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Abstract. The torsion of a Legendre curve of an α-Sasakian manifold is ob-

tained. Necessary and sufficient conditions for Legendre curves having parallel

mean curvature vector, having proper mean curvature vector, being harmonic
and being of type AW (k), k = 1, 2, 3 are also obtained.
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1. Introduction

A Riemannian submanifold with vanishing Laplacian of mean curvature vector ∆H
is defined as a biharmonic submanifold by B.-Y. Chen [9]. In [11], it was proved that
the only biharmonic curves in an Euclidean space are straight lines. In [4], curves
satisfying ∆⊥H = λH in an Euclidean space were classified, where ∆⊥ denotes the
Laplacian of the curve in the normal bundle and λ is a real valued function. In [1],
the classification of curves satisfying ∆H = λH and ∆⊥H = λH in a real space
form were given. By looking the Chen’s formula (Lemma 4.1, [8]), one sees that
the Laplacian in the normal bundle of H, ∆⊥H, is an ingredient of the normal part
of ∆H to M and ∆⊥H = 0 is less restrictive than ∆H = 0. However, the condition
∆H = λH does not imply ∆⊥H = λH. The concepts of submanifolds of type
AW (k) are defined in [3]; in particular, curves of type AW (k) were investigated in
[2].

On the other hand in [6], Blair and Baikoussis introduced the notion of Legendre
curves in a contact metric manifold. A 1-dimensional integral submanifold in the
contact subbundle is called a Legendre curve [6]. The class of α-Sasakian manifolds
[12] include Sasakian manifolds, thus it is a natural motivation for studying Legendre
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curves in α-Sasakian manifolds. The paper is organized as follows. In section 2, it is
proved that a Legendre curve in an α-Sasakian manifold is a Frenet curve of order
3 and its torsion is always α. We also give a basic lemma for further use. Section 3
contains main results about Legendre curves having parallel mean curvature vector,
having proper mean curvature vector, being harmonic and being of type AW (k),
k = 1, 2, 3.

2. Legendre curves in α-Sasakian manifolds

Let M be an almost contact metric manifold [7] with an almost contact metric
structure (ϕ, ξ, η, g), that is, ϕ is a (1, 1) tensor field, ξ is a vector field; η is a 1-form
and g is a compatible Riemannian metric such that

ϕ2 = −I + η ⊗ ξ, η (ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,(2.1)

g (ϕX,ϕY ) = g (X, Y )− η (X) η (Y ) ,(2.2)

g (X, ϕY ) = −g (ϕX, Y ) , g (X, ξ) = η (X)(2.3)

for all X, Y ∈ TM .

An almost contact metric structure (ϕ, ξ, η, g) on M is called an α-Sasakian struc-
ture [12] if

(2.4) (∇Xϕ) Y = α (g (X, Y ) ξ − η (Y ) X)

for some nonzero constant α. From (2.4) it follows that

∇Xξ = −αϕX,(2.5)

(∇Xη) Y = −αg (ϕX, Y ) .(2.6)

If α = 1, an α-Sasakian structure reduces to a Sasakian structure.

Let γ(s) be a curve in a Riemannian manifold M parameterized by the arc length.
The curve γ is called a Frenet curve of order r if there exist orthonormal vector fields
E1, . . . , Er along γ such that

γ′ = E1, ∇γ′E1 = κ1E2, ∇γ′E2 = −κ1E1 + κ2E3, . . . ,∇γ′Er = −κr−1Er−1,

where κ1, . . . , κr−1 are positive smooth functions of s, and ∇ is Levi-Civita connec-
tion.

A 1-dimensional integral submanifold of a contact manifold is called a Legendre
curve. It is known from [5] that a 3-dimensional contact metric manifold is Sasakian
if and only if the torsion of its Legendre curves is equal to 1. In [5], it was also
shown that for a 3-dimensional manifold M endowed with the contact metric struc-
ture (ϕ, ξ, η, g, ε), M is Sasakian if and only if the torsion of its Legendre curves is
equal to ε. In [14], it was shown that in a Legendre curve γ(s) parametrized by the
arc length in a Kenmotsu manifold, such that ∇γ̇ γ̇ is parallel to the structure vector
field ξ, is a circle.
Now, we study a Legendre curve on an α-Sasakian manifold.
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Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then its associated
Frenet frame is {γ′, ϕγ′, ξ}, so that we have the following equations:

∇γ′γ′ = kϕγ′,(2.7)

∇γ′ϕγ′ = −kγ′ + αξ,(2.8)

∇γ′ξ = −αϕγ′.(2.9)

Hence, we conclude the following:

Proposition 2.1. In an α-Sasakian manifold, a Legendre curve is a Frenet curve
of order 3 and its torsion is always α.

In view of (2.7), (2.8) and (2.9) we can state the following:

Lemma 2.1. Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then

∇γ′∇γ′γ′ = −k2γ′ + k′ϕγ′ + αkξ,(2.10)

∇γ′∇γ′∇γ′γ′ = −3kk′γ′ +
(
k′′ − k

(
k2 + α2

))
ϕγ′ + 2αk′ξ.(2.11)

3. Main results

Consider a curve γ in a 3-dimensional Riemannian manifold. Chen [8] proved the
following identity:

∆H = ∆H = −∇γ′∇γ′∇γ′γ′,

where H is the mean curvature vector. Moreover, the Laplacian of the mean curva-
ture in the normal bundle (see [13]) is defined by

∆⊥H = −∇⊥
γ′∇⊥

γ′∇⊥
γ′γ′,

where ∇⊥ denotes the normal connection in the normal bundle.
A curve γ(s) in a Riemannian manifold M is called a curve with proper mean

curvature vector field [10] if ∆H = λH, where λ is a function. In particular, if
∆H = 0 then it becomes a biharmonic curve [9].

A curve γ(s) is known to be a curve with proper mean curvature vector field in
the normal bundle [4] if ∆⊥H = λH, where ∆⊥H is the Laplacian of the mean
curvature in the normal bundle and λ is a function. In particular, if ∆⊥H = 0 then
it reduces to a curve with harmonic mean curvature vector field in the normal bundle
[4].

Theorem 3.1. Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then γ
has parallel mean curvature vector field if and only if k = 0.

Proof. The proof is obvious from (2.10).

Theorem 3.2. Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then γ is
a curve with proper mean curvature vector field if and only if either k = 0 or λ is a
constant equal to α2 + k2.
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Proof. We note that
∆H = −∇γ′∇γ′∇γ′γ′.

In view of (2.11), the condition ∆H = λH gives

(3.1) 3kk′γ′ −
(
k′′ − k

(
k2 + α2

))
ϕγ′ − 2αk′ξ = λkϕγ′,

which implies that
(1) kk′ = 0,
(2) k′′ − k

(
k2 + α2 − λ

)
= 0 and

(3) αk′ = 0.
From (3) we have k = c, where c is a constant. Then in view of (2), we find that
either c = 0 or λ = c2 + α2. The converse is straightforward.

As a corollary, we have the following result:

Corollary 3.1. A Legendre curve in an α-Sasakian manifold is biharmonic if and
only if its curvature is zero.

Next, we prove the following:

Theorem 3.3. Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then γ is
a curve with proper mean curvature vector field in the normal bundle if and only if
either k = 0 or k is a nonzero constant and λ = α2.

Proof. From (2.10), we have

(3.2) (∇γ′H)⊥ = k′ϕγ′ + αkξ.

From the above equation, we obtain the following equation.

∇γ′

(
(∇γ′H)⊥

)
= −kk′γ′ +

(
k′′ − α2k

)
ϕγ′ + 2αk′ξ,

which gives

(3.3) ∆⊥H = −
(
k′′ − α2k

)
ϕγ′ − 2αk′ξ.

Now if ∆⊥H = 0 then from (3.3), we get
(1) k′′ − α2k + λk = 0 and
(2) k′ = 0.

From (2), it follows that k is some constant c. Then from (1), we get c
(
λ− α2

)
= 0

which implies that either c = 0 or c 6= 0 and λ = α2. The converse follows easily.
In particular, we can state the following:

Corollary 3.2. A Legendre curve in an α-Sasakian manifold is with harmonic mean
curvature vector field in the normal bundle if and only if k = 0.

Definition 3.1. A Frenet curve γ(s) is said to be [2]
(i) of type AW (1) if N3 (s) = 0,
(ii) of type AW (2) if

(3.4) ‖N2 (s)‖2
N3 (s) = 〈N3 (s) , N2 (s)〉N2 (s) ,

(iii) of type AW (3) if

(3.5) ‖N1 (s)‖2
N3 (s) = 〈N3 (s) , N1 (s)〉N1 (s) ,
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where

N1 (s) = (γ′′)⊥ (s), N2 (s) = (γ′′′)⊥ (s), N3 (s) =
(
γ(iv)

)⊥
(s).

For general case, we refer to [3].

Let γ(s) be a Legendre curve in an α-Sasakian manifold. Then from (2.7), (2.10),
(2.11) we get

(3.6) N1 (s) = kϕγ′,

(3.7) N2 (s) = k′ϕγ′ + αkξ,

(3.8) N3 (s) =
(
k′′ − k

(
k2 + α2

))
ϕγ′ + 2αk′ξ,

respectively.

Theorem 3.4. A Legendre curve in an α-Sasakian manifold is of type AW (1) if
and only if k = 0.

Proof. If a Legendre curve γ(s) in an α-Sasakian manifold is of type AW (1) then
from (3.8) we have

(1) k′′ − k
(
k2 + α2

)
= 0 and

(2) k′ = 0.
The statement (2) implies that k is a constant, which in view of (1) becomes zero.
The converse is easily verified.

Theorem 3.5. A Legendre curve in an α-Sasakian manifold is of type AW (2) if
and only if either k = 0 or k satisfies the differential equation

2α (k′)2 − αk
(
k′′ − k

(
k2 + α2

))
= 0.

Proof. Putting the values from (3.7) and (3.8) in (3.4), we get

(3.9)
{
2α2kk′ + k′

(
k′′ − k

(
k2 + α2

))}
αk = 2αk′

(
α2k2 + (k′)2

)
(3.10)

{
2α2kk′ + k′

(
k′′ − k

(
k2 + α2

))}
k′ =

(
α2k2 + (k′)2

) (
k′′ − k

(
k2 + α2

))
.

If k = 0, then in view of (3.9) and (3.10), the Legendre curve becomes of type
AW (2). If k 6= 0 and the Legendre curve is of type AW (2), then from (3.9) and
(3.10) we obtain

(3.11)
(
α2k2 + (k′)2

) {
2α (k′)2 − αk

(
k′′ − k

(
k2 + α2

))}
= 0.

Since k 6= 0 so
(
α2k2 + (k′)2

)
cannot vanish. Therefore, we have

2α (k′)2 − αk
(
k′′ − k

(
k2 + α2

))
= 0,

which proves the theorem.

Theorem 3.6. A Legendre curve in an α-Sasakian manifold is of type AW (3) if
and only if k is a constant.
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Proof. In view of (3.6), (3.8) and (3.5), the condition for a Legendre curve γ(s) in
an α-Sasakian manifold to be of type AW (3) is equivalent to the following relation

k2
((

k′′ − k
(
k2 + α2

))
ϕγ′ + 2αk′ξ

)
= k2

(
k′′ − k

(
k2 + α2

))
ϕγ′,

which is equivalent to k′ = 0.
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