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Abstract. Altitude training is frequently used by athletes to improve sea-level performance. However, the objective benefits10

of altitude training are controversial. This study aimed to investigate the possible alterations in hemorheological parameters in11

response to altitude training. Sprague Dawley rats, were divided into 6 groups: live low-train low (LLTL), live high–train high12

(LHTH), live high-train low (LHTL) and their controls live high and low (LHALC), live high (LHC), live low (LLC). LHC and13

LHTH groups were exposed to hypoxia (15% O2, altitudes of 3000 m), 4 weeks. LHALC and LHTL were exposed to 12 hours14

hypoxia/normoxia per day, 4 weeks. Hypoxia was maintained by a hypoxic tent. The training protocol corresponded to 60–70%15

of maximal exercise capacity. Rats of training groups ran on treadmill for 20–30 min/day, 4 days/week, 4 weeks. Erythrocyte16

deformability of LHC group was increased compared to LHALC and LLC. Deformability of LHTH group was higher than17

LHALC and LLTL groups. No statistically significant alteration in erythrocyte aggregation parameters was observed. There18

were no significant relationships between RBC deformability and exercise performance. The results of this study show that,19

living (LHC) and training at altitude (LHTH) seems more advantageous in hemorheological point of view.20

Keywords: Altitude training, exercise, RBC deformability, erythrocyte aggregation21

1. Introduction21

Living at “high” altitude (above 2500 m) and training at “low” altitude (below 1500 m) (“live high-train22

low,” LHTL) has become a popular strategy for elite endurance athletes in recent years with the expectation23

that sea-level performance may be improved [28, 29, 31, 49]. Chronic exposure to hypobaric hypoxia24

is known to stimulate various physiological adaptations such as, loss of body weight [4], increment of25

capillary density [17], enhancement in hemoglobin (Hb), hematocrit (Hct) and red cell volume (RCV)26

[29, 36]. Increment in Hb and Hct may be considered as the most important adaptations, raising the27

∗Corresponding author: Melek Bor-Kucukatay, Faculty of Medicine, Department of Physiology, Pamukkale University,
Kinikli, 20070 Denizli, Turkey. Tel.: +90 258 296 17 00; Fax: +90 258 296 24 33; E-mails: drzmbk@yahoo.com, mbor@
pau.edu.tr; colak.ridvan@gmail.com (Ridvan Colak); gulemmun@gmail.com (Gülten Erken); pt emine@yahoo.com (Emine
Kilic-Toprak); vkucukatay@pau.edu.tr (Vural Kucukatay).
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oxygen-carrying capacity of the blood and thus leading an improvement in low-altitude performance [27].28

Therefore, the LHTL concept has been suggested to be superior to normal sea-level training or classical29

live high-train high (LHTH) altitude training since living at high altitude brings various physiological30

advantages and training at low altitude avoids hypoxic disorders and allows working with high intensity31

[36, 49]. On the other hand, the objective beneficial effects of LHTL are still controversial, since some32

studies previously made did not find any improvement either in performance or red blood cell (RBC)33

mass [1, 13, 28, 30].34

It is well known that blood flow in skeletal muscles is closely related to oxygen demand [21, 40]. Any35

alterations in RBC structural and mechanical properties may affect oxygen transfer to the actively used36

tissues, influencing athletic performance [3, 5, 7–9, 19, 39, 42]. Deformability of RBCs is one of the key37

factors in the perfusion of capillaries, whereas RBC aggregation affects the fluidity of blood in larger38

blood vessels where the shear rate is low enough to allow RBC to aggregate, such as in veins [6, 20, 22,39

35, 41, 47, 51]. Studies investigating RBC deformability and erythrocyte aggregation in hypoxia found40

conflicting results depending on the duration of hypoxic exposure, the methods used to obtain hypoxia and41

determine RBC deformability and erythrocyte aggregation [18, 23, 38, 46, 52]. Additionally, although42

a limited number of studies in the literature have shown that RBC deformability is modified by altitude43

training, these studies were performed in 2 groups: hypoxic and normoxic exercise training groups [12,44

34]. As far as we know, no study has been conducted to observe alterations in hemorheological parameters45

at different altitude training approaches such as LHTL, LHTH and live low-train low (LLTL).46

In the light of above knowledge, the goal of this study was to investigate and compare the possible47

changes in RBC deformability and aggregation as well as hematological parameters at different altitude48

training approaches (LHTL, LHTH and LLTL), further providing a feasible strategy for developing an49

appropriate exercise regimen that minimizes the risk of hemorheological disorders.50

2. Materials and methods51

2.1. Animal model52

This study was conducted in Pamukkale University Experimental Animal Unit. 37 adult male Sprague53

Dawley rats, weighing 200–250 g, were used. Eight-week-old rats were pre-selected by their ability to run54

on a motorized treadmill (MAY-TME 9805, Commat, Ankara, Turkey); at 0.3 km/h up to 0.5 km/h, 0%55

grade, 10 min/day, for 4–5 days [26]. The pre-selected animals were then randomly assigned to exercise56

trained or sedentary groups. Each group was further divided into three subgroups (n ∼= 6 in each): Live57

high and low control (LHALC), Live high control (LHC), Live low control (LLC) for control groups and58

Live high train low (LHTL), Live high train high (LHTH), live low train low (LLTL) for training groups.59

Normobaric hypoxia was obtained by using a hypoxic tent (Altitude Tech. Co., Canada; altitudes60

of 3000 m, 15% O2). In each chamber, O2 and CO2 levels, humidity and temperature conditions were61

continuously estimated by using electronic sensors. Normoxic environment was supplied with room62

air (20.9% O2) at the ∼350 m altitude in which the laboratory exist. LHTH groups were exposed to63

hypoxia for 24 hours, LHTL were exposed to 12 hours hypoxia/normoxia per day while LLTL groups64

were exposed to normoxia for 24 hours, for 4 weeks. The control groups were exposed to hypoxia and65

normoxia at the same period of time with their own training groups.66

All rats were maintained at 23◦C under a light/dark cycle of 12 h/12h. Rat chow and tap water were67

provided ad libitum. Two days after the end of the 4 week training programme, the rats were anaesthetized68

Pau
Yapışkan Not
We suggest the running head to be changed as "Altitude training induced rheological alterations" since this one reflects the study better.
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in normoxia with intraperitoneal ketamine (50 to 75 mg/kg) and xylazine (10 to 15 mg/kg) and blood69

samples anticoagulated with heparin (15 IU/ml) were quickly taken from the abdominal aorta of rats.70

The animals where then sacrificed under anesthesia. All procedures were performed in agreement with71

the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health72

(NIH Publications No. 85-23, revised 1996) and with the approval of the Pamukkale University Ethics73

Committee of Animal Care and Usage.74

2.1.1. Exercise training protocol75

All rats in the training groups (LHTL, LHTH and LLTL) were given familiarization training for 4 weeks,76

15–30 minutes per day at the environment in which the laboratory exists (Denizli/Turkey, ∼350 m) to77

ensure them to be trained at the same level. At the end of this first training period all rats had been trained78

for 30 minutes to be able to run 1.5 km/h. In order to supervise training intensities that will be applied for79

the following 4 weeks with precision, maximal aerobic velocity (MAV) was evaluated for the training80

groups two days after the resting period. Both MAV obtained in normoxia and hypoxia were estimated81

using a treadmill during a continuous and progressive maximal exercise test. Under normobaric hypoxia82

(∼3000 m, 15% O2, LHTH group), the treadmill was set at a speed of 0.3 km/h at grade of 0% after83

which the speed was increased by 0.3 km/h every 3 min until the maximal intensity was attained for each84

rat until the rat could not maintain its running position. MAV in normoxia (∼350 m, %20.9 O2, LLTL85

and LHTL) was evaluated using the same protocol, but with a starting speed of 0.6 km/h [11, 26]. The86

training sessions were conducted for 4–5 days per week, at the running speeds equal to 60% of MAV87

for 20 min in the first week, 65% of MAV for 25 min in the second week and 70% of MAV for 30 min88

in third and 35 min in the fourth weeks. At the exercise training protocol, (MAV) was evaluated for the89

training groups two days after the resting period. An outline of the study design is shown in Fig. 1.90

Blood anticoagulated with heparin (15 IU/ml) was collected from all experimental groups for the91

determination of hemorheological (RBC deformability and aggregation) and hematological parameters92

was used within 3 hours.93

Fig. 1. Experimental design of the study.
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2.2. Determination of hematological parameters94

RBC count, Hb and Hct were determined using an electronic hematology analyzer (Cell-Dyn 3700,95

Illinois, USA).96

2.3. RBC deformability measurements97

RBC deformability (i.e., the ability of the entire cell to adopt a new configuration when subjected to98

applied mechanical forces) was determined by laser diffraction analysis using an ektacytometer (LORCA,99

RR Mechatronics; Hoorn, The Netherlands). The system has been described elsewhere in detail [2, 16].100

Briefly, a low Hct suspension of RBC in 4% polyvinylpyrrolidone 360 solution (MW 360 kD, Sigma101

P 5288, ST. LOUIS, MI) was sheared in a Couette system composed of a glass cup and a precisely102

fitting bob. A laser beam was directed through the sheared sample, and the diffraction pattern produced103

by the deformed cells was analyzed by a microcomputer. On the basis of the geometry of the elliptical104

diffraction pattern, an elongation index (EI) was calculated for 9 shear stresses between 0.3 and 30105

Pascal (Pa) as: EI = (L−W)/(L + W), where L and W are the length and width of the diffraction pattern,106

respectively. An increased EI at a given shear stress indicates greater cell deformation and hence greater107

RBC deformability. All measurements were carried out at 37◦C.108

2.4. Assessment of RBC aggregation109

RBC aggregation was also determined by LORCA as described elsewhere [15]. The measurement is110

based on the detection of laser back-scattering from the sheared (disaggregated), then unsheared (aggre-111

gating) blood, performed in a computer-assisted system at 37◦C. Back-scattering data were evaluated by112

the computer and the aggregation index (AI), aggregation half time (t 1/2) which shows the kinetics of113

aggregation and the amplitude (AMP) which is a measure for the total extent of aggregation were calcu-114

lated on the basis that there is less light back-scattered from aggregating red cells. The hematocrit (Hct)115

of the samples used for aggregation measurements was adjusted to 40% and blood was fully oxygenated.116

2.5. Statistical analysis117

Results were expressed as means ± standard error (SE). Statistical comparisons among groups were118

done by “one way ANOVA” and Post hoc comparisons of the means were carried out using the LSD post119

test, with p values <0.05 accepted as statistically significant. Pearson correlation coefficient was performed120

between EI values measured at 0.53 Pa and physical performance of training groups. All analyses were121

carried out with the computerized SPSS 10.0 program (Statistical Package for Social Sciences, SPSS122

Inc).123

3. Results124

Exercise indexes of training groups are demonstrated in Table 1. Although no differences existed at the125

beginning of the study between groups for running speed, the latter increased significantly in only LHTL126

group (p < 0.01). The maximal speed reached was 20.57% higher for LHTL group, 5.40% for LHTH and127

3.47% for LLTL group when compared to the speed observed in the first test. The posttest running speed128
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Table 1

Indexes of exercise of training groups. Values are expressed as means ± SE

Groups Pretest Posttest
running speed (km/h) running speed (km/h)

LHTL 2.40 ± 0.093 2.87 ± 0.03 /=

LHTH 2.45 ± 0.092 2.58 ± 0.12∗

LLTL 2.45 ± 0.050 2.53 ± 0.12∗

LHTL: Live high train low; LHTH: Live high train high; LLTL: live low train low.
∗:p < 0.05 difference from posttest of LHTL group. /=:p < 0.001 from pretest of LHTL
group.

Table 2

Hematological parameters of control and training groups. Values are expressed as means ± SE

LHALC LHC LLC LHTL LHTH LLTL

RBC count (106/�L) 9.53 ± 0.78 9.97 ± 0.26 9.19 ± 0.50 9.60 ± 0.31 9.40 ± 0.61 9.20 ± 0.33
Hb (g/dL) 15.88 ± 0.67 16.48 ± 0.35 14.37 ± 0.49Ø 15.73 ± 0.45 16.43 ± 0.90 14.91 ± 0.45
Hct (%) 80.14 ± 6.36 84.50 ± 1.73 48.53 ± 2.79∗,£,� 78.87 ± 2.53 80.33 ± 3.84 80.15 ± 2.20

RBC, Red blood cell; Hb, hemoglobin; Hct, hematoctit; LHALC: Live high and low control; LHC: Live high control; LLC: Live
low control; LHTL: Live high train low; LHTH: Live high train high; LLTL: live low train low. ∗:p < 0.001 difference from group
LHALC; £:p < 0.001 difference from group LHC; Ø:p < 0.05 difference from group LHALC and LHC; �:p < 0.001 difference
from group LLTL.

reached by LHTH and LLTL groups was significantly higher than LHTL group (p < 0.05). Table 2 shows129

hematological parameters of the groups. Hb value of the LLC group was significantly lower compared130

to LHALC and LHC (p < 0.05) and Hct of this group was decreased compared to groups LHALC, LHC,131

LLTL (p < 0.001).132

RBC deformability (i.e., the elongation index EI) for the RBCs of all experimental groups was mea-133

sured at 9 shear stresses between 0.3 and 30 Pa and presented in Table 3. RBC deformability of the control134

of live high (LHC) group measured at 0.53, 0.95 and 1.69 Pa were higher than control of live high and low135

(LHALC; p < 0.05) and control of live low (LLC; p < 0.05) groups. On the other hand, although the differ-136

ence at RBC deformability between live high train high (LHTH) and live high train low (LHTL) groups137

was not statistically significant, erythrocyte deformability of the LHTH group was higher compared to138

live low trian low (LLTL) group (p < 0.05). Lastly mentioned alteration was statistically significant only139

at 0.53 Pa shear stress. The exercise protocols applied at different altitudes measured at 9 different shear140

stresses did not cause any statistically significant alteration in RBC deformability compared to their141

own controls (ie; LHTL group versus LHALC and LHC groups, LHTH group versus LHC and LHALC142

groups; LLTL group compared to LLC and LHALC groups) except LHTH group measured at 0.53 Pa.143

RBC deformability of LHTH group measured at 0.53 Pa shear stress was significantly higher compared144

to LHALC group (p < 0.05, data not shown). No statistically significant alterations among groups at RBC145

deformabilities measured below 0.53 Pa and above 1.69 Pa were observed. Pearson correlation coeffi-146

cient was performed between EI values measured at 0.53 Pa and posttest running speed of traning groups.147

No statistically significant relationship was observed (p > 0.05). The alterations observed in aggregation148

parameters were not statistically significant, as well (Table 4).149
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Table 3

Erythrocyte Elongation Index (EI) values of the groups. Values are expressed as means ± SE

LHALC LHC LLC LHTL LHTH LLTL

EI (0.30) 0.098 ± 0.006 0.108 ± 0.003 0.088 ± 0.003 0.097 ± 0.003 0.110 ± 0.003 0.081 ± 0.014
EI (0.53) 0.139 ± 0.006 0.158 ± 0.005∗,∗∗ 0.128 ± 0.006 0.143 ± 0.005 0.158 ± 0.005∗,∗∗∗ 0.137 ± 0.006
EI (0.95) 0.216 ± 0.008 0.236 ± 0.006∗,∗∗ 0.205 ± 0.006 0.223 ± 0.006 0.234 ± 0.005 0.213 ± 0.007
EI (1.69) 0.302 ± 0.007 0.323 ± 0.007∗,∗∗ 0.297 ± 0.007 0.314 ± 0.007 0.322 ± 0.006 0.302 ± 0.007
EI (3.00) 0.386 ± 0.006 0.403 ± 0.007 0.401 ± 0.007 0.401 ± 0.007 0.387 ± 0.006 0.386 ± 0.006
EI (5.33) 0.457 ± 0.005 0.440 ± 0.006 0.461 ± 0.005 0.472 ± 0.006 0.482 ± 0.140 0.436 ± 0.019
EI (9.49) 0.513 ± 0.005 0.518 ± 0.006 0.517 ± 0.005 0.523 ± 0.005 0.515 ± 0.006 0.510 ± 0.003
EI (16.87) 0.568 ± 0.019 0.558 ± 0.005 0.558 ± 0.005 0.562 ± 0.005 0.553 ± 0.005 0.530 ± 0.018
EI (30.00) 0.580 ± 0.005 0.591 ± 0.005 0.586 ± 0.007 0.596 ± 0.007 0.584 ± 0.005 0.577 ± 0.001

LHALC: Live high and low control; LHC: Live high control; LLC: Live low control. LHTL: Live high train low; LHTH: Live
high train high; LLTL: live low train low. ∗:p < 0.05 difference from group LHALC, ∗∗:p < 0.05 difference from group LLC,
∗∗∗:p < 0.05 difference from group LLTL.

Table 4

Erytrocyte aggregation parameters of control and training groups. Values are expressed as means ± SE

LHALC LHC LLC LHTL LHTH LLTL

AI (%) 63.57 ± 1.60 59.56 ± 1.87 61.52 ± 1.57 62.58 ± 2.21 59.38 ± 1.92 61.15 ± 4.05
t½ (s) 2.04 ± 0.12 2.45 ± 0.25 2.21 ± 0.14 2.19 ± 0.27 2.55 ± 0.28 2.49 ± 0.57
Amp (au) 17.19 ± 0.97 19.41 ± 2.42 20.04 ± 0.93 21.15 ± 1.04 17.60 ± 0.99 19.82 ± 1.68

AI, aggregation index; t½, aggregation half time; Amp, amplitude of aggregation. LHALC: Live high and low control; LHC:
Live high control; LLC: Live low control; LHTL: Live high train low; LHTH: Live high train high; LLTL: live low train low.

4. Discussion150

Effects of living and training at different altitudes on RBC deformability, aggregation and hematological151

parameters were investigated in the current study. Hb and Hct of groups living at altitude (LHALC and152

LHC) were higher, than the group living at ∼350 m altitude (LLC). Enhanced oxygen transport to tissues153

via increased number of RBC and Hb appears to be the dominant mechanism for adaptation to living at154

altitude. Distinct results in the literature were reported concerning hypoxia and altitude training induced155

alterations in hematological parameters depending on the type and duration of the exercise and hypoxia156

[10, 34], some of which are consistent with our results [13, 48, 50].157

The ability of the entire RBC to deform is of crucial importance for performing its function of oxygen158

delivery and it is also a determinant of the cell survival time in the circulation [45]. The results of the159

current study indicate that, RBC deformability of LHC group measured at 0.53, 0.95 and 1.69 Pa are160

increased compared to LHALC and LLC groups. RBC deformability of LHTH group measured at just161

0.53 Pa shear stress was found to be improved compared to LHALC and LLTL groups (Table 3). No162

other statistically significant alteration between the exercise groups and their controls were observed.163

Guezennec et al. investigated the effect of hypoxic exercise training on hemorheological regulation. They164

submitted human male subjects to two physical exercises of 1 hour cycling, at 70% of their VO2 max. One165

test was performed at sea level, the other at a simulated altitude of 3000 m in a hypobaric chamber. They166
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measured RBC deformability by filtration on polycarbonate membrane and found that RBC deformability167

decreased after exercise under hypoxic conditions but remained unchanged after the same exercise at sea168

level [12]. Similarly, in Mao TY et al.’s study sedantary males were trained on 60% of maximum work rate169

under 15% (hypoxic) or 21% (normoxic) O2 condition for 30 min/day, 5 days/week, 5 weeks. They have170

found that although hypoxic training for 5 weeks lowered RBC deformability, about of exercise test at171

hypoxic conditions and 4 weeks of exercise at normoxic conditions did not cause any significant changes172

in basal and Gardos channel-modulated RBC deformability measured by an ektacytometer (RheoScan-173

D system) [34]. To our knowledge, current study is the first one investigating the effects of living and174

training at different altitudes on RBC deformability. Our results demonstrating that, the training protocol175

corresponding to 60–70% of rat’s maximal exercise capacity for 20–30 min a day, 4 days a week, for 4176

weeks did not cause a significant alteration in RBC deformability measured by an ektacytometer etiher in177

hypoxic, or in normoxic, or hypoxic-normoxic conditions are consistent with at least a portion of previous178

observations summarized above.179

Effects of different types of hypoxia on RBC deformability has been studied. Exposure to acute hypoxia180

was generally shown to cause a decrement in RBC deformability [32, 33]. On the other hand, Yelmen181

et al. placed rats in a hypobaric chamber (430 mmHg; 5 hours/day, 5 days/week, 5 weeks) to obtain182

chronic long-term intermittent hypobaric hypoxia and demonstrated that erythrocyte rigidity index was183

unaltered after this exposure [52]. Similarly, Kaniewski et al. by using ektacytometry to measure RBC184

deformability have shown that deformability of human, cat, rat, rabbit and dog RBCs at lower shear185

stresses is unaltered by hypoxia [23]. Nie HJ et al. have exposed rats to hypoxia for 0,1,28 days by186

bleeding from their hearts and demonstrated that acute hypoxia induces a decrement in RBC deformability,187

while acclimatization to hypoxia causes increment of this parameter [38]. Rats were exposed to chronic188

normobaric hypoxia (4 weeks) using a hypoxic tent in the current study. Similar to the results of the189

above mentioned studies, RBC deformability of LHALC group in which rats were exposed to 12 hours190

hypoxia/normoxia per day was not different from LLC group which was obtained by exposing rats to191

normoxia for 24 hours. On the other hand, erythrocyte deformability of LHC group in which rats were192

exposed to chronic hypoxia for 24 hours during 4 weeks was increased compared to LHALC and LLC193

groups at 0.53–1.69 Pa.194

The results of the current study also show that, RBC deformability of individuals living and training195

at altitude (LHTH) is higher than individuals living and training close to sea level (∼350 m-LLTL) and196

living at altitude and training close to sea level (LHTL). It was demonstrated that, training under hypoxic197

conditions causes erythrocyte senescence and erythropoises accompanied by elevated erythropoietin198

(Epo) concentration has been found after both long-term high altitude exposure and training under hypoxic199

conditions [14, 34]. The influence of EPO on RBC deformability was analyzed recently [25, 43, 53].200

Although neither age distrubition of RBCs nor determination of EPO level were performed in the current201

study, when our data are evaluated together the increment in RBC deformability observed in both group202

LHC and LHTH may be explained as increased RBC turnover since young RBCs are known to deform203

more [40, 44]. The increments observed in RBC deformability in response to hypoxia may be considered as204

a favorable adaptation under hypoxic conditions at low shear stresses. However, the RBC deformability205

improvement observed during LHTH protocol was not accompanied by greater exercise performance206

which was determined as running speed (Table 1).207

Another hemorheological parameter determined in this study is the RBC aggregation which is a208

reversible process meaning a temporary linear or branched aggregate formation of the erythrocytes under209

critically low shear stress conditions [24]. As far as we know, our study is the first one in the literature210

exploring the effects of hypoxic exercise training on RBC aggregation. The results of the current study211

Pau
Yapışkan Not
[37, 40, 44]
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demonstrate that, living and training at neither hypoxic nor normoxic conditions induced statistically212

significant alterations in RBC aggregation parameters.213

In conclusion, the results of this study indicate that increased RBC deformability observed in living214

(LHC) and training (LHTH) at altitude groups may serve as a favorable adaptive mechanism to contribute215

blood flow in response to hypoxia at low shear stresses. At higher shear stresses (above 3.00 Pa) which are216

usually observed at the muscle tissue capillary level, this adaptive mechanism can not be observed. This217

difference may be due to the type, duration, intensity of the exercise applied. To our knowledge, the present218

study is the first one in the literature investigating the effects of living and training at different altitudes on219

hemorheological parameters. Further investigations will be necessary to clarify which exercise regimen220

is more effective and may be recommended to athletes for cardiovascular health and improving their221

athletic performance.222
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