See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/295908058](https://www.researchgate.net/publication/295908058_CONJUGACY_CLASSES_OF_EXTENDED_GENERALIZED_HECKE_GROUPS?enrichId=rgreq-71a1045766c5103b56f4f93c14eb2f0b-XXX&enrichSource=Y292ZXJQYWdlOzI5NTkwODA1ODtBUzozMzMzMTYyNTIyOTEwNzJAMTQ1NjQ4MDE5NTY1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[CONJUGACY CLASSES OF EXTENDED GENERALIZED HECKE GROUPS](https://www.researchgate.net/publication/295908058_CONJUGACY_CLASSES_OF_EXTENDED_GENERALIZED_HECKE_GROUPS?enrichId=rgreq-71a1045766c5103b56f4f93c14eb2f0b-XXX&enrichSource=Y292ZXJQYWdlOzI5NTkwODA1ODtBUzozMzMzMTYyNTIyOTEwNzJAMTQ1NjQ4MDE5NTY1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf)

Research · February 2016 DOI: 10.13140/RG.2.1.1218.5361

CONJUGACY CLASSES OF EXTENDED GENERALIZED HECKE GROUPS

BILAL DEMIR, ÖZDEN KORUOĞLU, AND RECEP SAHIN

ABSTRACT. Generalized Hecke groups $H_{p,q}$ are generated by $X(z) = -(z (\lambda_p)^{-1}$ and $Y(z) = -(z + \lambda_q)^{-1}$, where $\lambda_p = 2 \cos \frac{\pi}{p}$, $\lambda_q = 2 \cos \frac{\pi}{q}$, p, q are integers such that $2 \leq p \leq q$, $p + q > 4$. Extended generalized Hecke groups $\overline{H}_{p,q}$ are obtained by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke groups $H_{p,q}$. We determine the conjugacy classes of the torsion elements in extended generalized Hecke groups $\overline{H}_{p,q}$.

1. INTRODUCTION

Hecke introduced in [\[6\]](#page-8-0) the Hecke groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z) = -\frac{1}{z}
$$
 and $U(z) = z + \lambda$,

where λ is a fixed positive real number. Let $S = TU$, i.e.,

$$
S(z) = -\frac{1}{z + \lambda}.
$$

Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \geq 3$ integer, or $\lambda \geq 2$. We consider the former case $q \geq 3$ integer and we denote it by $H_q = H(\lambda_q)$. The Hecke group H_q is isomorphic to the free product of two finite cyclic groups of orders 2 and q ,

$$
H_q = \langle T, S : T^2 = S^q = I \rangle \simeq \mathbb{Z}_2 * \mathbb{Z}_q.
$$

The first few Hecke groups H_q are $H_3 = \Gamma = PSL(2, \mathbb{Z})$ (the modular group), $H_4 = H($ √ 2), $H_5 = H(\frac{1+\sqrt{5}}{2})$, and $H_6 = H(\frac{1+\sqrt{5}}{2})$ √ 3). It is clear from the above that $H_q \subsetneq PSL(2,\mathbb{Z}[\lambda_q])$ for $q > 3$. These groups and their subgroups have been studied extensively for many aspects in the literature, see [\[3,](#page-8-1) [4,](#page-8-2) [5,](#page-8-3) [9,](#page-8-4) [16\]](#page-8-5).

The extended Hecke groups have been defined in [\[13,](#page-8-6) [14\]](#page-8-7) by adding the reflection $R(z) = 1/\overline{z}$ to the generators of Hecke groups H_q . They studied even subgroups, commutator subgroups, and principal subgroups of the extended Hecke groups H_q .

²⁰¹⁰ Mathematics Subject Classification. 20H10, 11F06.

Key words and phrases. Generalized Hecke groups, Extended generalized Hecke groups, Conjugacy classes.

In [\[11\]](#page-8-8), Lehner studied a more general class $H_{p,q}$ of Hecke groups H_q , by taking

$$
X = \frac{-1}{z - \lambda_p} \quad \text{and} \quad V = z + \lambda_p + \lambda_q,
$$

where $2 \le p \le q$, $p + q > 4$. Here if we take $Y = XV = -\frac{1}{z + \lambda_q}$, then we have the presentation

$$
H_{p,q} = \langle X, Y : X^p = Y^q = I \rangle \simeq \mathbb{Z}_p * \mathbb{Z}_q.
$$

Also, $H_{p,q}$ has the signature $(0; p, q, \infty)$. We call these groups *generalized Hecke groups* $H_{p,q}$. We know from [\[11\]](#page-8-8) that $H_{2,q} = H_q$, $[H_q: H_{q,q}] = 2$, and there is no group $H_{2,2}$. Also, all Hecke groups H_q are included in generalized Hecke groups $H_{p,q}$. Generalized Hecke groups $H_{p,q}$ have been also studied by Calta and Schmidt in [\[1,](#page-7-0) [2\]](#page-7-1).

Now we define extended generalized Hecke groups $\overline{H}_{p,q}$, similar to extended Hecke groups \overline{H}_q , by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke groups $H_{p,q}$. Then, extended generalized Hecke groups $H_{p,q}$ have a presentation

$$
\overline{H}_{p,q} = \langle X, Y, R : X^p = Y^q = R^2 = I, \ RX = X^{-1}R, RY = Y^{-1}R \rangle.
$$

It is clear that $\left[\overline{H}_{p,q}:H_{p,q}\right]=2.$

In this paper, we determine the conjugacy classes of the torsion elements in extended generalized Hecke groups $\overline{H}_{p,q}$. The conjugacy classes of extended modular groups have been studied by Jones and Pinto in [\[10\]](#page-8-9). The non-elliptic conjugacy classes of Hecke groups H_q have been studied by Hoang and Ressler in [\[7\]](#page-8-10). Also, the conjugacy classes of the torsion elements in Hecke H_q and extended Hecke groups \overline{H}_q have been found by Yılmaz Ozgur and Sahin in [\[17\]](#page-8-11). Here, we generalize the results given in [\[17\]](#page-8-11) to extended generalized Hecke groups $\overline{H}_{p,q}$ by similar methods.

2. CONJUGACY CLASSES IN $\overline{H}_{p,q}$

Firstly, we give the group structures of extended generalized Hecke groups $\overline{H}_{p,q}$.

Theorem 1. Extended generalized Hecke groups $\overline{H}_{p,q}$ are given directly as a free product of two groups G_1 and G_2 with amalgamated subgroup \mathbb{Z}_2 , where G_1 is the dihedral group D_p and G_2 is the dihedral group D_q , that is $\overline{H}_{p,q} \simeq D_p *_{\mathbb{Z}_2} D_q$.

Proof. In the presentation of extended generalized Hecke groups $\overline{H}_{p,q}$, if we take $G_1 = \langle X, R : X^p = R^2 = (XR)^2 = I \rangle \simeq D_p$ and $G_2 = \langle Y, R : Y^q = R^2 = (YR)^2 = I \rangle$ $I\rangle \simeq D_q$, then $H_{p,q}$ is $G_1 * G_2$ with the identification $R = R$. In the first group G_1 , the subgroup generated by R is \mathbb{Z}_2 and also this is true for the second group G_2 . Therefore the identification induces an isomorphism and $H_{p,q}$ is a generalized free product with the subgroup $M \simeq \mathbb{Z}_2$ amalgamated, i.e.,

$$
\overline{H}_{p,q} = \langle X, Y, R : X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = I \rangle \cong D_p *_{\mathbb{Z}_2} D_q.
$$

Now, we obtain the conjugacy classes of torsion elements in the group $\overline{H}_{p,q}$. We need the following two lemmas.

Lemma 1. Let p and q be integers satisfying $2 \le p \le q$, $p + q > 4$. Then in $\overline{H}_{p,q}$ we have

$$
X^t R = R X^{p-t},
$$

$$
Y^m R = R Y^{q-m},
$$

 $1 \le t \le p-1, \ 1 \le m \le q-1.$

Lemma 2. Let p and q be integers satisfying $2 \le p \le q$, $p + q > 4$. Then in $\overline{H}_{p,q}$ we have:

1) $X^{t}R$, $1 \leq t \leq p-1$, is conjugate to R by $X^{w}R$, where $w = \frac{pk+t}{2}$ for some $k \in \mathbb{Z}$ satisfying the condition $w \in \mathbb{Z}$ unless p is even and t is odd. If so, $X^t R$, $1 \leq t \leq p-1$, is conjugate to XR by X^wR , where $w = \frac{pk+t+1}{2}$ for some $k \in \mathbb{Z}$ satisfying the condition $w \in \mathbb{Z}$.

2) X^u , $1 \le u \le \frac{p-1}{2}$, is conjugate to X^{p-u} .

 $3) Y^m R$, $1 \leq m \leq q-1$, is conjugate to R by $Y^v R$, where $v = \frac{qk+m}{2}$ for some $k \in \mathbb{Z}$ satisfying the condition $v \in \mathbb{Z}$ unless q is even and m is odd. If so, $Y^m R$, $1 \leq m \leq q-1$, is conjugate to YR by Y^vR , where $v = \frac{qk+m+1}{2}$ for some $k \in \mathbb{Z}$ satisfying the condition $v \in \mathbb{Z}$.

 $\left\langle A\right\rangle Y^{n}, 1 \leq n \leq \frac{q-1}{2},$ is conjugate to Y^{q-n} .

Proof. 1) Let p be even and t odd. Then there is some $k \in \mathbb{Z}$ such that $w =$ $\frac{pk+t+1}{2} \in \mathbb{Z}$. Thus X^tR is conjugate to $X^wR.X^tR$. $(X^wR)^{-1} = XR$. The other case can be obtained similarly.

2) From the presentation of $\overline{H}_{p,q}$ we have X^u is conjugate to $R.X^u.R^{-1} = X^{p-u}$. The proofs of 3 and 4 are similar.

Now we can give the following theorem for $\overline{H}_{p,q}$.

Theorem 2. If p and q are prime numbers satisfying $2 \le p \le q$, $p + q > 4$, then the conjugacy classes of torsion elements in group $H_{p,q}$ are given in the following table:

Condition	Type		Order Classes of elliptic elements
$p, q \text{ primes}$	Elliptic	\boldsymbol{p}	$X^1, X^2, X^3, \ldots, X^{\frac{p-1}{2}}$
	Elliptic		$Y^1, Y^2, Y^3, \ldots, Y^{\frac{q-1}{2}}$
	Reflection		$R, X^{(p,2)-1}R$

Proof. We have $\overline{H}_{p,q} \simeq D_p *_{\mathbb{Z}_2} D_q$. From a theorem of Kurosh [\[12\]](#page-8-12), we know that any element of finite order in an amalgamated free product $A *_H B$ is conjugate to an element in one of the factors. So every finite order element $g \in \overline{H}_{p,q}$ is conjugate to an element in G_1 or G_2 . We know that

$$
G_1 = \langle X, R : X^p = R^2 = (XR)^2 = I \rangle,
$$

\n
$$
G_2 = \langle Y, R : Y^q = R^2 = (YR)^2 = I \rangle.
$$

In G_1 the possible conjugacy classes are $R, X^1, X^2, \ldots, X^{\frac{p-1}{2}}, X^1R, X^2R, \ldots,$ $X^{\frac{p-1}{2}}R$, and in G_2 the conjugacy classes are $Y^1, Y^2, \ldots, Y^{\frac{q-1}{2}}, Y^1R, Y^2R, \ldots$, $Y^{\frac{q-1}{2}}R$.

From Lemma [2,](#page-3-0) if $p \neq 2$, then $X^t R \sim R$ and $Y^m R \sim R$, and so G_1 has $\frac{p-1}{2}+1$ conjugacy classes with representatives $R, X^1, X^2, \ldots, X^{\frac{p-1}{2}}$, and G_2 has $\frac{q-1}{2}$ conjugacy classes with representatives $Y, Y^2, Y^3, \ldots, Y^{\frac{q-1}{2}}$. Of course, if $p = 2$ we have one extra conjugacy class with representative XR .

Example 1. In $\overline{H}_{3,5}$ we have four conjugacy classes of finite order elements with representatives R, X, Y, Y^2 .

Now let us examine the conjugacy classes of finite order elements in the group $\overline{H}_{p,q}$, where p and q are integers satisfying $2 \leq p \leq q$, $p + q > 4$.

Case (i): p and q are odd.

From Lemma [1](#page-3-1) and Lemma [2,](#page-3-0) the conjugacy classes of elliptic elements of order p are $X^{r_1}, X^{r_2}, \ldots, X^{r_{\frac{\phi(p)}{2}}}; 1 \leq i \leq \frac{\phi(p)}{2}$ $\frac{(p)}{2}$, $(r_i, p) = 1$. Similarly, we have the q ordered conjugacy classes as $Y^{s_1}, Y^{s_2}, \ldots, Y^{\frac{s_{\phi(q)}}{2}}$; $1 \leq j \leq \frac{\phi(q)}{2}$ $\frac{(q)}{2}$, $(s_j, q) = 1$

One conjugacy class of reflection of order 2 is again R . In this case, we have conjugacy classes of different orders. For every divisor a_i of p, we have conjugacy classes of order a_i with representatives $X^{k \frac{p}{a_i}}, k \in \mathbb{Z}, k \frac{p}{q}$ $\frac{p}{a_i} < p$. From Lemma [2,](#page-3-0) the number of these classes reduce by half, and so we have $\frac{p-1-\phi(p)}{2}$ classes. Also, for every divisor b_i of q there is a conjugacy class of order b_i with representative $Y^{k \frac{q}{b_i}}$, $k \in \mathbb{Z}, k \frac{q}{n}$ $\frac{q}{b_i} < q$. The number of these classes is $\frac{q-1-\phi(q)}{2}$. Consequently, in total we have $\frac{p+q}{2}$ conjugacy classes of torsion element in the group $\overline{H}_{p,q}$.

Case (ii): p and q are even.

The number of conjugacy classes of elliptic elements of order p and q is the same as in case (i). Then we have three conjugacy classes of reflection elements R , XR and YR . Differently from case (i), we have now two conjugacy classes of elliptic elements of order two with representatives $X^{\frac{p}{2}}$, $Y^{\frac{q}{2}}$. Also for every divisor a_i of p, $a_i \neq 2$, we have conjugacy classes of order a_i with representatives $X^{k \frac{p}{a_i}}$, $k \in \mathbb{Z}$, $k\frac{p}{a_i} < p$. The number of these classes reduce by half, so we have $\frac{p-2-\phi(p)}{2}$ classes. Also for every divisor b_i of $q, b_i \neq 2$, there are conjugacy classes of order b_i with representative $Y^{k \frac{q}{b_i}}, k \in \mathbb{Z}, k \frac{q}{b_i}$ $\frac{q}{b_i} < q$. The number of these classes is $\frac{q-2-\phi(q)}{2}$. In this case, we have $\frac{p+q+6}{2}$ conjugacy classes.

Case (iii): p is even and q is odd.

In this case, we have only one conjugacy class of elliptic elements of order two with representative $X^{\frac{p}{2}}$. Also, differently from case (ii), we have now two conjugacy classes of reflection elements with representatives R, XR . So we have in total $\frac{p+q+3}{2}$ conjugacy classes of torsion elements in the group $H_{p,q}$.

Remark 1. In Theorem [1,](#page-2-0) if we take $p = 2$ we have $\overline{H}_{2,q} = \overline{H}_q$. Using the same method as in the proof of Theorem [1,](#page-2-0) the possible conjugacy classes of finite order

elements are R, X, XR, Y, Y², Y³, ..., Y^{q-1}, YR, Y²R, Y³R, ..., Y^{q-1}R. From Lemma [2,](#page-3-0) we get $Y^m R \sim R$ and $Y^m \sim Y^{q-m}$. Hence we have $\frac{q+5}{2}$ conjugacy classes with representatives Y^1 , Y^2 , ..., $Y^{\frac{q-1}{2}}$, R, X, XR. This result coincides with $[17,$ Theorem 2.3].

Case (iv): p is odd and q is even.

We obtain results similar to those in case (iii). In this case the conjugacy classes of elliptic elements of order two is represented by $Y^{\frac{q}{2}}$. We have $\frac{p+q+3}{2}$ conjugacy classes of torsion elements in the group $\overline{H}_{p,q}$.

As a result of these four cases, we have the following theorem.

Theorem 3. If p and q are integers satisfying $2 \leq p \leq q$, $p + q > 4$, then the conjugacy classes of torsion elements in the group $H_{p,q}$ are given in Table [1.](#page-6-0)

Corollary 1. Let p and q be integers satisfying $2 \leq p \leq q$, $p + q > 4$. There are $[|p/2|]+[q/2]|+(2, p)+(2, q)-1$ conjugacy classes of torsion elements in the group $\overline{H}_{p,q}$.

In Table [2](#page-7-2) we give some examples using these results.

2.1. An application of conjugacy classes of $\overline{H}_{p,q}$. In this section, we give an application for normal subgroups of extended generalized Hecke groups $\overline{H}_{p,q}$ which have torsion. If $p = 2$ we have extended Hecke groups $\overline{H}_{2,q} = \overline{H}_q$. In [\[17\]](#page-8-11) Yılmaz Oz gür and Sahin have given the following theorem.

Theorem 4. [\[17\]](#page-8-11) If G is a normal subgroup of \overline{H}_q , q prime, and G has torsion, then the index $[\overline{H}_q : G]$ is finite.

So we focus on the condition $2 < p \leq q$.

Theorem 5. Let p and q be prime numbers satisfying $2 < p \le q$, $p + q > 4$. If G is a normal subgroup of $\overline{H}_{p,q}$ such that G has torsion, then the index $[\overline{H}_{p,q}:G]$ is finite.

Proof. Since G has torsion there is at least an element of finite order g in G . Let $N(g)$ denote the normal closure of g in $\overline{H}_{p,q}$. Because of $G \triangleleft \overline{H}_{p,q}$, we have $N(g) \subseteq G$ implies that $\left[\overline{H}_{p,q} : G\right] \mid \left[\overline{H}_{p,q} : N(g)\right]$.

If g^* is any conjugate of g we know that $[\overline{H}_{p,q}:N(g)]=[\overline{H}_{p,q}:N(g^*)]$. We complete the proof by showing that $[\overline{H}_{p,q}: N(g^*)]$ is finite. Now g^* is any of the conjugacy class representatives of finite order elements listed in Theorem [2.](#page-3-2) So all the possible representatives are $g^* = X^1, X^2, X^3, \ldots, X^{\frac{p-1}{2}}, Y^1, Y^2, Y^3, \ldots, Y^{\frac{q-1}{2}},$ R. The quotient group $\overline{H}_{p,q}/N(g^*)$ is obtained by adding the reation $g^* = I$ to the relations of $\overline{H}_{p,q}$ [\[12\]](#page-8-12).

Suppose $g^* = R$. Then

$$
\overline{H}_{p,q}/N(R) \simeq \langle X, Y, R : X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = R = I \rangle
$$

$$
\simeq \mathbb{Z}_1.
$$

Therefore $\left[\overline{H}_{p,q}:N(R)\right]=1.$ Suppose $g^* = X^a$, $1 \le a \le \frac{p-1}{2}$. Then $\overline{H}_{p,q}/N(X^a) \simeq \langle X, Y, R : X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = X^a = I \rangle$ $\simeq \langle Y, R : Y^q = R^2 = (YR)^2 = I \rangle \simeq D_q.$ Therefore $\left[\overline{H}_{p,q}:N(X^a)\right]=2q.$ Suppose $g^* = Y^b$, $1 \leq b \leq \frac{q-1}{2}$. Then

$$
\overline{H}_{p,q}/N(Y^b) \simeq \langle X, Y, R : X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = Y^b = I \rangle
$$

$$
\simeq \langle X, R : X^p = R^2 = (XR)^2 = I \rangle \simeq D_p.
$$

Rev. Un. Mat. Argentina, Vol. 57, No. 1 (2016)

Therefore we have $[\overline{H}_{p,q}: N(Y^b)] = 2p$. Thus in all cases the index is finite. \Box

Corollary 2. Let p and q be primes satisfying $2 \le p \le q$, $p + q > 4$. If $G \triangleleft \overline{H}_{p,q}$ and G has an elliptic element or reflection then $[\overline{H}_{p,q}:G]$ divides 2pq.

Corollary 3. Let p and q be primes satisfying $2 \le p \le q$, $p + q > 4$. If $G \triangleleft H_{p,q}$ and G has an elliptic element of finite order, then the index $[H_{p,q}:G]$ is finite and divides pq.

REFERENCES

- [1] Calta, K. and Schmidt, T.A., Infinitely many lattice surfaces with special pseudo-Anosov maps, J. Mod. Dyn. 7 (2013), 239–254. [MR 3106712.](http://www.ams.org/mathscinet-getitem?mr=3106712)
- [2] Calta, K. and Schmidt, T.A., Continued fractions for a class of triangle groups, J. Aust. Math. Soc. 93 (2012), 21–42. [MR 3061992.](http://www.ams.org/mathscinet-getitem?mr=3061992)

Rev. Un. Mat. Argentina, Vol. 57, No. 1 (2016)

- [3] Cangül, İ.N., Normal subgroups and elements of $H'(\lambda_q)$, Turkish J. Math. 23 (1999), 251– 255. [MR 1739165.](http://www.ams.org/mathscinet-getitem?mr=1739165)
- [4] Cangül, I.N., *The group structure of Hecke groups* $H(\lambda_q)$, Turkish J. Math. 20 (1996), 203– 207. [MR 1388985.](http://www.ams.org/mathscinet-getitem?mr=1388985)
- [5] Cangül, İ.N. and Singerman, D., Normal subgroups of Hecke groups and regular maps, Math. Proc. Cambridge Philos. Soc. 123 (1998), 59–74. [MR 1474865.](http://www.ams.org/mathscinet-getitem?mr=1474865)
- $[6]$ Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664–699. [MR 1513069.](http://www.ams.org/mathscinet-getitem?mr=1513069)
- [7] Hoang, G. and Ressler, W., Conjugacy classes and binary quadratic forms for the Hecke groups, Canad. Math. Bull. 56 (2013), 570–583. [MR 3078226.](http://www.ams.org/mathscinet-getitem?mr=3078226)
- [8] Huang, S., Generalized Hecke groups and Hecke polygons, Ann. Acad. Sci. Fenn. Math. 24 (1999), 187–214. [MR 1678040.](http://www.ams.org/mathscinet-getitem?mr=1678040)
- [9] Ikikardes, S., Sahin, R. and Cangül, I.N., Principal congruence subgroups of the Hecke groups and related results, Bull. Braz. Math. Soc. (N.S.) 40 (2009), 479–494. [MR 2563127.](http://www.ams.org/mathscinet-getitem?mr=2563127)
- [10] Jones, G.A. and Pinto, D., Hypermap operations of finite order, Discrete Math. 310 (2010), 1820–1827. [MR 2610286.](http://www.ams.org/mathscinet-getitem?mr=2610286)
- [11] Lehner, J., Uniqueness of a class of Fuchsian groups, Illinois J. Math. 19 (1975), 308–315. [MR 0376895.](http://www.ams.org/mathscinet-getitem?mr=0376895)
- [12] Magnus, W., Karrass, A., Solitar, D., Combinatorial group theory, 2nd revised edition, Dover, New York, 1976. [MR 0422434.](http://www.ams.org/mathscinet-getitem?mr=0422434)
- [13] Sahin, R. and Bizim, O., Some subgroups of extended Hecke groups $\overline{H}(\lambda_q)$, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), 497–502. [MR 2032553.](http://www.ams.org/mathscinet-getitem?mr=2032553)
- [14] Sahin, R., Bizim, O. and Cangül, İ.N., Commutator subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$, Czechoslovak Math. J. 54(129) (2004), 253–259. [MR 2040237.](http://www.ams.org/mathscinet-getitem?mr=2040237)
- [15] Sahin, R., Ikikardes, S. and Koruoğlu, Ö., Some normal subgroups of the extended Hecke groups $\overline{H}(\lambda_p)$, Rocky Mountain J. Math. 36 (2006), 1033–1048. [MR 2254377.](http://www.ams.org/mathscinet-getitem?mr=2254377)
- [16] Sahin, R. and Koruoğlu, Ö., *Commutator subgroups of the power subgroups of some Hecke* groups, Ramanujan J. 24 (2011), 151–159. [MR 2765607.](http://www.ams.org/mathscinet-getitem?mr=2765607)
- [17] Yilmaz Ozgür, N. and Sahin, R., On the extended Hecke groups $\overline{H}(\lambda_q)$, Turkish J. Math. 27 (2003), 473–480. [MR 2032150.](http://www.ams.org/mathscinet-getitem?mr=2032150)

B. Demir

Balıkesir University, Necatibey Faculty of Education, Secondary Mathematics Education Dept., 10100 Balıkesir, Turkey bdemir@balikesir.edu.tr

 \ddot{O} . Koruoğlu Balıkesir University, Necatibey Faculty of Education, Primary Mathematics Education Dept., 10100 Balıkesir, Turkey ozdenk@balikesir.edu.tr

 $R.$ Sahin^{\boxtimes}

Balıkesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145 Çağış Kampüsü, Balıkesir, Turkey rsahin@balikesir.edu.tr

Received: April 24, 2014 Accepted: October 5, 2015