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Optimal control of a linear time-invariant
space–time fractional diffusion process

Necati Özdemir and Derya Avcı

Abstract

This paper presents a formulation and numerical solutions of an optimal control problem of a linear time-invariant

space–time fractional diffusion equation. The main aim of this formulation is minimization of a performance index, which

is a functional of both state and control functions of the diffusion system. The dynamics of the system are defined by the

space–time fractional diffusion equation in the sense of Caputo and fractional Laplacian operators. The separation of

variables technique and a spectral representation of a fractional Laplacian operator are applied to determine the eigen-

functions that represent the space parameters. Therefore, the state and control functions are defined by linear infinite

combinations of eigenfunctions. Optimality conditions described by Euler–Lagrange equations are found by using a

Lagrange multiplier technique. The Grünwald–Letnikov definition is used to approximate to the time fractional deriva-

tive. The applicapability and effectiveness of the numerical scheme are shown by comparison of analytical and numerical

solutions for a numerical example. Finally, the variations of problem parameters are analyzed, with some figures obtained

using MATLAB.
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1. Introduction

Fractional calculus was born in 1965 when Leibniz and
L’Hospital had correspondence where they tried to find
the meaning of a derivative of order 1/2. It led to a para-
dox, from which one day useful consequences will be
drawn. After this date, many famous mathematicians,
including Laplace, Fourier, Abel, Liouville, Riemann,
Grünwald, Letnikov, Levy, Marchaud, Erdelyi and
Riesz, have been interested in this basic question and
related considerations. However, especially in recent
years, there has been growing interest in the applications
of fractional calculus in many areas of science, engineer-
ing, finance and mathematics (Debnath, 2003; Machado
et al., 2010, 2011). It has been recognized that many
physical systems should be modeled more accurately
by using fractional order operators than integer order
ones, i.e. many researchers have pointed out that frac-
tional derivatives and integrals are very suitable to define
the memory and hereditary properties of materials and
processes in the real physical world.

One of the application topics of fractional calculus is
modeling of dynamical systems and their optimal

control problems (OCPs), which are also considered in
the present paper. A system whose dynamics are
described by fractional differential equations is called a
fractional dynamical system. In addition, the OCP of
such systems is defined as a fractional optimal control
problem (FOCP). As the demand for an accurate defin-
ition of dynamical systems increases, research about for-
mulations and numerical solution schemes for FOCPs
also increases. Therefore, it can be seen from the litera-
ture that studies related to FOCPs have grown rapidly.

A FOCP is an OCP in which the performance index
and/or dynamic constraints of the system contain at
least one fractional order derivative term. The first for-
mulation and solution scheme for FOCP was studied
by Agrawal (2004). In this work, Agrawal defined the
general formulation in terms of the Riemann–Liouville
(RL) fractional derivatives and used an approximation
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based on variational virtual work coupled with the
Lagrange multiplier technique to find numerical solu-
tions of FOCPs.

In addition, the formulations of FOCPs are devel-
oped out of fractional variational calculus, which is
used to obtain Hamiltonian, Lagrangian and Euler–
Lagrange equations, and other notions for the mech-
anics of systems (Baleanu et al., 2008; Abdeljawad
et al., 2009; Jarad et al., 2010a,b).

A direct numerical technique using the Grünwald–
Letnikov (GL) definition was applied to obtain approxi-
mation of fractional derivatives that describe the
dynamics of the system by Agrawal and Baleanu
(2007). Baleanu et al. (2009) also proposed a modified
numerical scheme for a class of FOCPs that were for-
mulated by Agrawal (2004). Biswas and Sen (2011a) pre-
sented a direct numerical technique based on the GL
approximation for an OCP formulation and the solution
of a fractional order system using a pseudo-state-space
formulation. Frederico and Torres (2006, 2008a,b) used
Agrawal’s Euler–Lagrange equation and the Lagrange
multiplier technique to obtain a Noether-like theorem
for FOCPs in the terms of the Caputo fractional deriva-
tive and researched fractional conservation laws for
FOCPs. Agrawal (2008a) analyzed a FOCP for a type
of distributed system whose dynamics are defined in
terms of the Caputo fractional derivative and also used
eigenfunctions to define the problem in terms of a set of
state and control variables. The main advantage of this
consideration, which is also used for the present study, is
that the main FOCP reduces to a multiFOCPs that are
solved independently. Tangpong and Agrawal (2009)
extended the numerical scheme, which was used for the
scalar case in Agrawal (2008b), to the vector case, and
the formulation was used to solve a continuum FOCP
for different values of fractional order and different
space–time discretization. Tricaud and Chen (2010a)
introduced a formulation in which a rational approxi-
mation based on the Hankel data matrix of the impulse
response was considered for fractional time OCPs,
which are known as special classes of FOCPs. Tricaud
and Chen (2010b) also developed a method to find the
solution of FOCP by means of rational approximation,
and proved that their methodology could be applied any
type of FOCP such as linear/nonlinear, time-invariant/
time-variant, Single Input Single Output (SISO)/
Multiple Input Multiple Output (MIMO), state/input
constrained, free terminal conditions, etc. Recently,
Mophou and N’Guerekata (2011) considered OCPs of
a fractional diffusion equation with the state constraint
in a bounded domain. Dorville et al. (2011) studied an
OCP for a nonhomogeneous Dirichlet boundary frac-
tional diffusion equation. Yousefi et al. (2011) used
Legendre multiwavelets, together with the collocation
method to obtain the approximate solutions of FOCPs

and also validate the applicability of this technique by
using an illustrative example. Wang and Zhou (2011a)
researched the existence of mild solutions that are asso-
ciated with the probability density function and the
semigroup property for semilinear fractional evolution
equations and considered the Lagrange problem of such
systems. Wang and Zhou (2011b) also studied approxi-
mate solutions of time optimal control for fractional
evolution systems in Banach spaces using the method
of reducing the main problem to a sequence of Meyer
problems.

The above-mentioned studies are very constitutive
examples of one-dimensional (1D) FOCPs in
Cartesian coordinates, but there is certainly other
work about FOCPs for multidimensional cases and in
different coordinate systems. Özdemir et al. (2009a)
presented analytical and numerical solutions of
FOCPs for a distributed system in two-dimensional
Cartesian space and customized the main problem in
polar coordinates by Özdemir et al. (2009b). Moreover,
FOCPs were formulated in cylindrical coordinates by
Özdemir et al. (2009c).

In this work, we research the exact and numerical
solutions of such a FOCP that system dynamics are
defined by a space–time fractional differential equation
in terms of the Caputo and the fractional Laplacian
operators. The organization of this work is as follows.
In Section 2, we give some basic mathematical defin-
itions and relations that are necessary for our formula-
tion. In Section 3, we explain the general formulation of
a FOCP in the literature. In Section 4, we formulate our
main problem in terms of eigenfunctions obtained by a
spectral representation for fractional Laplacian oper-
ators, the Lagrange multiplier technique and calculus
of variations, and then find a set of time fractional dif-
ferential equations. In Section 5, we calculate the ana-
lytical solution for the order of time derivative �¼ 1. In
Section 6, we apply the GL approximation to fractional
differential equations obtained in Section 4. Moreover,
we show the physical behavior of our problem and
interpret the results for an initial condition function
by the help of figures in this section. Finally, we con-
clude our work.

2. Mathematical tools

We briefly give some basic definitions and mathematical
relations of fractional calculus that are necessary for our
formulation. In fractional calculus, there are different
definitions of the fractional derivative operators: RL,
Caputo, GL, Weyl, Marchaud, Riesz, etc. (Oldham
and Spanier, 1974; Miller and Ross, 1993; Samko
et al., 1993; Podlubny, 1999; Kilbas et al., 2006). It is
important that these operators are not separated from
each other. Note that there is muchmore work related to
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the mathematical relations of these operators. For
example, Ortigueira (2006, 2008) considered fractional
centered differences, which led to centered derivatives
similar to the GL derivatives, and proposed integral rep-
resentations for these differences that revealed the gen-
eralizations of Riesz potential operators.

In this study, we formulate our problem in terms of
the Caputo derivative and fractional Laplacian oper-
ators. From the physical and engineering point of
view, the Caputo definition for the time fractional
derivative is commonly preferred. This is because it is
well known that the Caputo derivative of a constant is
zero in every condition. It means that the Caputo def-
inition can give a physical interpretation to any prob-
lem formulation. However, it is not always possible to
say the same for the RL definition. This is because the
RL derivative of a constant is not zero every time. This
situation does not have a physical meaning in theory.
Nevertheless, it is possible to find many well-organized
works formulated in terms of the RL since this operator
has a good mathematical construction.

In the literature, one can find much work related to
space–time fractional diffusion equations. In these art-
icles, the authors define the time fractional derivative in
the sense of the RL and Caputo definitions. In addition,
the space derivative is considered in terms of Riesz,
Riesz–Feller and fractional Laplacian operators. A
large number of papers are related to the analytical
and numerical solutions of space–time fractional differ-
ential equations (Gorenflo et al., 1998; Ciesielski and
Leszczynski, 2003, 2005, 2006; Huang and Liu, 2005;
Ilic et al., 2005, 2006; Yang et al., 2009, 2010; Özdemir
et al., 2011; Shen et al., 2011). For example, the Laplace
and the Fourier transform methods are often used to
find the exact solutions (see Povstenko (2011)). In add-
ition, numerical techniques such as finite difference
approximations, and matrix transform methods are
numerous. For the space derivative term, it is important
that some papers in the literature show the equivalence
between the fractional Laplacian and Riesz operators
in the infinite domain and the 1D case. However, in
multidimensional spaces and different coordinate sys-
tems, one cannot have such a kind of relationship. For
example, fractional Laplacian operators have invariant
properties similar to standard Laplacian operators, and
so it is possible to define this operator in different curvi-
linear coordinate systems. In addition, the eigenfunc-
tion expansion method can be applied to fractional
differential equations in terms of fractional Laplacian
operators. However, the Riesz and Riesz–Feller oper-
ators do not have invariant properties and so we cannot
define these terms in different coordinate systems, such
as cylindrical, spherical, polar, etc. The foundation of
eigenfunctions of these operators is still an open prob-
lem in fractional calculus literature.

In this work, we define the space term in the sense of
a fractional Laplacian operator in one dimension and
in a finite domain. It allows us to use the eigenfunctions
throughout the problem formulation. To obtain the
numerical solutions, we first take into account the
basic relationship between the RL and the Caputo
derivatives, then we approximate the Caputo term
with the GL definition.

The basic definitions and relations of our work are
as follows.

Definition 1. The operator 0D
�
1 Caputo fractional deriva-

tive of order � (n� 1<�� n) is defined as

0D
�
1f

� �
tð Þ ¼

1

� n� �ð Þ

Z 1

0

t� �ð Þ
n���1d

nf �ð Þ

d�n
d�:

Ilic et al. (2005) produced a spectral representation
for the foundation of eigenvalues and eigenfunctions
that belong to the fractional Laplacian operator.
Here, we give the outline of this work to show the
starting point of our consideration. By using this spec-
tral representation, we propose the optimal control of a
space–time fractional diffusion problem in the present
paper. It is a new construction for the FOCPs, as it can
be seen in the literature that the system dynamics are
only defined with time fractional differential equations.
Here, we also consider the optimal control of a space–
time fractional diffusion system.

Suppose the Laplacian (��) has a complete set of
orthonormal eigenfunctions ’n corresponding to eigen-
values �2n on a bounded region D, i.e. ��ð Þ’n ¼ �

2
n’n on

D; B(’)¼ 0 on qD, where B(’) is one of the standard
three homogeneous boundary conditions (Dirichlet,
Neumann and Robin). Let

F � ¼ f ¼
X1
n¼1

cn’n, cn ¼ f, ’n
� �����

(

X1
n¼1

cnj j
2 �nj j

� 51, � ¼ max �, 0ð Þ

o
:

Then, for any f2F g, ��ð Þ
�
2 is defined by

��ð Þ
�
2f ¼

X1
n¼1

cn�
�
n’n:

Let H be the real Hilbert space L2(0, L) with the usual
inner product. Consider the operator T :H!H defined
by T’ ¼ � d2’

dx2
¼ ��’ on

H ¼
�
’ 2 H; ’0 is absolutely continuous, ’0,

’00 2 L2 0, Lð Þ,B ’ð Þ ¼ 0
�
,
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where B(’) is one of the boundary conditions men-
tioned above. It is known that T is a closed, self-adjoint
operator whose eigenfunctions ’n

� �1
n¼1

form an ortho-
normal basis for H. Thus, T’n¼ �n’n, n¼ 1, 2,. . .. For
any ’2H,

’ ¼
X1
n¼1

cn’n, cn ¼ ’, ’n
� �

,

T’ ¼
X1
n¼1

�ncn’n:

If  is a continuous function on R, then

 Tð Þ’ ¼
X1
n¼1

 �nð Þcn’n,

provided
P1

n¼1  �nð Þcn
�� ��2 51:

Hence, if the eigenvalue problem for T can be solved
explicitly, then the following problem can be easily
solved, where  tð Þ ¼ t

�
2:

Problem: solve the following boundary value prob-
lem in one dimension

@’

@t
¼ �� �

@2

@x2

	 
�
2

’, 05 x5L,

with the initial condition

’ x, 0ð Þ ¼ g xð Þ,

together with one of the homogeneous Dirichlet,
Neumann and Robin boundary conditions. The
detailed analytical and numerical solutions of this prob-
lem can be found in Ilic et al. (2005).

In addition, there is another main relationship
between the Riesz fractional derivative and the symmet-
ric space fractional derivative � ��ð Þ

�
2 of order �

(1<�� 2) , which is defined by Gorenflo and
Mainardi (1998), where � is the well-known
Laplacian operator. Yang et al. (2010) derived that
the Riesz fractional derivative is equivalent to the frac-
tional power of the Laplacian operator, that is
� ��ð Þ

�
2f x, tð Þ ¼

@�f x, tð Þ

@ xj j�
, by assuming homogeneous

Dirichlet boundary conditions. More detailed analysis
of a time and space-symmetric fractional diffusion
equation from the physical and mathematical point of
view is given in Yang et al. (2009).

The mathematical relationship between the RL and
Caputo definitions is given by Podlubny (1999) as

RL
a D�

xf xð Þ ¼
C
aD

�
xf xð Þ þ

Xn�1
k¼0

dk

dxk
f xð Þ j

x¼a

x� að Þ
k��

� k� �þ 1ð Þ
,

RL
x D�

bf xð Þ ¼
C
xD

�
bf xð Þ þ

Xn�1
k¼0

dk

dxk
f xð Þ j

x¼b

b� xð Þ
k��

� k� �þ 1ð Þ
:

GL numerical approximation of the left and the
right RL fractional derivatives at node M can be
defined as

RL
0 D�

t f �
1
h�

PM
j¼0

w
�ð Þ
j f hM� jhð Þ,

RL
t D�

1f �
1
h�

PN�M
j¼0

w
�ð Þ
j f hMþ jhð Þ,

where

w
�ð Þ
0 ¼ 1, w

�ð Þ
j ¼ 1� �þ1

j

� �
w
�ð Þ
j�1

and N is the number of subdomains that have h ¼ 1
N

lengths.

3. General formulation of a FOCP

General formulation of a FOCP is given as follows. The
main aim of a FOCP is foundation of a control func-
tion u(t) that minimizes the performance index

J uð Þ ¼

Z t

0

F x, u, tð Þdt,

subject to the dynamic constraints of the system

0D
�
t x ¼ G x, u, tð Þ,

and the initial condition

x 0ð Þ ¼ x0,

where x(t) defines the state of the system, F and G are
arbitrary constants or vector functions and 0D

�
t repre-

sents the fractional derivative operator that is chosen
with respect to the problem type. Note that when �¼ 1,
the FOCP reduces to a standard OCP.

Let us give the definitions of the necessary equations
for optimality that are basic formulations of FOCPs
from fractional variational calculus. To take the neces-
sary optimality equations, the Lagrange multiplier tech-
nique and calculus of variations are used. Then,
optimality conditions are obtained as

0D
�
t x ¼ G x, u, tð Þ, ð1Þ

tD
�
1� ¼

@F

@x
þ �

@G

@x
, ð2Þ
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@F

@u
þ �

@G

@u
¼ 0, ð3Þ

where � is the Lagrange multiplier, which is also known
as the co-state variable and

x 0ð Þ ¼ x0, � 1ð Þ ¼ 0: ð4Þ

We note that more details on construction of a FOCP
formulation can be found in Agrawal and Baleanu
(2007).

4. OCP of the space–time fractional
diffusion system

In this section, it is possible to reformulate the general
form of FOCPs under our considerations and assump-
tions. Let us consider the following 1D system. The
objective of this paper is to find an optimal control
that minimizes the following quadratic performance
index

J uð Þ ¼
1

2

Z 1

0

Z L

0

Ax2 y, tð Þ þ Bu2 y, tð Þ
 �

dydt, ð5Þ

subjected to the dynamic constraints

C
0D

�
t x y, tð Þ ¼ �K� ��ð Þ

�
2x y, tð Þ þ u y, tð Þ, ð6Þ

where

05� � 1 and 15� � 2, ð7Þ

with the initial condition

x y, 0ð Þ ¼ x0 yð Þ ð8Þ

and the boundary conditions

x 0, tð Þ ¼ x L, tð Þ ¼ 0, ð9Þ

where x(y, t) and u(y, t) are state and control func-
tions defined on the {(y, t) y2 [0, L] � t2 [0, 1]}
domain, A and B are arbitrary constant coefficients
that are determined by a real physical problem, K�
denotes the anomalous diffusion coefficient that
changes with respect to the type of the diffusion pro-
cess, C

0D
�
t represents the well-known Caputo fractional

derivative and � ��ð Þ
�
2 is the fractional Laplacian

operator. Note that we consider a fixed final time
and free final state FOCP with an integral cost func-
tion in this problem. This consideration can be chan-
ged with respect to the purpose of the problem
formulation. For example, Biswas and Sen (2011b)
took into account both cases of fixed and free final

states for a fixed final time and obtained a general
transversality condition due to the inclusion of a ter-
minal cost function in the performance index.

First, we solve the following eigenvalue problem
under the consideration of x(y, t)¼Y(y)T(t)

��ð ÞY yð Þ ¼ 	Y yð Þ, ð10Þ

with the boundary condition Y(L)¼ 0. Therefore, we
assume that x(y, t) and u(y, t) functions can be repre-
sented by the following series expansions

x y, tð Þ ¼
Xm
n¼1

xn tð Þ sin
n
y

L

� �
, ð11Þ

u y, tð Þ ¼
Xm
n¼1

un tð Þ sin
n
y

L

� �
, ð12Þ

where sin n
y
L

� �
, n¼ 1, 2,. . ., m, are the eigenfunctions

that are found by solution of equation (10) .
Moreover, the eigenvalues are obtained as 	n ¼

n2
2

L2 ,
n¼ 1, 2,. . ., m. It is important to emphasize that eigen-
functions are used to determine the space parameter of
the problem and therefore, the distributed FOCP is
reduced to a set of decoupled FOCPs that can be
solved independently. In addition, equation (11) nat-
urally satisfies the boundary condition given by equa-
tion (9) . By using the definition of the ��ð Þ

�
2

operator, we get

��ð Þ
�
2x y, tð Þ ¼

Xm
n¼1

xn tð Þ
n2
2

L2

	 
�
2

sin
n
y

L

� �
: ð13Þ

We must also emphasize that the upper limit of the
series given by equations (11) and (12) is taken as a
finite number m for computational reasons, whereas
theoretically m should go to infinity. Let us determine
the necessary optimality conditions with some manipu-
lation. Firstly, we substitute equations (11) and (12)
into equation (5) and therefore obtain

J uð Þ ¼
L

4

Z 1

0

Xm
n¼1

Ax2n tð Þ þ Bu2n tð Þ
 �( )

dt: ð14Þ

By substituting equations (12) and (13) into equation
(6) , we take

C
0D

�
t xn tð Þ ¼ �

n2
2

L2

	 
�
2

xn tð Þ þ un tð Þ n ¼ 1, 2, . . . ,mð Þ:

ð15Þ
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Substituting x(y, t) in equation (11) into equation (8)
and after some computation, the initial values for xn(t)
are

xn 0ð Þ ¼
2

L

Z L

0

x0 �ð Þ sin
n
�

L

	 

d�: ð16Þ

Let us now rewrite the n components of F(x, u, t) and
G(x, u, t) functions

F xn, un, tð Þ ¼
L

4
Ax2n tð Þ þ Bu2n tð Þ
 �

, ð17Þ

G xn, un, tð Þ ¼ �
n2
2

L2

	 
�
2

xn tð Þ þ un tð Þ, ð18Þ

and so the necessary optimality conditions of our
problem are rearranged with respect to equations (1)
to (3) by

C
0D

�
t xn tð Þ ¼ �

n2
2

L2

	 
�
2

xn tð Þ þ un tð Þ, ð19Þ

C
t D

�
1�n tð Þ ¼ A

L

2
xn tð Þ �

n2
2

L2

	 
�
2

�n tð Þ, ð20Þ

B
L

2
un tð Þ þ �n tð Þ ¼ 0 ð21Þ

and

xn 0ð Þ ¼ xn0, �n 1ð Þ ¼ 0 n ¼ 1, 2, . . . ,mð Þ,

where �n(t), n¼ 1, 2,. . ., m, are the Lagrange multipli-
ers. Using equations (20) and (21), we also obtain

C
t D

�
1un tð Þ ¼ �

A

B
xn tð Þ �

n2
2

L2

	 
�
2

un tð Þ: ð22Þ

After these calculations, we will take into account equa-
tions (15) and (22) for analytical and numerical solu-
tions and then let us remember the equations

C
0D

�
t xn tð Þ ¼ �

n2
2

L2

	 
�
2

xn tð Þ þ un tð Þ,

C
t D

�
1un tð Þ ¼ �

A

B
xn tð Þ �

n2
2

L2

	 
�
2

un tð Þ:

8>>>><
>>>>:

ð23Þ

We will give analytical solution of equations (23) in the
next section.

5. Analytical solution

To show the efficiency and applicability of the numer-
ical method to such a type of problem, we first obtain
the exact (i.e. analytical) solutions of xn(t) and un(t)
from equations (23) for �¼ 1 as

d

dt
xn tð Þ ¼ �

n2
2

L2

	 
�
2

xn tð Þ þ un tð Þ,

d

dt
un tð Þ ¼

A

B
xn tð Þ þ

n2
2

L2

	 
�
2

un tð Þ ðn ¼ 1, 2, . . . ,mÞ:

ð24Þ

For simplicity, we rename the coefficients of equations
(24) and rewrite these equations

d

dt
xn tð Þ ¼ �Enxn tð Þ þ un tð Þ,

d

dt
un tð Þ ¼ Fxn tð Þ þ Enun tð Þ ðn ¼ 1, 2, . . . ,mÞ, ð25Þ

where

F ¼
A

B
,En ¼

n2
2

L2

	 
�
2

, ð26Þ

and terminal conditions are

xn 0ð Þ ¼ xn0, un 1ð Þ ¼ 0: ð27Þ

After some well-known manipulations in classical cal-
culus, we obtain the analytical solutions of the
eigencoordinates

xn tð Þ ¼ xn0
Kn � Enð Þe�Kn 1�tð Þ � Kn þ Enð ÞeKn 1�tð Þ

 �
Kn � Enð Þe�Kn þ Kn þ Enð ÞeKnð Þ½ �

ð28Þ

and

un tð Þ ¼ Fxn0
e�Kn 1�tð Þ � eKn 1�tð Þ
 �

Kn � Enð Þe�Kn þ Kn þ Enð ÞeKnð Þ½ �
, ð29Þ

where

Kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n þ F

q
ðn ¼ 1, 2, . . . , ,mÞ:

Consequently, by substituting equations (28) and (29)
into equations (11) and (12) , respectively, we can
obtain the analytical solutions of x(y, t) and u(y, t).

Özdemir and Avc� 375



6. Illustrative example

In this section, we obtain approximate solutions of the
problem by choosing an initial condition. To solve the
problem numerically, we use the GL approximation for
the Caputo derivative. It is well known that the GL
approximation is based on discretization of the time
interval into subintervals with fixed lengths. For this
purpose, the entire domain is divided into N subdo-
mains whose length are h ¼ 1

N, and each node is num-
bered 0, 1,. . ., N. Thus, let us analyze the numerical
solutions of equations (23) under an initial condition
function and variable order of � and � . By applying the
GL definition to the relationship equations of the
Caputo and the RL derivatives, the approximation of
the Caputo derivative is obtained as

C
0D

�
Mhxn Mhð Þ �

1

h�

XM
j¼0

w
�ð Þ
j xn Mh� jhð Þ � xn 0ð Þ

Mh½ �
��

� 1� �ð Þ
,

ð30Þ

C
MhD

�
1un Mhð Þ �

1

h�

XN�M
j¼0

w
�ð Þ
j un Mhþ jhð Þ

�
un Nhð Þ N�M½ �hð Þ

��

� 1� �ð Þ
: ð31Þ

The initial condition function is chosen arbitrarily as

x0 yð Þ ¼ y2 
� yð Þ, ð32Þ

which is applied to a numerical example in Yang et al.
(2009). Note that it is possible to take different types of
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Figure 2. Contribution of the step sizes to the x1(t) and u1(t) for �¼ 0.9, �¼ 1.5.
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Figure 1. Comparison of the analytical and numerical solutions for �¼ 1, �¼ 1.5 and N¼ 100.
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initial condition functions. We also assume the problem
coefficients are A¼B¼K�¼L¼ 1 only for simplicity
purposes. By substituting the initial condition function
into the equation (16) , we obtain the initial condition
xn(0) for equation (30) . Moreover, we take the final
value of un as un(1)¼ un(Nh)¼ 0. Firstly, we compare
the analytical and numerical solutions of the state x1(t)
and control u1(t) components of the solution for �¼ 1,
�¼ 1.5 and term number N¼ 100 in Figure 1(a) and
1(b), respectively. The good agreement of analytical
and numerical results shows that the applicability of
the GL approximation is effective for such a problem.
In Figure 2(a) and 2(b), we validate the effect of the
variation of step sizes for �¼ 0.9 and �¼ 1.5. For this
purpose, we take the values of time step sizes as h¼ 0.1,
0.05, 0.025. While the time step sizes h ¼ 1

N are decreas-
ing, the smoothness is increasing for both state and

control functions. We obtain the variation of the
lower values of the � parameter for �¼ 1.5 and
N¼ 500 in Figure 3(a) and 3(b). Similarly, we consider
the higher values of the � parameter for �¼ 1.5 and
N¼ 100 in Figure 4(a) and 4(b). In addition, the vari-
ation of � parameters when �¼ 1 and N¼ 100 is shown
in Figure 5(a) and 5(b). Up to now, we analyze the
variations of the parameter only on x1(t) and u1(t) com-
ponents of state and control functions. However, the
whole solution of the main problem given by equations
(11) and (12) is represented by the linear sum of xn(t)
and un(t) . So, we change the values of n¼ 1,. . ., 5 and
take �¼ 0.9, �¼ 1.5 and N¼ 100. Therefore, we show
the contribution of term numbers to the solution in
Figure 6(a) and 6(b). Finally, the surface of the state
x(y,t) for �¼ 0.5, �¼ 1.5, N¼ 100 is given in
Figure 7(a). Similarly, we obtain the whole solution
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Figure 4. Dependence of solution on higher values of � parameter for �¼ 1.5 and N¼ 100.
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Figure 3. Dependence of solution on lower values of � parameter for �¼ 1.5 and N¼ 500.
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of u(y, t) for the values of �¼ 0.99, �¼ 1.9 and N¼ 100
in Figure 7(b). Thus, we characterize the behaviors of
x(y, t) and u(y, t) in three-dimensional space.

7. Conclusions

In this work, optimal control of a space–time fractional
diffusion equation in a 1D domain has been proposed.
The minimization of a quadratic performance index
was the aim. Dynamic constraints of the system on
which the problem is formulated have been defined in
terms of the Caputo time and fractional Laplacian
space operators. In general, one can find some papers
related to FOCPs whose dynamics are defined only

with time fractional derivatives in the sense of the
Caputo or the RL operators. However, anomalous dif-
fusion processes are described by the space–time frac-
tional differential equations. For this reason,
consideration of OCPs for an anomalous diffusion pro-
cess is a new viewpoint that is analyzed in the present
paper. The eigenfunctions of the fractional Laplacian
operator has been used to eliminate the state and con-
trol functions. To obtain numerical results, a GL
approximation has been applied to an illustrative exam-
ple. The validity of this numerical scheme has been
analyzed by comparison of analytical and numerical
solutions. MATLAB has been used for plots of the
variation of the problem parameters. In addition, the
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Figure 6. Contribution of term number to the x(y, t) and u(y, t) for �¼ 0.9, �¼ 1.5 and N¼ 100.
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effectiveness of the numerical approximation for such a
type of problem has been shown with the figures.
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