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Abstract

This paper presents a novel speed control scheme of an induction motor using genetic-fuzzy logic. The aim of this paper is to improve
a new method of the optimal tuning of proportional integral controller coefficients in the off-line control of a induction motor.

The V/f control, which realizes a low cost and simple design, is advantageous in the middle to high-speed range. Its torque response
depends on the electrical time constant of the motor and adjustments of the control parameters are not need. Therefore, V/f control of
induction motor is carried out. Space vector pulse width modulation with V/f is used for controlling the motor. Because, it includes min-
imum harmonics according to the other PWM techniques. In this paper, the first step is the identification of the system via fuzzy logic,
using performance value (1/(1 + maximum overshoot and settling time)) obtained from the application circuit for different Kp–Ki pairs.
In the second step, the purpose is to find the optimum controller coefficients using the fuzzy model as the objective function via genetic
algorithms. A digital signal processor controller (dsPIC30F6010) was used to carry out control applications. Then, the proposed method
is compared with Ziegler–Nichols method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The benefits of squirrel-cage induction motors-high
robustness and low maintenance make it widely used
through various industrial modern processes, with growing
economical and performing demands.

The V/f control, which realizes a low cost and simple
design, is advantageous in the middle to high-speed range.
Its torque response depends on the electrical time constant
of the motor and adjustments of the control parameters are
not need. V/f control is the best choice for simple variable
speed applications like fans, pumps and it is control more
effective in the high-speed range (Itoh, Nomura, & Ohs-
awa, 2002).
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The motor control issues are traditionally handled by
fixed gain proportional integral (PI) and proportional inte-
gral derivative (PID) controllers. However, the fixed gain
controllers are very sensitivity to parameter variations,
load disturbances, etc. So, the controller parameters have
to be continually adapted. The problem can be solved by
several adaptive control techniques such as model reference
adaptive control (Sugimoto & Tamai, 1987), sliding mode
control (Won & Bose, 1992), variable structure control
(Chem & Wu, 1991) and self tuning PI controllers (Hung,
1994), etc. The design of all of the above controllers
depends on the exact system mathematical model. How-
ever, it is often difficult to develop an accurate system
mathematical model due to unknown load variation,
unknown and unavoidable parameter variations due to sat-
uration, temperature variations and system disturbances
(Uddin, Radwan, & Rahman, 1987).

In high performance applications, it is useful automati-
cally extract the complex relations that represent the drive
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behavior. The use of learning through example algorithms
can be a powerful toll for automatic modeling variable
speed drives (Maia, Branco, & Dente, 1994). They can auto-
matically extract a functional relationship representative of
the drive behavior. These methods present some advantages
over the classical ones since they do not rely on the precise
knowledge of mathematical models and parameters. On the
other hand, electromechanical systems usually present
internal nonlinearities and parameter deviation, which are
difficult to model (Cardoso, Martins, & Pires, 1998).

PI controller is unquestionably the most commonly used
control algorithm the process control industry (Yamamoto
& Hashimoto, 1991). The main reason is its relatively simple
structure, which can be easily understood and implemented
in practice, and that many sophisticated control strategies,
such as model predictive control, are based on it. In spite
of its wide spread use there exists no generally accepted
design method for the controller (Wang & Shao, 2000).

Most industrial processes exhibit nonlinear dynamics,
and this places additional complexity on the modeling pro-
cedure used. In practice, many nonlinear processes are
approximated by reduced order models, possibly linear,
which are clearly related to the underlying process charac-
teristics. However, these models may only be valid within
certain specific operating ranges. When operating condi-
tions change, a different model may be required to be used
or the model parameters may need to be adapted.

System model is necessary for tuning controller coeffi-
cients in an appropriate manner (e.g., percent overshoot,
settling time). Because of neglecting some parameters, the
mathematical model cannot represent the physical system
exactly in most applications. That’s why, controller coeffi-
cients cannot be tuned appropriately.

Many of the recent developed computer control tech-
niques are grouped into a research area called Intelligent
Control, that result from the integration of fuzzy-logic
techniques within automatic control systems.

The tuning of electric drive controller is a complex prob-
lem due to the many non-linearities of the machines, power
converter and controller. Therefore, system model is
obtained by using the fuzzy logic. The fuzzy logic is
explained the next section.

2. Fuzzy logic

There is a currently a significant and growing interest in
the application of artificial intelligence (AI) type models to
the problem of modeling the dynamics of complex, nonlin-
ear processes. By far the most popular type of AI model
for these purposes has been the neural network, which
attempts to produce ‘intelligent’ behavior by recreating
the hardware involved in the thinking process. Another
type of AI model is the fuzzy model, which defines its
inputs and outputs as qualitative values (actually fuzzy ref-
erence sets) and then defines the strength of the relation-
ships between these input and output reference sets
(Saleem & Poslethwaite, 1994).
The big disadvantage of rule-based systems for dynamic
modeling purposes is that the set of rules have to be formu-
lated by one or more experts on the process behavior. The
procedure which has to be gone through to obtain and
rationalize these rules is rather complicated, time-consum-
ing, and, since it involves several people with knowledge at
a high technical level, rather expensive.

Unlike analytical models the fuzzy-logic model is simple,
and hence computationally efficient, and at the same time,
as will be illustrated for the induction motor. The fuzzy-
logic model can represent complex phenomena of the sys-
tem behavior more precisely. Moreover, since the model
is obtained directly from the input–output data, there is
no need to identify the internal system parameters in order
to construct the model (Emami, Goldenberg, & Turksen,
2000).
2.1. Fuzzy variables

To obtain good model results, it is necessary to use he
appropriate number of fuzzy variables and to formulate
the appropriate model rules. In this study, we use the fun-
damental seven kinds of fuzzy variables as follows:

NL: Negative large
NM: Negative medium
NS: Negative small
ZE: Approximately zero
PL: Positive large
PM: Positive medium
PM: Positive small

The model rules for the fuzzy logic can be described by
language using the input variables Kp and Ki, and the out-
put variable, 1/(M0 + Ts + 1). The ith model rule can be
usually written as

Rule i: if Kp is Fi and Ki is Gi then 1/(M0 + Ts + 1) is Hi

where Fi, Gi, and Hi are fuzzy variables.
In general, it is difficult to formulate control rules for

unknown system. However, We already know the system
and can predict a step response of the motor speed. There-
fore, it is comparatively easy to formulate model rules.

To formulate model rules, it is necessary to examine the
condition at each characteristic point and to consider the
relation among Kp, Ki, and 1/(M0 + Ts + 1) so as to bring
the step response close to the set speed value (Mazaki &
Sugeno, 1984; Miki, Nagai, Nishiyama, & Yamada,
1991). Finally, we can formulate model rules as shown in
Table 1. Obviously from this table, fuzzy-logic model is
composed of 29 control rules.

The fuzzy inference performs an important role in the
fuzzy control, and the inference method used is basic and
simple. As written previously, the model rules are described
as follows:



Table 1
Model rules

Ki Kp

NL NM NS ZE PS PM PL

NL NL NS NM NL NL
NM NL PL NS NM NL
NS PL NS NM NL NL
ZE PL NS NM NL NL
PS NS
PM NL PL NM NL
PL NL NM NL NL
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Rule i: if Kp is Fi and Ki is Gi then 1/(M0 + Ts + 1) is Hi

kp 2 Kp, ki 2 Ki, 1/(m0 + ts + 1) 2 1/(M0 + Ts + 1), i =
1,2, . . ., 29

where kp and ki are numerical values of input variables
and 1/(m0 + ts + 1) is the numerical values of an output
variables. Fuzzy relation, R, is formed by the union of all
rules as follows:

R ¼ [
29

i¼1

If the model conditions, F0 and G0, are given as
inputs, the model output, H0, can be obtained by H0 =
R0(F0xG0). Fuzzy model membership functions are given
in Fig. 1.

Many defuzzifiers have been presented in fuzzy-logic
literature (Mazaki & Sugeno, 1984); however, there is no
scientific or mathematical base for the preference of any
of them. Consequently, defuzzificiation is considered as
an art rather than simplicity. The most popular defuzzifica-
tion method is the centroid method where

Y mean ¼
Z

Y lBðyÞdy
� �Z

lBðyiÞdy
�

μ

1      NL      NM   NS ZE     PS

μ

1      NL      NM   NS ZE     PS

μ

   1                NL        NM         NS        ZE   

      3   3.25    3.5   4.25     5 

0.1   0.39   0.53  0.67   0.8

           0.00139 0.00332   0.00414  0.0050

Fig. 1. Shape of membership functions for fuzzy mod
The centroid defuzzifier can be interpreted as a condi-
tional expectation in probability distribution. However it
since singleton output sets are used, a very simple defuzzifi-
cation using the computed average moment is used
(Mohamed & Hew, 2000). In this work, the centroid
method was used.

3. Experimental setup

The experimental setup consisted of a motor and gener-
ator that was connected to it by a connecting element. The
motor used was a 1.5 kW, 3.8 A, 50 Hz, cosu = 0.82, three
phase squirrel-cage induction motor. The processor used in
this work was a 10 MHz dsPIC30F6010 digital signal pro-
cessor controller (DSP). The processor communicated with
the PC via USB port. The block diagram of this applica-
tion circuit is shown in Fig. 2. The stator voltage and fre-
quency were adjusted using a Space Vector PWM
(SVPWM) technique.

Error is calculated from difference between reference
speed and actual speed taken from incremental encoder.
Then, PI generates new control data according to this
error. Amplitude and speed values are generated using
the control data compared with V/f rate. Required values
for PWM output of the DSP controller are calculated by
using two values (amplitude and speed) and SVPWM
technique. PWM time base is 125 ls for this application.
The control loop is carried out once during each ten
PWM time base. Dead time is formed by the controller.
The value of dead time determined by a register is taken
7 ls.

The DSP controller program for the control process was
written in dsPIC30F6010 assembly language and C30 lan-
guage. Controlling and compiling process were performed
by a compiler program. The experimental setup is shown
in Fig. 3.
    PM       PL 

    PM       PL 

       PS          PM           PL 

   5.75   6.5         Kp

1  0.96   1.1        Ki

6   0.00598  0.00690   0.00782       f 

el: (a) first input, (b) second input and (c) output.
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Fig. 2. The block diagram of the application circuit.

Fig. 3. The experimental setup.

Table 2
Data used for the fuzzy model

Data set Kp Ki f = 1/(1 + M0 (rpm) + Ts (ms))

1 3 1 0.00177
2 3 0.3 0.00168
3 3.25 1.1 0.00185
4 3.5 1.1 0.00185
5 3.5 0.1 0.00175
6 3.5 0.3 0.0074
7 3.5 0.5 0.00781
8 3.5 0.7 0.00752
9 3.5 0.9 0.0042

10 4.25 0.1 0.0042
. . . .
. . . .
28 6.5 0.9 0.00141
29 6.5 1.1 0.00139

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of reference sets

F
it

n
es

s 
va

lu
es

 

Actual output

Fuzzy output

Fig. 4. The change in the real system output and fuzzy model output.
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4. Modeling of the induction motor using the fuzzy logic

Fuzzy logic is recently finding increasing applications
that include management, economics, medicine and
recently in closed loop operation of variable speed drives.
The objective of the fuzzy control is to design a system with
acceptable performance characteristics over a wide range of
uncertainty (Miki, Nagai, Nishiyama, & Yamada, 1992;
Sing, Swamy, Singh, Chadra, & Al-Haddad, 1995). The
fuzzy control is basically nonlinear and adoptive in nature,
giving robust performance in the face of parameter varia-
tion and load disturbance effects. Many researches (Cerr-
uto, Consoli, Raciti, & Testo, 1997; Miki et al., 1992;
Sing et al., 1995) have reported that the fuzzy-logic control
yields results which are superior to those obtained using
conventional control algorithms.

Fuzzy model show great potential for modeling poorly
understood and highly nonlinear systems. Fuzzy models
attempt to capture relationships between qualitative states
and therefore represent the type of qualitative models used
in everyday commonsense reasoning.

The control algorithm is based on the model of induc-
tion motor. The distinct advantage of the proposed method
lies in its insensitivity to motor parameter variations.

Fuzzy sets provide an appropriate means to define oper-
ating regions. Takagi and Sugeno (1985) proposed a fuzzy
modeling approach to model nonlinear systems. In their
approach, the input space of a nonlinear system is divided
into several fuzzy regions, and a local linear model is used
in each region.

In this study, fuzzy sets are obtained using M0 and Ts.
The fuzzy rules are determined from fitness function, f, in
Eq. (1)

f ¼ 1

ðM0 þ T s þ 1Þ ð1Þ
The obtained value from the Eq. (1) is taken as a fuzzy
output. As shown in Table 1, 29 rules are obtained using
this method. Data used for fuzzy model are given in Table
2. The obtained results are shown in Fig. 4. As shown



Table 3
Fitness values of the members, and GA parameters in the first generation

Parameter Value

Population size 30
Crossover operator 0.90
Mutation size 0.80
Fitness of member 1 0.00751
Fitness of member 2 0.00742
Fitness of member 3 0.00721
Fitness of member 4 0.00721
Fitness of member 5 0.0068
Fitness of member 6 0.0067
Fitness of member 7 0.0060
Fitness of member 8 0.0050
Fitness of member 9 0.0050
Fitness of member 10 0.0047

Fig. 5. The flow chart of the GA.
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Fig. 4, there are small differences between the actual values
and fuzzy output values. This also shows that the fuzzy
model approach to model nonlinear system is very good.

5. Optimization of PI coefficients using GA

GAs are based on an analogy to the genetic code in our
own DNA (deoxyribonucleic acid) structure, where its
coded chromosome is composed of many genes (Goldberg,
1989; NgY & Li, 1995). GA approach involves a popula-
tion of individuals represented by strings of characters or
digits. Each string is, however, coded with a search point
in the hyper search-space. From the evolutionary theory,
only the most suited individuals in the population are likely
to survive and generate off-spring that passes their genetic
material to the next generation.

The GA is a subset of evolutionary algorithms that
model biological processes to optimize highly complex cost
functions. A genetic algorithm allows a population com-
posed of many individuals to evolve under specified selec-
tion rules to a state that maximizes the ‘‘fitness’’ (i.e.,
minimizes the cost function). Some of the advantages of
a genetic algorithm include that it

• Optimizes with continuous or discrete parameters,
• Does not require derivative information,
• Simultaneously searches from a wide sampling of the

cost surface,
• Deals with a large number of parameters,
• Is well suited for parallel computers,
• Optimizes parameters with extremely complex cost sur-

faces; they can jump out of a local minimum,
• Provides a list of optimum parameters, not just a single

solution,
• May encode the parameters so that the optimization is

done with the encoded parameters, and
• Works with numerically generated data, experimental

data, or analytical functions (Randy & Haupt, 1998).

In general GAs run repeatedly by using three basic oper-
ators such as reproduction, crossover and mutation, to find
the best parameters in the whole parameter searching
space. GAs are global numerical optimization methods,
patterned after the natural processes of genetic recombina-
tion and evolution.

The GA used in this paper known as the simple genetic
algorithm. In the algorithm, the three-operator GA with
only minor deviations from the original is used (Dimeo &
Lee, 1995).

Different crossover and mutation rates are used for pro-
cessing of optimization of genetic algorithms. Ten of the
fitness values obtained, listed from the largest fitness value
to the smallest, and the fitness values of the members of the
first generation are shown in Table 3. The flow chart of the
GA is shown in Fig. 5 (Ustun & Demirtas, 2005).

A PI controller with the transfer function GcðsÞ ¼
Kp þ Ki

s is employed to control the process.
The optimum values for the Kp and Ki pairs were
obtained using a computer program written in C++ lan-
guage for the GA. This process executes with three different
operators at bit level. Twenty nine of the Kp and Ki pairs
were determined at random. Kp and Ki consisted of 15 bits
and 12 bits, respectively. These Kp and Ki pairs were
entered to fuzzy-logic model as input. The fitness values
were obtained from the fuzzy output. These values were
then used as the fitness function.

The one-point crossover method was used on the cross-
over operator. Mutual parameters of two random members
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on the crossover were divided into two parts and their posi-
tions were changed. A random bit of a random number on
the mutation process was changed 0 to 1 and 1 to 0. For the
optimization process, mutation rate is increased when con-
verge occurs in 5–10 generation. Therefore, early converge
is prevented, and in addition, members that have high-
fitness values were obtained.

The range of Kp and Ki values chosen lay between
(3–6.5) and (0.1–1.1) respectively. The fitness function is
defined as

f ¼ 1

M0 þ T s þ 1

In this algorithm, the genetic algorithm parameters are se-
lected for the training cycles were:

Population size: 30
Number of generations: 60
Crossover rate: 0.80
Mutation rate: 0.20
Chromosome length: 27 bits (15 bits for Kp and 12 bits
for Ki)
6. Results and discussion

A model-based control structure is suggested that
includes the fuzzy-logic dynamics model of the system.
The fuzzy-logic model is systematically constructed from
the input–output data.

The modeling method was tested using the induction
motor data. This data consists of 29 samples of data. Each
sample contains Kp, Ki inputs and M0, Ts outputs. During
this work the only the first 29 samples of data were used to
identify the model. A program written in C++ language
was used to generate the fuzzy model.

The optimum PI coefficients by using Ziegler–Nichols
method were found to be: Kp = 4.5, Ki = 0.9. The optimum
PI coefficients by using the genetic-fuzzy method were
found to be: Kp = 3.8, Ki = 0.6 (generation number: 20).
Optimal fitness value was not change after generation 20.
Therefore, optimal Kp and Ki value are taken for genera-
tion number 20.
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Fig. 6. The speed response.
The responses of the system for these values of Kp and Ki

are shown in Fig. 6. The settling time is shorter and the
maximum overshoot is minimized for these values. This
shows that full system is a good control system.

The fuzzy model follows the system output, with a small
error that arises from differences between experimental con-
ditions and the model of the nonlinear system. It shows that
the fuzzy model created for the system models it successfully.

The identification process is very fast and transparent,
and this means that alternative model structures and refer-
ence set arrangements can be screened very quickly.

The experimental studies demonstrates the superior per-
formance of fuzzy control, because it inherently adaptive in
nature. The instant variations of the motor currents and
the developed torque provide fast response of the drive sys-
tem making it suitable for a number of applications such a
machine tool, robotics and servo drives.

7. Conclusion

This paper describes and compares the genetic-fuzzy
method with maximum efficiency and Ziegler–Nichols
method. The optimal PI coefficients design method that
achieves high performance for induction motor using
genetic-fuzzy was proposed. Actual system (motor and
controller) was modelled by fuzzy logic. It was also deter-
mined that the maximum overshoot and settling time are
very small if the system is controlled by control parameters
obtained from the optimization process which uses GA.

The results presented show that the fuzzy logic are able
to produce accurate dynamic models of process response
directly from I/O data (I: Kp–Ki, O: M0–Ts), and GA is
suitable for optimization of controller coefficients by the
performance criteria considered.

This process can be also applied for nonlinear systems
controlled by PD and PID controller, or a number of appli-
cations such a machine tool, robotics and servo drives.
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