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ABSTRACT

We investigate the classes of Kenmotsu manifolds which satisfy the condition of being 7-
Einstein, having n-parallel Ricci tensor, R(§,X)-Z =0, R(§,X)-R=0, Z({,X)-Z=0,
Z(,X)-R=0, Z(§,X)- S =0 or being Ricci-pseudosymmetric, where R, Z and S
denote the curvature tensor, the concircular curvature tensor and the Ricci tensor,
respectively. We also prove that a transformation in a Kenmotsu manifold under certain
conditions is an isometry.
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INTRODUCTION

A transformation in an n-dimensional Riemannian manifold M, which
transforms every geodesic circle of M into a geodesic circle, is called a concircular
transformation (Yano 1940, Kuhnel 1988). A concircular transformation is always
a conformal transformation (Kuhnel 1988). Thus, the geometry of concircular
transformations, that is the concircular geometry, is a generalization of inversive
geometry in the sense that the change of metric is more general than that induced
by a circle preserving diffeomorphism (see also Blair 2000). An interesting
invariant of a concircular transformation is the concircular curvature tensor Z as
defined by Yano (1940) and Yano & Kon (1984):

Z(X,Y)U = R(X, Y)U—n {e(Y, U)X —g(X,U)Y}

(n—1)

for all X,Y,U € TM, where R is the curvature tensor and r is the scalar
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curvature. Riemannian manifolds with vanishing concircular curvature tensor
are of constant curvature. Thus, the concircular curvature tensor is a measure of
the failure of a Riemannian manifold to be of constant curvature. In other
words, it represents deviation of the manifold from being of constant curvature.

On the other hand, Tanno (1969) classified (2n + 1)-dimensional connected
almost contact metric manifolds M with almost contact metric structure
(p,&,m, g), whose automorphism groups have the maximum dimension (n + 1)2.
For such a manifold, the sectional curvature of plane sections containing & is a
constant, say c. If ¢ > 0, M is a homogeneous Sasakian manifold of constant (-
sectional curvature. If ¢ = 0, M is the global Riemannian product of a line or a
circle with a Kéahler manifold of constant holomorphic sectional curvature. If
¢ <0, M is a warped product space Rx,C". In 1972, K. Kenmotsu abstracted
the differential geometric properties of the third case. In particular, the almost
contact metric structure in this case satisfies the equation

(Vxe)Y =g(pX, ) —n(Y)pX, X, YeTM,

where V is the Levi-Civita connection of the Riemannian metric, and an almost
contact metric manifold satisfying the above equation is called a Kenmotsu
manifold (Kenmotsu 1972). It is known that certain Legendre curves in a
Kenmotsu manifold are circles (Tripathi 2000). Recently, Kirichenko (2001)
obtained Kenmotsu structures from cosymplectic structures (that is, Vi =0
(Blair 2002)) by the canonical concircular transformations (Yano 1940).
Moreover, the concircular curvature tensor of contact metric manifolds are
studied recently (Tripathi & Kim 2004; Blair, Kim & Tripathi 2005). These
circumstances motivate us for further study of a Kenmotsu manifold, which is
another important class of almost contact metric manifolds apart from Sasakian
manifold. The paper is organized as follows. In section 2, some properties of the
concircular curvature tensor on a Riemannian manifold are shown. In
particular, it is proved that a Riemannian manifold satisfying Z-S=0 is a
Ricci-pseudosymmetric manifold. Section 3 contains a brief account of almost
contact metric manifolds and Kenmotsu manifolds. In section 4, among other
results it is proved that a 3-dimensional Kenmotsu manifold with 7-parallel
Ricci tensor is an Einstein manifold with constant scalar curvature —6 and
constant curvature —1 and is locally p-symmetric. In section 5, the conditions
R(EX)-Z=0, REX)-R=0, Z((,X)-Z=0 and Z(X)-R=0 on a
Kenmotsu manifold are studied and several statements are proved to be
equivalent. In section 6, Ricci-pseudosymmetric Kenmotsu manifold and the
condition Z(£,X)-S =0 on a Kenmotsu manifold are studied. In the last
section, a transformation in a Kenmotsu manifold under certain conditions is
proved to be an isometry.
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SOME PROPERTIES OF THE CONCIRCULAR
CURVATURE TENSOR

It is well known that every (1,1) tensor field 4 on a differentiable manifold
determines a derivation A- of the tensor algebra on the manifold, commuting
with contractions. For example, the (1,1) tensor field R(X,Y) induces the
derivation R(X, Y)-, thus associating with a (r,s) tensor field T, the (r,s+ 2)
tensor R - T'is defined by

(R-T)(X1, Xo, .., X X, Y) = (R(X, Y) - T)(X1, Xo, . .., Xy)
=—T(R(X,Y)X1,X2,...,Xy)
T( 17X27"'7R(X7 Y)X\)

Now, we begin with the following:

Proposition 1. Let (M,g) be an n-dimensional Riemannian manifold. Then
R-R=R-Z

Proof. Denoting
RO(Xv Y)U:g(YvU)X_g(X7U)Ya X, Y, UeTM, (1)

the concircular curvature tensor can be represented as

r

Z= R R, 2)

which implies that

r
R-Z=R-R—— R Ry.
nin—1) 0

By a straightforward calculation it follows that R - Ry = 0.
Similarly, it is easy to prove the following
Proposition 2. Let (M, g) be an n-dimensional Riemannian manifold. Then
/Z-Z=7-R
An n-dimensional Riemannian manifold (M,g) is called Ricci-

pseudosymmetric (Deszcz 1989) if the tensors R-S and Q(g,S) are linearly
dependent, where

Q(gy S)(Ua Va Xv Y) - = S(RO(X7 Y)Uv V) - S(Uv RO(X7 Y)V) (3)

for vector fields U, V,X, Y on M. The condition of Ricci-pseudosymmetry is
equivalent to
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(R(U,V)-8)(X,Y) = LsQ(g, S)(U, V; X, Y) (4)
holding on the set

US:{XEM:S;EKg at x},
n

where Lg is some function on Ug. If R-S =0 then M is said to be Ricci-
semisymmetric. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric
but the converse is not true.

Now we prove the following

Proposition 3. Let (M, g) be an n-dimensional Riemannian manifold satisfying

the condition Z - S = 0. Then M is a Ricci-pseudosymmetric manifold such that
r

n(n—1)
Proof. From (2) we have

;
Z-S=R-S—— =Ry S.
n(n—1) 0

In view of (1) and (3) we get Ry - S = Q(g, S), which implies that

r

Since the condition Z - S = 0 holds on M, we obtain

R'SzmQ(g,S)>

which completes the proof.

KENMOTSU MANIFOLDS

Let M be a (2n+ 1)-dimensional almost contact metric manifold (Blair 2002)
equipped with an almost contact metric structure (¢, £, n, g) consisting of a (1, 1)
tensor field ¢, a vector field &, a 1-form 7 and a compatible Riemannian metric g
satisfying

P =—I+n0¢  nE =1,  9&=0, nop=0, (5)
g(X,Y) = g(eX, oY) +n(X)n(Y), (6)

g(X,0Y) = —g(pX,Y),  g(X,&) =n(X) (7)
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for all X, Y € TM. An almost contact metric manifold M is called a Kenmotsu
manifold if it satisfies (Kenmotsu 1972)

(Vxp)Y =g(eX, Y)E—n(Y)pX, X, YeTM, (8)

where V is Levi-Civita connection of the Riemannian metric. From the above
equation it follows that

Vx€ = X —n(X)g, ©)
(Van)Y = g(X, ¥) = n(X)n(Y). (10)

Moreover, the curvature tensor R, the Ricci tensor S, and the Ricci operator Q
satisfy (Kenmotsu 1972)

R(X, Y)§ =n(X)Y —n(Y)X, (11)
0¢ = — ¢ (13)
Equation (11) is equivalent to
which implies that
R(§, X)§ = X = n(X)¢. (15)

From (11) and (14), we have

77(R(X7 Y)E) =0, (16)

n(R(E, X)Y) = n(X)n(Y) — g(X, Y). (17)

A plane section I in 7, M of an almost contact metric manifold M is called a ¢-
section if TILE and ¢(IT) = II. If at each point p € M the sectional curvature
K(II) does not depend on the choice of the ¢-section II of 7),M, then M is of
pointwise constant p-sectional curvature.

A Kenmotsu manifold of pointwise constant -sectional curvature is called a
Kenmotsu space form. Interestingly, using the notion of exterior recurrent forms
(Datta 1982) on manifolds, Pitis (1988) proved that there exist no connected
Kenmotsu space forms or connected conformally flat manifolds of dimension > 5.
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A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of ¢ equals
—2dn ® &) but not Sasakian. Moreover, it is also not compact since from
equation (9) we get divé = 2n. Kenmotsu (1972) showed (i) that locally a
Kenmotsu manifold is a warped product / x; N of an interval / and a Kéahler
manifold N with warping function f{z) = se’, where s is a nonzero constant; and
(ii) that a Kenmotsu manifold of constant -sectional curvature is a space of
constant curvature —1, and so it is locally hyperbolic space. Examples of
Kenmotsu manifolds of strictly pointwise constant y-sectional curvature are not
known so far and, according to D. Blair (in a private conversation), one doubts
that there are any since the warped product structure of a Kenmotsu manifold
involves a Kahler structure. Thus, one has to be careful for further study of
Kenmotsu space forms with strictly pointwise constant (p-sectional curvature.

n—EINSTEIN KENMOTSU MANIFOLDS

Let M be a (2n + 1)-dimensional almost contact metric manifold. Then M is
said to be n-Einstein (Blair 2002) if the Ricci operator Q satisfies

O=al+bn®E, (18)
where a and b are smooth functions on the manifold. In particular, if » = 0, then
M is an Einstein manifold. If a (2n 4 1)-dimensional Kenmotsu manifold is an

n-Einstein manifold, then ¢ + b = —2n. The Ricci tensor S of an almost contact
metric manifold M is said to be n-parallel (Yano & Kon 1984) if

(VuS)(pX,pY) =0, X, Y, UeTM.

We prove the following:

Theorem 1. Let M be a (2n + 1)-dimensional 7n-Einstein Kenmotsu manifold.
Then the following statements are equivalent:

(1) Ricci tensor of M is n-parallel.
(i) M is of constant scalar curvature —2n(2n + 1).
(ili) M is an Einstein manifold with S(X, Y) = —2ng(X, Y).

Proof. It is known that (Kenmotsu 1972) if a (2n 4 1)-dimensional Kenmotsu

manifold is an 7-Einstein manifold, then a + b = —2n. From (15), we also have
r= (2n+ 1)a + b. Thus, we have
r r
S(X.Y) = (3 +1)e(X, 1) = (5, + @n 4+ D)n(n(y). (19)

The statements (ii) and (iii) are equivalent from (19). By (19), we obtain
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1
2n

r

(VuS)(X. ¥) = 5

dr(U)g(pX,pY) = (5-+ 20+ 1) J{e(eU. X)n(Y) + gle U V(X))

From the above equation, we have
1
(VuS) (X, oY) = 5 dr(U)g(¢X, o). (20)

By (20), statement (ii) implies statement (i). If Ricci tensor S is n-parallel, then
from (20) it follows that the scalar curvature r is a constant. It is known that if a
Kenmotsu manifold is an n-Einstein manifold such that one of @ and b is a
constant, then M is Einstein (Corollary 9, Kenmotsu 1972). Thus, we conclude
that a (2n+ 1)-dimensional n-Einstein Kenmotsu manifold with n-parallel Ricci
tensor is an Einstein manifold. Therefore, from (19) we get r = —2n(2n + 1).
This completes the proof.

A 3-dimensional Kenmotsu manifold with n-parallel Ricci tensor is of
constant scalar curvature (De & Pathak 2004). However, we prove the
following:

Theorem 2. A 3-dimensional Kenmotsu manifold with n-parallel Ricci tensor is an
Einstein manifold with constant scalar curvature —6 and constant curvature —1.

Proof. Since in a 3-dimensional Riemannian manifold the Weyl conformal

curvature tensor vanishes, therefore it is known that

R(X,Y)U =g(Y,U)0X — g(X,U)QY + S(Y, U)X — S(X,U)Y
~ (Y, U)X — g(X, U) Y}, @

where r is the scalar curvature. Now, let M be a 3-dimensional Kenmotsu
manifold. From (12) and (21), we have

ROY D)6 = (1@ @Y+ (1) 0y —amx). (2

In view of (11) and (22), we obtain

aon(on- (52 -wofor- (£3))

Putting Y = £ in the above equation, we get

20X = (r+2)X — (r + 6)n(X)¢, (23)

which is equivalent to
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28(X,Y)=(r+2)g(X,Y) — (r+6)n(X)n(Y). (24)

Initially from (23), we see that M is an n-Einstein manifold. Hence, in view of
Theorem 1, we see that M is an Einstein manifold with constant scalar curvature
—6. Therefore, from (23) and (24) we get

OX =-2X, S(X,Y)=—-2g(X,Y). (25)

Using (25) in (21), we obtain
R(X,Y)U=g(X,U)Y —g(Y,U)X. (26)

Thus M is of constant curvature —1.

A 3-dimensional Kenmotsu manifold is locally p-symmetric if and only if the
scalar curvature is a constant (De & Pathak 2004). Thus, in view of Theorem 2,
we have the following:

Corollary 1. A 3-dimensional Kenmotsu manifold with n-parallel Ricci tensor is
locally p—symmetric.

KENMOTSU MANIFOLDS SATISFYING
R(¢, X)eZ = 0 and Z(¢ , X)oZ = 0

A necessary and sufficient condition that a Riemannian manifold be reducible to
a Euclidean space by a suitable concircular transformation is that its concircular
curvature tensor vanishes. A Riemannian manifold with vanishing concircular
curvature tensor is said to be concircularly flat. A Riemannian manifold is
concircularly flat if and only if it is of constant curvature.

Let M be a (2n+ 1)-dimensional almost contact metric manifold equipped
with an almost contact metric structure (p,&,7,g). Then the concircular
curvature tensor Z in M becomes

Z(X,Y)U = R(X, Y)U—m{g(y, U)X —g(X,U)Y}.  (27)

From (27), (11) and (14), we have
20616 = (14 555 ) (000 Y = (1), e
2607 = (14 5053 J DX -2(E . (9
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Consequently, we have

r

i) o= nene (30)

Z(&,X)¢ = <1 +2n(T+

Also, in view of (27) and (11) we have

02X 100 = (14 55— ) (NEX.0) = (02 0). - (B1)

which implies that
n(Z(X, Y)§) =0, (32)
026307 = (14 g ) 0D — X 1) (3

Now, we prove the following theorem.

Theorem 3. On a (2n + 1)-dimensional Kenmotsu manifold M the following
statements are equivalent:

(1) M is canonically concircular to C"xR.
(i) M is of constant curvature —1.

(iii) M is concircularly flat.

(iv) M satisfies R(¢,X) - Z = 0.

(v) M satisfies R(¢,X)- R=0.

Proof. It is known that a (2n+ 1)-dimensional Kenmotsu manifold is of
constant curvature —1 if and only if it is canonically concircular to C"xR,
therefore statements (i) and (ii) are equivalent (Kirichenko 2001). In view of the
fact that a Riemannian manifold is concircularly flat if and only if it is of
constant curvature, statement (ii) implies statement (iii). Obviously, statement
(iv) is implied by statement (iii). From Proposition 1, statements (iv) and (v) are
equivalent. A Kenmotsu manifold, which satisfies R(¢, X) - R = 0, is of constant
curvature —1 (Kenmotsu 1972); thus statement (v) implies statement (ii). A
straightforward calculation also shows that statement (ii) implies statement (V).

Replacing R(§,X) by Z(£,X) in the conditions R({,X)-Z=0 and
R(£, X) - R =0, we have the following:

Theorem 4. Let M be a (2n+ 1)-dimensional Kenmotsu manifold. Then the
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following statements are equivalent:

(i) M is either of constant scalar curvature —2n(2n+ 1) or of constant
curvature —1.

(i) M satisfies Z(§,X) - Z =0.
(ili) M satisfies Z(¢,X)- R =0.

Proof. If M has scalar curvature r = —2n(2n + 1) then from (29) it follows that
Z(£,X) = 0; and if M is of constant curvature, then Z = 0. Thus, statements (ii)
and (iii) follow from statement (i). From Proposition 2, statements (ii) and (iii)
are equivalent. Next, assuming statement (iii) we have

0 =1[Z(§ U), R(X, Y)|§ = R(Z(§, U)X, Y)§ — R(X, Z(§, U) Y)E.

In view of (29), (16) and (30) the above relation gives

0=-— (1 + 3o +1>> {g(U, R(X, V)E)¢ + R(X, Y)U — n(U)R(X, Y)¢

+ n(X)R(U, Y)§ — g(U, X)R(, Y)E +n(Y)R(X, U)§ — g(U, Y)R(X, )¢},

which in view of (11) yields
r
0= (14 5y ) (R U+ 20, U)X~ (X, 0)T).

which gives us either r = —2n(2n+ 1) or
R(X,Y)U+g(Y,U)X — g(X, U) = 0.

This implies that M is of constant curvature —1 showing statement (i).

RICCI-PSEUDOSYMMETRIC KENMOTSU MANIFOLDS

It is proved that a Kenmotsu manifold satisfying R(X, Y) - S = 0 is an Einstein
manifold (Binh et al. 2002), while Umnova (2002) has shown that any
Einsteinian Kenmotsu manifold has constant sectional curvature —1. In this
section we prove the following:

Theorem 5. Let M be a (2n 4+ 1)-dimensional Kenmotsu manifold. If M is Ricci-
pseudosymmetric, then either M is an Einstein manifold with scalar curvature
r = —2n(2n + 1) (in which case M is Ricci-semisymmetric) or Ly = —1 holds on M.

Proof. Let M be a (2n+ 1)-dimensional Ricci-pseudosymmetric Kenmotsu
manifold. So the condition
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(R(U, X) - S)(Y,V) = LsQ(g, S)(Y,V; U, X) (34)
holds on M. Putting U = £ in (34) we have
(R(& X) - S)(Y, V) = LsQ(g, S)(Y, V3 &, X). (35)
Now we calculate the left hand side of (35). Then
(R(&,X) - S)(Y, V) = =S(R(&,X)Y, V) = S(Y,R(§, X)V), (36)
which gives
(R(&X) - S)(Y, V) = = 2ng(X, Y)n(V) = n(Y)S(X, V) = 2ng(X, V)n(Y) —n(V)S(X,Y). (37)
On the other hand by the use of (3) we can write
0(g, S)(Y, V3£, X) = 2ng(X, Y)n(V) + n(Y)S(X, V) + 2ng(X, V)n(Y) +n(V)S(X, Y). (38)

Suppose that M is Ricci-semisymmetric, then it is trivially Ricci-
pseudosymmetric. Therefore we can write (R(§, X) - S)(Y, V) = 0. So from (37)
we get

2ng(X, Y)n(V) +n(Y)S(X, V) + 2ng(X, V)n(Y) +n(V)S(X,Y)=0. (39)
Putting Y = £ into (39) we obtain
S(X, V) = -2ng(X, V),
which implies that M is an Einstein manifold with the scalar curvature

r=-2n2n+1).
Now suppose that M is a Ricci-pseudosymmetric manifold, which is not
Ricci-semisymmetric. Then in view of (37) and (38) we obtain

(1 + Ls){2ng(X, Y)n(V) + n(Y)S(X, V) + 2ng(X, V)n(Y) +n(V)S(X, Y)} = 0.

Since M is not Ricci-semisymmetric, we get Lg = —1.
In view of Theorem 5 and Proposition 3 we obtain the following corollary:

Corollary 2. Let M be a (2n+ 1)-dimensional Kenmotsu manifold. If the
concircular curvature tensor Z satisfies Z(£, X) - S = 0, then either the scalar
curvature r of M satisfies r=—-2n(2n+1) or M is Einstein with
r=-=2n2n+1).
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A TRANSFORMATION IN A KENMOTSU MANIFOLD
We prove the following:

Theorem 6. Let M be a (2n+ 1)-dimensional manifold carrying a Kenmotsu
structure (p, &, n,g). If a transformation f transforms the structure (p,&,n,2)
into another Kenmotsu structure (¢',&',7/,g’), which leaves the concircular
curvature tensor and the Ricci tensor invariant, such that n(¢’) # 0, then f'is an
isometry.

Proof. From the assumption Z = Z’ and (31) we get

l+— "
2n(2n + 1)

) (e, 0) = nXe(r, 0} = wZ (XY, (@0
Putting X — ¢ in (40) and using (29) we get
NN (EEL V) (0} =€) eV, V)~ (VUL (@)
which implies that
MONE(E, V)~ 7/ (U)} = n(U) gl V)~ (M)} ®2)
Putting ¥ = ¢ in (42), we have
A€, U) ~ (V) = n(U) (€. ) 1 (©)). @3)
From the assumption S = §', in view of (12), we find
WE) = 556 ) =~ S (€)= (0). (44)
Using (44) in (43), we get
§(€,0) (V) =0, (43)
From (41) and (45) we obtain
W€ (&Y, V)~ (¥, U)} =0,

which implies that g = ¢’, provided n(¢') # 0.
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