See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/298059498](https://www.researchgate.net/publication/298059498_Generalized_Pell_sequences_in_some_principal_congruence_subgroups_of_the_Hecke_groups?enrichId=rgreq-c86f8040b57b146c5b831f967b949822-XXX&enrichSource=Y292ZXJQYWdlOzI5ODA1OTQ5ODtBUzozMzkxNzYzNzg2NTA2MjVAMTQ1Nzg3NzM1ODEwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Generalized Pell sequences in some principal congruence subgroups of the](https://www.researchgate.net/publication/298059498_Generalized_Pell_sequences_in_some_principal_congruence_subgroups_of_the_Hecke_groups?enrichId=rgreq-c86f8040b57b146c5b831f967b949822-XXX&enrichSource=Y292ZXJQYWdlOzI5ODA1OTQ5ODtBUzozMzkxNzYzNzg2NTA2MjVAMTQ1Nzg3NzM1ODEwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf) Hecke groups

Article in Mathematical Reports · January 2016

GENERALIZED PELL SEQUENCES IN SOME PRINCIPAL CONGRUENCE SUBGROUPS OF THE HECKE GROUPS

SEBAHATTIN IKIKARDES, ZEHRA SARIGEDIK DEMIRCIOGLU and RECEP SAHIN

Communicated by Alexandru Zaharescu

In this paper, we consider the Hecke groups $H(\sqrt{m})$ for $m = 1, 2$ and 3. Firstly, In this paper, we consider the frecke groups $H(\sqrt{m})$ for $m = 1, 2$ and 3. Firstly,
we give the generators of the principal congruence subgroups $H_2(\sqrt{m})$ of $H(\sqrt{m})$, respectively. Then, using some of these generators, we define a sequence U_k which is generalized version of the Pell numbers sequence P_k given in [12] for which is generalized version of the F en numbers sequence T_k given in [12] is the modular group, in the extended Hecke groups $H(\sqrt{m})$ for $m = 1, 2$ and 3.

AMS 2010 Subject Classification: 20H10, 11F06.

Key words: Hecke group, principal congruence subgroup, generalized Pell seguence, generalized Pell-Lucas sequence.

1. INTRODUCTION

In [5], Erich Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z) = -\frac{1}{z} \quad \text{and} \quad S(z) = -\frac{1}{z + \lambda},
$$

where λ is a fixed positive real number. E. Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2 \cos \frac{\pi}{q}$, q is an integer, $q \ge 3$, or $\lambda \ge 2$. We will focus on the discrete case with $\lambda < 2$. These groups have come to be known as the Hecke Groups, and we will denote them $H(\lambda_q)$ for $q \geq 3$. The Hecke group $H(\lambda_q)$ is isomorphic to the free product of two finite cyclic groups of orders 2 and q and it has a presentation

(1)
$$
H(\lambda_q) = \langle T, S | T^2 = S^q = I \rangle \cong C_2 * C_q.
$$

The first several of these groups are $H(\lambda_3) = \Gamma = PSL(2, \mathbb{Z})$ (the modular group), $H(\lambda_4) = H($ √ 2), $H(\lambda_5) = H(\frac{1+\sqrt{5}}{2})$ $(\frac{2}{2})$, and $H(\lambda_6) = H(\lambda_6)$ √ $\mathcal{H}(\sqrt{3})$. It is clear that $H(\lambda_q) \subset PSL(2,\mathbb{Z}[\lambda_q])$, for $q \geq 4$. The groups $H(\sqrt{2})$ and $H(\sqrt{3})$ are of particular interest, since they are the only Hecke groups, aside from the modular group, whose elements are completely known (see, [11]). Also conjugates of the Hecke groups $H(\sqrt{2})$ and $H(\sqrt{3})$ are commensurable to $H(\lambda_3) = H(1)$. The other $H(\lambda_q)$'s are incommensurable to conjugates of $H(\lambda_3) = H(1)$ and

MATH. REPORTS 18(68), 1 (2016), 129–136

of each other. Thus $H(\sqrt{m})$, $m = 1, 2$ and 3, are called arithmetic as subgroups of $SL(2,\mathbb{R})$. Also these arithmetic Hecke groups have been studied by many authors, for example, see [2], [7] and [8].

Throughout this paper, we identify each matrix A in $SL(2,\mathbb{Z}[\lambda_q])$ with $-A$, so that they each represent the same element of $H(\lambda_q)$. Thus, we can represent the generators of Hecke groups $H(\lambda_q)$ as

$$
T = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \text{ and } S = \left(\begin{array}{cc} 0 & -1 \\ 1 & \lambda_q \end{array}\right)
$$

.

The principal congruence subgroups of level p, p prime, of $H(\lambda_q)$ are defined in [6], as

$$
H_p(\lambda_q) = \{ M \in H(\lambda_q) : M \equiv \pm I \pmod{p} \},
$$

$$
= \left\{ \begin{bmatrix} a & b\lambda_q \\ c\lambda_q & d \end{bmatrix} : a \equiv d \equiv \pm 1, b \equiv c \equiv 0 \pmod{p}, ad - \lambda_q^2 bc = 1 \right\}.
$$

 $H_p(\lambda_q)$ is always a normal subgroup of finite index in $H(\lambda_q)$.

The principal congruence subgroups of Hecke group $H(\sqrt{m})$, $m=2$ and 3, has been studied by Cangül and Bizim in [3]. They proved that the quotient group of the Hecke group $H(\sqrt{m})$ by its principal congruence subgroup $H_2(\sqrt{m})$ is the dihedral group D_{2m} , *i.e.* :

$$
H(\sqrt{m})/H_2(\sqrt{m}) \cong D_{2m}.
$$

In the literature, principal congruence subgroups $H_2(\lambda_3)$ of $H(\lambda_3)$ have been extensively studied in many aspects, see [1], [4], [9] and [12]. It is known that principal congruence subgroup $H_2(\lambda_3)$ is generated by

$$
a_1 = TSTS = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] \text{ and } a_2 = TS^2TS^2 = \left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right].
$$

In [12], they proved that if $A(q)$ is the matrix representing of the element $g = (a_1 \cdot a_2)^k = ((TS)^2 (TS^{-1})^2)^k$, $k \ge 1$, which is product of the generators of $H_2(\lambda_3)$, and if $q \in H(\lambda_3)$ act on a real quadratic irrational number α , then

$$
A(g) = \left[\begin{array}{cc} P_{2k-1} & P_{2k} \\ P_{2k} & P_{2k+1} \end{array} \right],
$$

where P_k is the k^{th} Pell number. It is well-known that the Pell numbers are defined by the recurrence relation $P_0 = 0$, $P_1 = 1$ and $P_k = 2P_{k-1} + P_{k-2}$, for $k \geq 2$. The Pell-Lucas numbers are defined by the recurrence relation $Q_0 = 2$, $Q_1 = 2$ and $Q_k = 2Q_{k-1} + Q_{k-2}$, for $k \geq 2$. The Pell-Lucas number can be also expressed by $Q_k = 2P_{k-1} + 2P_k$.

The aim of this paper is to generalize results given in [12] for the modular group to the Hecke groups $H(\sqrt{m})$ for $m = 1, 2$ and 3. To do these,

firstly, we give the generators of the principal congruence subgroups $H_2(\sqrt{m})$ of $H(\sqrt{m})$. Then, using some of these generators, we define a sequence which is generalized version of the Pell numbers sequence given in [12] for the moduis generalized version of the 1 en numbers sequence given in [12] for the modu-
lar group, in Hecke groups $H(\sqrt{m})$ for $m = 1, 2$ and 3. Finally, we investigate the fixed points of the transformations $((TS^{-1})^2(TS)^2)^k$ and $((TS)^2(TS^{-1})^2)^k$ in $Q(\sqrt{d})$.

2. GENERALIZED PELL NUMBERS IN $H_2(\lambda_q)$ FOR $q = 3.4$ AND 6

First, we give the group structure of the principal congruence subgroup $H_2(\lambda_q)$ of Hecke group $H(\lambda_q)$ for $q=3, 4$ and 6.

THEOREM 1. If $q = 3, 4$ and 6, then the principal congruence subgroup $H_2(\lambda_q)$ of $H(\lambda_q)$ is the free product of $(q-1)$ infinite cyclic groups.

Proof. We have

$$
H(\lambda_q)/H_2(\lambda_q) \cong \langle T, S \mid T^2 = S^q = (TS)^2 = I \rangle.
$$

Hence we obtain

$$
H(\lambda_q)/H_2(\lambda_q) \cong D_q, ([10])
$$

and

$$
|H(\lambda_q):H_2(\lambda_q)|=2q.
$$

If we choose a Schreier transversal for $H_2(\lambda_q)$ as

$$
I, T, S, S^2, \cdots, S^{q-1}, TS, TS^2, \ldots, TS^{q-2}, ST.
$$

Then all possible products are

$$
I.T.(T)^{-1} = I,
$$

\n
$$
T.T.(I)^{-1} = I,
$$

\n
$$
S.T.(ST)^{-1} = I,
$$

\n
$$
S.S.(S^{2})^{-1} = I,
$$

\n
$$
S.S.(S^{2})^{-1} = I,
$$

\n
$$
S^{2}.T.(TS^{q-2})^{-1} = S^{2}TS^{2}T,
$$

\n
$$
S^{2}.S.(S^{3})^{-1} = I,
$$

\n
$$
\vdots
$$

\n
$$
S^{q-1}.T.(TS)^{-1} = S^{q-1}TS^{q-1}T,
$$

\n
$$
S^{q-1}.S.(I)^{-1} = I,
$$

\n
$$
TS.S.(TS^{2})^{-1} = I,
$$

\n
$$
TS.S.(TS^{2})^{-1} = I,
$$

\n
$$
TS^{2}.T.(S^{q-2})^{-1} = TS^{2}TS^{2},
$$

\n
$$
TS^{3}.S.(TS^{3})^{-1} = I,
$$

\n
$$
\vdots
$$

\n
$$
TS^{q-2}.T.(S^{2})^{-1} = TS^{q-2}TS^{q-2},
$$

\n
$$
TS^{q-2}.S.(ST)^{-1} = TS^{q-1}TS^{q-1},
$$

\n
$$
ST.T.(S)^{-1} = I,
$$

\n
$$
ST.S.(T)^{-1} = STST,
$$

The generators $H_2(\lambda_q)$ are $TSTS, TS^2TS^2, \cdots, TS^{q-1}TS^{q-1}$. Thus $H_2(\lambda_q)$ has a presentation

$$
H_2(\lambda_q) = \langle TSTS \rangle * \langle TS^2TS^2 \rangle * \cdots * \langle TS^{q-1}TS^{q-1} \rangle
$$

Here, using the permutation method and Riemann-Hurwitz formula, we also get the signature of $H_2(\lambda_q)$ as $(0; \infty^{(2m)})$. \Box

Thus the principal congruence subgroup $H_2(\lambda_q)$, $q = 3, 4$ or 6, of $H(\lambda_q)$ is the free product of $(q - 1)$ finite cyclic groups of order infinite and it is generated by

$$
a_1 = TSTS, a_2 = TS^2TS^2, ..., a_{q-1} = TS^{q-1}TS^{q-1}.
$$

Now, we give some generalizations of the Pell numbers and the Pell-Lucas numbers. To do this, we use the generators $a_1 = TSTS$ and $a_{q-1} = TS^{-1}TS^{-1}$ of $H_2(\lambda_q)$ of $H(\lambda_q)$, $q = 3, 4$ and 6. Here we replace λ_q , $q = 3, 4$ or 6 with \sqrt{m} , $m = 1, 2$ and 3, respectively. Then we have the matrix representation of $a_1 = (TS)^2$ and $a_{q-1} = (TS^{-1})^2$ as

$$
\left[\begin{array}{cc} 1 & 2\sqrt{m} \\ 0 & 1 \end{array}\right]
$$

and

$$
\left[\begin{array}{cc} 1 & 0 \\ 2\sqrt{m} & 1 \end{array}\right].
$$

Therefore we obtain the matrix representation of the product $a_{q-1}.a_1 = (TS^{-1})^2$. $(TS)^2$ as

$$
A = \left[\begin{array}{cc} 1 & 2\sqrt{m} \\ 2\sqrt{m} & 1 + 4m \end{array} \right].
$$

Then, we can show the following lemma.

LEMMA 2. The k th power of A is

$$
A^k = \left[\begin{array}{cc} U_{2k-1} & U_{2k} \\ U_{2k} & U_{2k+1} \end{array} \right],
$$

where $U_0 = 0$, $U_1 = 1$ and $U_k = 2\sqrt{m}U_{k-1} + U_{k-2}$, for $k \geq 2$.

Proof. In order to prove its we use induction method on k. Let

$$
A = \left[\begin{array}{cc} U_1 & U_2 \\ U_2 & U_3 \end{array} \right]
$$

and

$$
A^k = \left[\begin{array}{cc} U_{2k-1} & U_{2k} \\ U_{2k} & U_{2k+1} \end{array} \right].
$$

Then we have

$$
A^{2} = \begin{bmatrix} 1 & 2\sqrt{m} \\ 2\sqrt{m} & 1+4m \end{bmatrix} \cdot \begin{bmatrix} 1 & 2\sqrt{m} \\ 2\sqrt{m} & 1+4m \end{bmatrix}
$$

=
$$
\begin{bmatrix} 1+4m & 2\sqrt{m}(1+4m)+2\sqrt{m} \\ 2\sqrt{m}(1+4m)+2\sqrt{m} & 4m+(4m+1)^{2} \end{bmatrix}
$$

$$
= \begin{bmatrix} U_3 & U_4 \\ U_4 & U_5 \end{bmatrix}.
$$

Hence assertion is true for $k = 2$. Now, let us assume that

A

$$
A^{k-1} = \left[\begin{array}{cc} U_{2k-3} & U_{2k-2} \\ U_{2k-2} & U_{2k-1} \end{array} \right].
$$

Finally A_k is obtained as

$$
A^{k} = \begin{bmatrix} U_{2k-3} & U_{2k-2} \ U_{2k-2} & U_{2k-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 2\sqrt{m} \\ 2\sqrt{m} & 1+4m \end{bmatrix}
$$

=
$$
\begin{bmatrix} U_{2k-3} + 2\sqrt{m}(U_{2k-2}) & 2\sqrt{m}U_{2k-3} + (1+4m)U_{2k-2} \\ U_{2k-2} + 2\sqrt{m}(U_{2k-1}) & 2\sqrt{m}U_{2k-2} + (1+4m)U_{2k-1} \end{bmatrix}
$$

=
$$
\begin{bmatrix} U_{2k-1} & U_{2k} \\ U_{2k} & U_{2k+1} \end{bmatrix}.
$$

Therefore we have a real number sequence U_k . The definition and boundary conditions of this sequence are

$$
U_k = 2\sqrt{m}U_{k-1} + U_{k-2}, \text{ for } k \ge 2,
$$

$$
U_0 = 0, U_1 = 1. \quad \Box
$$

PROPOSITION 3. For all $k \geq 2$,

$$
U_k = \frac{1}{2\sqrt{m+1}} \left[(\sqrt{m} + \sqrt{m+1})^k - (\sqrt{m} - \sqrt{m+1})^k \right].
$$

Proof. If U_k is a characteristic polynomial r^k to solve this equation, then we get the following equation

$$
r^{k} = 2\sqrt{m}r^{k-1} + r^{k-2} \Rightarrow r^{2} - 2\sqrt{m}r - 1 = 0.
$$

Hence we find the roots of this equation as

$$
r_{1,2} = \sqrt{m} \pm \sqrt{m+1}.
$$

Using r_1 and r_2 , we can obtain a general formula of U_k . If we write U_k as combinations of the roots r_1 and r_2 , we have

$$
U_k = A(\sqrt{m} + \sqrt{m+1})^k + B(\sqrt{m} - \sqrt{m+1})^k.
$$

Since

$$
U_0 = 0 = A + B
$$

\n
$$
U_1 = 1 = A(\sqrt{m} + \sqrt{m+1}) + B(\sqrt{m} - \sqrt{m+1})
$$

and so

$$
2A\sqrt{m+1} = 1.
$$

Hence constants A and B

$$
A = \frac{1}{2\sqrt{m+1}} \text{ and } B = -\frac{1}{2\sqrt{m+1}}.
$$

Therefore we find the formula of U_k as

$$
U_k = \frac{1}{2\sqrt{m+1}} \left[(\sqrt{m} + \sqrt{m+1})^k - (\sqrt{m} - \sqrt{m+1})^k \right]. \quad \Box
$$

This formula is a generalized Pell number sequence U_k . If $m = 1$, we get $U_k = P_k$ (the k^{th} Pell number) and

$$
U_k = \frac{1}{2\sqrt{2}} \left[\left(1 + \sqrt{2} \right)^k - \left(1 - \sqrt{2} \right)^k \right].
$$

In general, the trace $tr(A^k)$ of A^k is

$$
U_{2k-1} + U_{2k+1} = U_{2k-1} + 2\sqrt{m}U_{2k} + U_{2k-1} = 2\sqrt{m}U_{2k} + 2U_{2k-1}.
$$

Now we can define the generalized Pell-Lucas numbers V_k . The generalized Pell-Lucas numbers V_k are defined by the recurrence relation $V_0 = 2$, $V_1 = 2\sqrt{m}$ and $V_k = 2\sqrt{m}V_{k-1} + V_{k-2}$, for $k \ge 2$. The generalized Pell-Lucas number can be also expressed by $V_k = 2\sqrt{m}U_k + 2U_{k-1}$. Then the trace $tr(A^k)$ of A_k is found as V_{2k} . Also the determinant of A_k is 1.

On the other hand, if we take the product $a_1 \cdot a_{q-1} = (TS)^2 \cdot (TS^{-1})^2$, then we obtain the matrix representation of $a_1.a_{q-1}$ as

$$
B = \left[\begin{array}{cc} 1 + 4m & 2\sqrt{m} \\ 2\sqrt{m} & 1 \end{array} \right].
$$

Thus for each k we have

$$
B^k = \left[\begin{array}{cc} U_{2k+1} & U_{2k} \\ U_{2k} & U_{2k-1} \end{array} \right].
$$

Here the trace $tr(B^k)$ of B^k is V_{2k} and the determinant of B^k is 1. Additionally, if we consider the matrice representations of A and B , we find that they have same eigenvalues $r_1 = (2m+1)+2\sqrt{m(m+1)}$ and $r_2 = (2m+1)-2\sqrt{m(m+1)}$ of the characteristic equation $r^2 - (4m + 2)r + 1 = 0$.

3. FIXED POINTS OF A^k AND B^k IN $Q(\sqrt{d})$

Now we investigate the case when A^k and B^k fix elements of $Q(\sqrt{k})$ ow we investigate the case when A^k and B^k fix elements of $Q(\sqrt{d})$. If $\alpha \in Q(\sqrt{d})$ and if B^k is to fix α then

$$
\frac{U_{2k+1}\alpha + U_{2k}}{U_{2k}\alpha + U_{2k-1}} = \alpha.
$$

Hence we obtain $U_{2k}(\alpha^2 - 2\sqrt{m\alpha} - 1) = 0$ for all integers $k \ge 1$. Here $\alpha = \sqrt{m} \pm \sqrt{m+1}$. Now we have three possibilities:

- i) if $m = 1$ then please see [12, p. 101]. ii) if $m = 2$ then $\alpha = \sqrt{2 \pm \sqrt{3}}$, so $d = 2$ or 3.
- iii) if $m = 3$ then $\alpha = \sqrt{3 \pm 2}$, so $d = 3$.

If $\alpha \in Q$ (= 5 then $\alpha = \sqrt{3} \pm 2$, so $a = 5$
 \sqrt{d}) and if A^k is to fix α then

$$
\frac{U_{2k-1}\alpha+U_{2k}}{U_{2k}\alpha+U_{2k+1}}=\alpha.
$$

Thus we find $U_{2k}(\alpha^2 + 2\sqrt{m\alpha} - 1) = 0$ for all integers $k \ge 1$. Here $\alpha = -\sqrt{m} \pm \sqrt{m+1}$. Now we have three possibilities:

- i) if $m = 1$ then please see [12, p. 101]. √ √
- ii) if $m = 2$ then $\alpha = 2\pm$ $\sqrt{2} \pm \sqrt{3}$, so $d = 2$ or 3.
- iii) if $m = 3$ then $\alpha = -\sqrt{3 \pm 2}$, so $d = 3$.

For all cases of m, if we take $\alpha = \tau = \sqrt{m} +$ √ we take $\alpha = \tau = \sqrt{m} + \sqrt{m+1}$ then $\tau^{-1} = -\sqrt{m} +$ √ For an cases of m, n we case $a = 7 - \sqrt{m+1} \text{ when }$
 $\overline{\tau} = \sqrt{m} - \sqrt{m+1}$ then $\overline{\tau}^{-1} = -\sqrt{m} - \sqrt{m+1}$. √

Therefore if the generators T and S of $H(\sqrt{m})$ act on Q d) under the condition that for all $k \geq 1$, $((TS^{-1})^2(TS)^2)^k$ or $((TS)^2(TS^{-1})^2)^k$ fixes elements of $Q(\sqrt{d})$, then $d = 2, 2$ or 3 and 3 for $m = 1, 2$ and 3, respectively.

Now we give the following.

COROLLARY 4. If α is a real qudratic irrational number and if

$$
\left((TS^{-1})^2 (TS)^2\right)^k \in H(\sqrt{m})(k\geq 1)
$$

act on α , then the matrix A^k of $((TS^{-1})^2 (TS)^2)^k$ is

$$
A^{k} = \left[\begin{array}{cc} U_{2k-1} & U_{2k} \\ U_{2k} & U_{2k+1} \end{array} \right]
$$

where U_k is the k^{th} generalized Pell number and $tr(A^k)$ is $2\sqrt{m}U_{2k} + 2U_{2k-1}$.

REFERENCES

- [1] R.C. Alperin, The modular tree of Pythagoras. Amer. Math. Monthly, 112 (2005), 9, 807–816.
- [2] R.W. Bruggeman, *Dedekind sums for Hecke groups*. Acta Arith. **71** (1995), 1, 11–46.
- [3] I.N. Cangul and O. Bizim, *Congruence subgroups of some Hecke groups*. Bull. Inst. Math. Acad. Sinica 30 (2002), 2, 115–131.
- [4] W.M. Goldman and W.D. Neumann, *Homological action of the modular group on some* cubic moduli spaces. Math. Res. Lett. 4 (2005), 575–591.
- $[5]$ E. Hecke, Uber die bestimmung dirichletscher reichen durch ihre funktionalgleichungen. Math. Ann. 112 (1936), 664–699.
- [6] S. Ikikardes, R. Sahin and I.N. Cangul, Principal congruence subgroups of the Hecke groups and related results. Bull. Braz. Math. Soc. $(N.S.)$ 40 (2009), $\frac{1}{4}$, 479–494.
- [7] I. Ivrissimtzis and D. Singerman, Regular maps and principal congruence subgroups of Hecke groups. European J. Combin. 26 (2005), 3–4, 437–456.
- [8] M.I. Knopp, On the cuspidal spectrum of the arithmetic Hecke groups. Math. Comp. 61 (1993), 203, 269–275.
- [9] B. Kock and D. Singerman, Real Belyi theory. Q. J. Math. 58 (2007), 4, 463–478.
- [10] M.L. Lang, C.H. Lim and S.P. Tan, Principal congruence subgroups of the Hecke groups. J. Number Theory, 85 (2000), 2, 220–230.
- [11] M.L. Lang, Normalizers of the congruence subgroups of the Hecke groups G_4 and G_6 . J. Number Theory 90 (2001), 1, 31–43.
- [12] Q. Mushtaq and U. Hayat, Pell numbers, Pell-Lucas numbers and modular group. Algebra Colloq. 14 (2007), 1, 97–102.

Received 9 April 2014 Balikesir University, Faculty of Arts and Sciences, Department of Mathematics 10145 Balikesir, Turkey skardes@balikesir.edu.tr

> Indiana University, Department of Mathematics, Bloomington, IN, USA zehrsari@indiana.edu

Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145 Balikesir, Turkey rsahin@balikesir.edu.tr