1κ2E3 = λξ. (3.65)

Then we get

η(E1) = 0,

κ1η(E2) = −β. (3.66)

Firstly, let β = 0. Then, from (3.65) and (3.66),

η(E2) = 0,

λ = κ1κ2,

ξ = E3. (3.67)

Differentiating (3.67), we find

−αϕE1 = −κ2E2 + κ3E4,

which gives us (3.61), (3.62), (3.63) and (3.64), where α 6= 0, that is, M is an
α-Sasakian manifold.

Now, let us assume that β 6= 0. We have same results in Theorem 3.5, but some
extra calculations lead to a contradiction. Since ξ ∈ span {E2, E3}, we can write

ξ = cos θE2 + sin θE3, (3.68)

where θ = θ(s) is the angle function between ξ and E2. Differentiating (3.68), we
find

κ3 =
−αg(ϕE1, E4)

sin θ
,

which gives us α 6= 0. Since dimM ≥ 5, this contradicts Proposition 2.1. �
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4. Slant curves with C-proper mean curvature vector field

We consider the following cases:

Case I. The osculating order r = 2.
For this case, we have the following theorems:

Theorem 4.1. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 2
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-proper mean
curvature vector field if and only if α = 0 and β 6= 0 along the curve and

i) γ is a Legendre circle with κ1 = ∓β = constant, ξ = ±E2, λ = −β3; or
ii) γ is a non-Legendre slant curve with

κ1 = ∓β sinα0,

κ′′1 − κ3
1 = ±3κ′1κ1 tanα0, (4.1)

ξ = cosα0E1 ± sinα0E2

and

λ =
3κ′1κ1

cosα0
. (4.2)

Proof. Let γ have C-proper mean curvature vector field. From (3.7), we have

3κ1κ
′
1E1 +

(
κ3

1 − κ′′1
)
E2 = λξ. (4.3)

Thus, ξ ∈ span {E1, E2}. So we can write

ξ = cosα0E1 ± sinα0E2. (4.4)

Differentiating (4.4) and using (3.12), we find

− αϕE1 + β sin2 α0E1 ∓ β cosα0 sinα0E2 = ∓κ1 sinα0E1 + κ1 cosα0E2. (4.5)

(4.4) and (4.5) give us α = 0 along the curve. We have β 6= 0, since κ1 = ∓β sinα0.
If α0 = π

2 , then γ is a Legendre curve with κ1 = ∓β = constant, ξ = ±E2, λ = −β3.
Let α0 6= π

2 . Then, by the use of (4.3) and (4.4), we obtain (4.1) and (4.2). �

In the normal bundle, we can state the following theorem:

Theorem 4.2. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 2
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-proper mean
curvature vector field in the normal bundle if and only if it is a Legendre curve with

κ1 = ∓β, ξ = ±E2, λ = β′′, (4.6)

and β(s) 6= as+ b, where a and b are arbitrary constants. In this case, α = 0 along
the curve.

Proof. Let γ have C-proper mean curvature vector field in the normal bundle.
From (3.9) and Theorem 3.1, γ is a Legendre curve with

−κ′′1E2 = λξ.

So we have

λ = ±κ′1
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and

ξ = ±E2. (4.7)

Differentiating (4.7), we find

− αϕE1 + βE1 = ∓κ1E1. (4.8)

(4.8) gives us (4.6) and α = 0 along the curve, which completes the proof. �

Case II. The osculating order r = 3.
For this case, we have the following theorems:

Theorem 4.3. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 3
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-proper mean
curvature vector field if and only if

i) it satisfies

κ2 = κ1 + α,

2κ3
1 − κ′′1 = 0,

α0 =
π

4
,

ξ =

√
2

2
(E1 − E3) ,

λ = 3
√

2κ1κ
′
1

and

κ1 6= constant,

(in this case, M becomes an α-Sasakian or a cosymplectic manifold); or
ii) it satisfies

3κ1κ
′
1 = λ cosα0,

κ3
1 + κ1κ

2
2 − κ′′1 = λη(E2),

− (2κ′1κ2 + κ1κ
′
2) = λη(E3)

and

η(E2)2 + η(E3)2 = sin2 α0.

(In this case, M becomes an (α, β)-trans-Sasakian or a β-Kenmotsu manifold.)

Proof. Let γ have C-proper mean curvature vector field. Then, from (3.7), we have

3κ1κ
′
1E1 +

(
κ3

1 + κ1κ
2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 = λξ. (4.9)

Now, let us assume that β = 0. Then we have η(E2) = 0, so we can write

ξ = cosα0E1 − sinα0E3. (4.10)

We cannot choose η(E3) = sinα0, because it leads to a contradiction. Differenti-
ating (4.10), we have

− αϕE1 = (κ1 cosα0 − κ2 sinα0)E2, (4.11)

which gives us

κ2 = κ1 cotα0 + α. (4.12)
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Since α is a constant, we obtain

κ′2 = κ′1 cotα0. (4.13)

From (4.9), we can write

3κ1κ
′
1 = λ cosα0, (4.14)

κ3
1 + κ1κ

2
2 − κ′′1 = 0 (4.15)

and

2κ′1κ2 + κ1κ
′
2 = λ sinα0. (4.16)

By the use of (4.12) in (4.15), we get

κ3
1 − sin2 α0κ

′′
1 = 0. (4.17)

So we have κ1 6= constant and α0 6= π
2 . In view of (4.12), (4.13), (4.14) and (4.16),

we find cos 2α0 = 0, which means that α0 = π
4 . Hence, taking α0 = π

4 in above
equations, the proof is done for α-Sasakian and cosymplectic manifolds.

Now, let us assume that β 6= 0. (4.9) gives us ξ ∈ span {E1, E2, E3}. So we can
write

ξ = cosα0E1 + sinα0 {cos θE2 + sin θE3} , (4.18)

where θ = θ(s) is the angle function between E2 and the orthogonal projection of
ξ onto span {E2, E3}. Using (4.9) and (4.18), the proof is completed. �

In the normal bundle, we can give the following result:

Theorem 4.4. Let γ : I ⊆ R → M be a non-geodesic slant curve of order 3
with contact angle α0 in a trans-Sasakian manifold. Then γ has C-proper mean
curvature vector field in the normal bundle if and only if it is a Legendre curve with

i)

κ1 = c1e
αs + c2e

−αs, (4.19)

κ2 = α,

ξ = E3, ϕE1 = E2

and

λ = −2α2(c1e
αs − c2e−αs), (4.20)

where c1 and c2 are arbitrary constants, (in this case, M becomes an α-Sasakian
manifold); or

ii)

λ =
κ1κ

′′
1 − κ2

1κ
2
2

β
, (4.21)

ξ =
−β
κ1

E2 ±
√
κ2

1 − β2

κ1
E3 (4.22)

and

±
(
κ′′1 − κ1κ

2
2

)√
κ2

1 − β2 = 2κ′1κ2 + κ1κ
′
2. (4.23)

In this case, M becomes an (α, β)-trans-Sasakian or a β-Kenmotsu manifold.
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Proof. Let γ have C-proper mean curvature vector field in the normal bundle.
From (3.9) and Theorem 3.1, γ is a Legendre curve with(

κ1κ
2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 = λξ. (4.24)

Let β = 0. Then we find η(E2) = 0, which gives us

κ1κ
2
2 − κ′′1 = 0, (4.25)

ξ = E3 (4.26)

and

λ = − (2κ′1κ2 + κ1κ
′
2) . (4.27)

Differentiating (4.26), we have

κ2 = α (4.28)

and

ϕE1 = E2.

Since α is a non-zero constant, by the use of (4.25) and (4.28), we find (4.19).
Using (4.19), (4.27) and (4.28), we obtain (4.20).

Now, let β 6= 0. Then (3.11) and (4.24) give us (4.21). Since the unit vector
field ξ ∈ span {E2, E3}, using (3.11), we find (4.22). By the use of (4.21), (4.22)
and (4.24), we obtain (4.23). Since β 6= 0, M is an (α, β)-trans-Sasakian or a
β-Kenmotsu manifold. �

Case III. The osculating order r ≥ 4.
In this case, we can state the following theorem:

Theorem 4.5. Let γ : I ⊆ R → M be a non-geodesic slant curve of order r ≥ 4
with contact angle α0 in a trans-Sasakian manifold with dimM ≥ 5. Then γ has
C-proper mean curvature vector field if and only if it satisfies

3κ1κ
′
1 = λ cosα0,

κ3
1 + κ1κ

2
2 − κ′′1 = λη(E2),

−(2κ′1κ2 + κ1κ
′
2) = λη(E3),

−κ1κ2κ3 = λη(E4)

and

η(E2)2 + η(E3)2 + η(E4)2 = sin2 α0,

where λ is a non-zero differentiable function on I.

Proof. Since ξ is a unit vector field, by the use of (3.7) and (3.10), the proof is
completed. �

In the normal bundle, we can give the following theorem:
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Theorem 4.6. Let γ : I ⊆ R → M be a non-geodesic slant curve of order r ≥
4 with contact angle α0 in a trans-Sasakian manifold dimM ≥ 5. Then γ has
C-proper mean curvature vector field in the normal bundle if and only if it is a
Legendre curve with

κ1κ
2
2 − κ′′1 = 0,

κ2 = αg(ϕE1, E2),

κ3 = −αg(ϕE1, E4),

κ2
2 + κ2

3 = α,

λ = −2κ′1κ2 − κ1κ
′
2,

ξ = E3, α 6= 0

and

ϕE1 =
κ2

α
E2 −

κ3

α
E4.

In this case, M becomes an α-Sasakian manifold.

Proof. The proof is similar to the proof of Theorem 3.7. �

5. Examples

Example 1. Let us consider the 3-dimensional manifold

M =
{

(x, y, z) ∈ R3|z > 0
}
,

where (x, y, z) are the standard coordinates on R3 and the metric tensor field on
M is given by

g =
1

z2
(dx2 + dy2 + dz2).

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z

are g-orthonormal vector fields in χ(M). Let ϕ be the (1, 1)-tensor field defined by

ϕe1 = −e2, ϕe2 = e1, ϕe3 = 0.

Let us define a 1-form η(Z) = g(Z, e3), for all Z ∈ χ(M) and the characteristic
vector field ξ = e3. In ([9], [13]), it was proved that (M,ϕ, ξ, η, g) is a Kenmotsu
manifold. Thus, it is a trans-Sasakian manifold with α = 0, β = 1.

The curve γ(s) = (γ1(s), γ2(s), γ3(s)) is a slant curve in M with contact angle
α0 if and only if the following equations are satisfied:

(γ′1)
2

+ (γ′2)
2

= sin2 α0(γ3)2,

γ3 = c.e−s cosα0 ,

where c > 0 is an arbitrary constant.
Let γ : I ⊆ R → M, γ(s) = (as + b,ms + n, c) where a, b,m, n, c ∈ R, c > 0,

a2+m2 = c2 and s is the arc-length parameter on open interval I. The unit tangent
vector field T along γ is

T =
a

c
e1 +

m

c
e2.
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Then γ is a Legendre curve since η(T ) = 0, that is, α0 = π
2 . Using Koszul’s

formula, we get ∇TT = −e3, which gives us κ1 = 1, E2 = −e3. After simple
calculations, we find ∇TE2 = −T , that is, κ2 = 0. Then γ is of osculating order
r = 2. From Theorem 4.1 i), γ has C-proper mean curvature vector field in the
tangent bundle with κ1 = β = 1, ξ = −E2, λ = −β3 = −1. Hence, an explicit
example of Theorem 4.1 i) in the given manifold M is γ(s) = (3s, 4s, 5).

In the above example, if we take e3 = z ∂
∂z , ξ = e3 and define the other structures

in the same way, we have a trans-Sasakian manifold with α = 0, β = −1 which
was given in ([10], [13]). In this manifold, γ(s) = (s, 0, 1) is another example of
Theorem 4.1 i) with κ1 = −β = 1, ξ = E2, λ = −β3 = 1.

We will use the following trans-Sasakian manifold given in [5] to construct new
examples.

Let M = N × (a, b) where N is an open connected subset of R2 and (a, b) is an
open interval in R. Let (x, y, z) be the coordinate functions on M . Now let us take
the functions

ω1, ω2 : N → R, σ, f : M → R∗+.
The normal almost contact metric structure (ϕ, ξ, η, g) on M is given by

ϕ =

 0 1 −ω2

−1 0 ω1

0 0 0

 ,
ξ =

∂

∂z
, η = dz + ω1dx+ ω2dy,

g =

 ω2
1 + σe2f ω1ω2 ω1

ω1ω2 ω2
2 + σe2f ω2

ω1 ω2 1

 .
Let us choose g-orthonormal frame fields as follows:

H1 =
e−f√
σ

[
∂

∂x
− ω1

∂

∂z

]
, H2 =

e−f√
σ

[
∂

∂y
− ω2

∂

∂z

]
, H3 = ξ =

∂

∂z
.

It is seen that M is a trans-Sasakian manifold with

α =
e−2f

2σ

(
∂ω1

∂y
− ∂ω2

∂x

)
, β =

1

2σ

∂σ

∂z
+
∂f

∂z
.

In [5], it is shown that γ(s) = (γ1(s), γ2(s), γ3(s)) is a slant curve in M with contact
angle α0 if and only if

(γ′1)2 + (γ′2)2 =
sin2 α0

σ
e−2f ,

ω1γ
′
1 + ω2γ

′
2 + γ′3 = cosα0.

Using this method, we have the following examples:
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Example 2. Let us consider the Legendre helix γ(s) = (0, s2 , 2) in (M,ϕ, ξ, η, g)
where ω1 = f = 0, ω2 = 2x and σ = 2z. Then M is a trans-Sasakian manifold of
type (−1

2z ,
1
2z ), that is,

α =
−1

2z
= −β.

It was shown that κ1 = κ2 = 1
4 (see [19]). Let us show that γ has C-proper mean

curvature vector field in the tangent and normal bundles. After direct calculations,
we obtain T = H2, ∇TT = −1

4 H3. Then we have ξ = H3 = −E2. Finally, we

get ∇TE2 = −1
4 T + 1

4H1. Hence E3 = H1. By the use of Theorems 4.3 and 4.4
respectively, we find that γ is a curve with C-proper mean curvature vector field
in the tangent bundle with λ = −1

32 and in the normal bundle with λ = −1
64 .

Furthermore, in [5], the authors proved that γ has proper mean curvature vector
field (in the tangent bundle) with λ = 1

8 .

Example 3. Let us choose ω1 = f = 0, ω2 = −y and σ = z. So α = 0 and
β = 1

2z . Thus M is a β-Kenmotsu manifold. Then γ(s) = (γ1(s), γ2(s), γ3(s)) is a
slant curve in M if and only if

(γ′1)2 + (γ′2)2 =
sin2 α0

γ3
,

−γ2γ
′
2 + γ′3 = cosα0.

Let us take γ(s) = (0, 23/4
√
s,
√

2s) in M . We find α0 = π
2 , that is, γ is a Legendre

curve. After some calculations, using Theorem 3.3, we find that γ is of osculating
order r = 2 and it has C-parallel mean curvature vector field in the normal bundle

with κ1 = β =
√

2
4s , ξ = −E2 and λ = −β′ =

√
2

4s2 . Moreover, γ has C-proper

mean curvature vector field in the normal bundle with λ = β′′ =
√

2
2s3 which verifies

Theorem 4.2.

Example 4. Let us choose ω1 = f = 0, ω2 = y and σ = z. Then α = 0 and
β = 1

2z . Hence M is a β-Kenmotsu manifold. Then γ(s) = (γ1(s), γ2(s), γ3(s)) is
a slant curve in M if and only if

(γ′1)2 + (γ′2)2 =
sin2 α0

γ3
,

γ2γ
′
2 + γ′3 = cosα0.

Let us consider the non-Legendre slant curve γ(s) = ( 4
10573/4

√
30s, 0,

√
7s

15 ) in M

with contact angle α0 = arccos(
√

7
15 ) = arcsin( 2

√
2

15 ). After some straightforward
calculations, using Theorem 4.1 ii), we find that γ has C-proper mean curvature
vector field (in the tangent bundle) with

κ1 =

√
14

7s
,

ξ =

√
7

15
E1 −

2
√

2

15
E2,
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β =
15
√

7

14s
,

and

λ =
−90
√

7

49s3
.

It is easy to check that κ1 satisfies

κ′′1 − κ3
1 = −3κ′1κ1 tanα0.
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