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Abstract In this present paper, we define g-a-preir-
resolute, g-b-preirresolute, contra g-a-preirresolute and

contra g-b-preirresolute functions on generalized topo-

logical spaces. We give some examples of this definitions.

We investigate some properties and characterizations of

this functions.
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Introduction

Császár [2] introduced generalized open sets in 1997.

Subsequently, he [3] defined generalized topology and

generalized continuity in 2002. Also, ðgX ; gYÞ-open func-

tions [4] were introduced in 2003 and strong generalized

topology [5] was presented in 2004. g-semi-open sets, g-

preopen sets, g-a-open sets and g-b-open sets [6] were

introduced by Császár in 2005. Also he [7] showed how the

definition of the product of generalized topologies in 2009.

In 2012, Jayanthi [8] introduced contra continuity on

generalized topological space. Furthermore, Min [9] de-

fined ða; gYÞ-continuous functions, ðr; gYÞ—continuous

functions, ðp; gYÞ-continuous functions and ðb; gYÞ-con-
tinuous functions on generalized topological spaces in

2009. Additionally, Bai and Zuo [1] introduced g-a-ir-
resolute functions in 2011. In 2009, Shen [10] studied the

relationship between the product and some operations

ðr; p; a and bÞ of generalized topologies. Our aim in this

paper, is to introduce g-a-preirresolute, g-b-preirresolute,
contra g-a-preirresolute, contra g-b-preirresolute on gen-

eralized topological spaces. Also we obtain some proper-

ties and characterizations of this functions.

Preliminaries

Definition 2.1 [3] Let X 6¼ ; and g � X. Then g is called

a generalized topology (briefly; GT) on X iff ; 2 g and Gi

2 g for i 2 I 6¼ ; implies G ¼
S

i2I Gi 2 g. The pair ðX; gÞ
is called a generalized topological space (briefly; GTS) on

X. The elements of g are called g-open sets and their

complements are called g-closed sets.

Definition 2.2 [3] Let ðX; gÞ be a generalized topological

space and A � X.

(1) The closure of A is defined as follows:

cgðAÞ ¼
\

fF : F is g-closed; A � Fg:

(2) The interior of A is defined as follows:

igðAÞ ¼
[

fG : G is g-open;G � Ag:

Theorem 2.3 [3] Let ðX; gÞ be a generalized topological

space. Then the following hold:
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(1) cgðAÞ ¼ X � igðX � AÞ.
(2) igðAÞ ¼ X � cgðX � AÞ .

Definition 2.4 [6] Let ðX; gÞ be a generalized topological

space and A � X. A is said to be

(1) g-semi-open if A � cgðigðAÞÞ;
(2) g-preopen if A � igðcgðAÞÞ;
(3) g-a-open if A � igðcgðigðAÞÞÞ;
(4) g-b-open if A � cgðigðcgðAÞÞÞ.
The complement of g-semi-open (resp. g-preopen, g-a-
open, g-b-open) is said to be g-semi-closed (resp. g -pre-

closed, g-a-closed, g-b-closed). The set of all g-semi-open

sets (resp. g-preopen sets, g-a-open sets, g-b-open sets) is

denoted by rðgÞ (resp. ðpðgÞ; aðgÞ; bðgÞÞ.
The closure of g-semi-closed (resp. g-preclosed, g-a-

closed, g-b-closed) sets is denoted by crðXÞ (resp. cpðXÞ,
caðXÞ, cbðXÞ). Also the interior of g-semi-open (resp. g-

preopen, g-a-open, g-b-open) sets is denoted by irðXÞ
(resp. ipðXÞ, iaðXÞ, ibðXÞ).

Definition 2.5 [4] Let ðX; gXÞ and ðY ; gYÞ be GTS’s.

Then a function f : X ! Y is said to be ðgX; gYÞ-open if

f ðUÞ 2 gY for each U 2 gX .

Definition 2.6 [3] Let ðX; gXÞ and ðY ; gYÞ be GTS’s.

Then a function f : X ! Y is said to be ðgX ; gYÞ-continuous
if f�1ðVÞ 2 gX for each V 2 gY .

Definition 2.7 [9] Let ðX; gXÞ and ðY ; gYÞ be GTS’s.

Then a function f : X ! Y is said to be

(1) ða; gYÞ-continuous if f�1ðVÞ is g-a-open in X for

each g-open set V in Y;

(2) ðr; gYÞ-continuous if f�1ðVÞ is g-semi-open in X for

each g-open set V in Y .

(3) ðp; gYÞ-continuous if f�1ðVÞ is g-preopen in X for

each g-open set V in Y .

(4) ðb; gYÞ-continuous if f�1ðVÞ is g-b-open in X for

each g-open set V in Y .

Definition 2.8 [8] Let ðX; gXÞ and ðY ; gYÞ be GTS’s.

Then a function f : X ! Y is said to be

(1) contra ðgX; gYÞ-continuous if f�1ðVÞ is g-closed in X

for each V 2 gY .

(2) contra ða; gYÞ-continuous if f�1ðVÞ is g-a-closed in

X for each g-open set V in Y .

(3) contra ðr; gYÞ-continuous if f�1ðVÞ is g-semi-closed

in X for each g-open set V in Y .

(4) contra ðp; gYÞ-continuous if f�1ðVÞ is g-preclosed in

X for each g-open set V in Y .

(5) contra ðb; gYÞ-continuous if f�1ðVÞ is g-b-closed in

X for each g-open set V in Y .

Definition 2.9 [5] Let g be a GT on a set X 6¼ ;. Then g is
said to be strong if X 2 g.

Definition 2.10 [7] Let K 6¼ ; be an index set, Xk 6¼ ; for

k 2 K and X ¼
Q

k2K Xk the cartesian product of the sets

Xk. Also pk : X ! Xk is the projection.

Let gk be a given GT on Xk for k 2 K. Then g is called

the product of the GT’s gk.

Proposition 2.11 [10] If every gXk
is strong then each pk

is ðgX; gXk
Þ-continuous ðresp: ðaðgXÞ; aðgXk

ÞÞ-continuous,
ðrðgXÞ; rðgXk

ÞÞ-continuous, ðpðgXÞ; pðgXk
ÞÞ-continuous,

ðbðgXÞ; bðgXk
ÞÞ-continuous Þ for k 2 K.

Theorem 2.12 [7] Let G ¼
Q

k2K Gk. Then

(1) If K is finite and every Gk is g-semi-open, then G is

g-semi-open set.

(2) If K is finite and every Gk is g-preopen, then G is g-

preopen set.

(3) If K is finite and every Gk is g-a-open, then G is g-a-
open set.

(4) If K is finite and every Gk is g-b-open, then G is g-b-
open set.

Definition 2.13 [1] A function f : X ! Y is said to be g-

a-irresolute if f�1ðVÞ is g-a-open in X for every g-a-open
set V of Y .

g-a-Preirresolute and g-b-preirresolute functions

Definition 3.1 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-a-preirresolute if f�1ðVÞ
is g-a-open in X for every g-preopen set V of Y .

Example 3.2 Let X ¼ fx; yg, Y ¼ fa; bg, gX ¼ PðXÞ and
gY ¼ f;; fagg. Then we obtain pðgYÞ ¼ f;; fagg.

f : ðX; gXÞ ! ðY ; gYÞ such that f ðxÞ ¼ a; f ðyÞ ¼ b.

Since f�1ð;Þ ¼ ; and f�1ðfagÞ ¼ fxg are g-a-open
subsets of X, then f is g-a-preirresolute.

Definition 3.3 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-b-preirresolute if f�1ðVÞ
is g-b-open in X for every g-preopen set V of Y .

Example 3.4 Let X ¼ fx; yg, Y ¼ fa; b; cg, gX ¼ f;; fxgg
and gY ¼ f;; fag; fa; bgg. Then we obtain pðgYÞ ¼ f;;
fag; fa; bgg.

f : ðX; gXÞ ! ðY ; gYÞ such that f ðxÞ ¼ f ðyÞ ¼ a.

Since f�1ð;Þ ¼ ;, f�1ðfagÞ ¼ X and f�1ðfa; bgÞ ¼ X

are g-b-open subsets of X, then f is g-b-preirresolute.

Definition 3.5 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-a-preirresolute at x 2 X
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if there exists a g-a-open set U of X containing x such that

f ðUÞ � V for each g-preopen set V of Y containing f ðxÞ.

Definition 3.6 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-b-preirresolute at x 2 X

if there exists a g-b-open set U of X containing x such that

f ðUÞ � V for each g-preopen set V of Y containing f ðxÞ.

Theorem 3.7 Let ðX; gXÞ, ðY ; gYÞ be GTS’s and f : X !
Y be a function. The following conditions are equivalent:

(1) f is g-a-preirresolute;
(2) For each x 2 X and each g-preopen set V of Y

containing f ðxÞ, there exists a g-a-open set U of X

containing x such that f ðUÞ � V ;

(3) f�1ðVÞ � igðcgðigðf�1ðVÞÞÞÞ for every g-preopen set

V of Y;

(4) f�1ðVÞ is g-a-closed in X for every g-preclosed set V

of Y;

(5) cgðigðcgðf�1ðVÞÞÞÞ � f�1ðcpðVÞÞ for every subset V

of Y;

(6) f ðcgðigðcgðUÞÞÞÞ � cpðf ðUÞÞ for every subset U of

X.

Proof ð1Þ ) ð2Þ: Let x 2 X and V be any g-preopen set

of Y containing f ðxÞ. By hypothesis, f�1ðVÞ is g-a-open in

X and contains x. Suppose U ¼ f�1ðVÞ, then U is g-a-open
set in X containing x and f ðUÞ � V .

ð2Þ ) ð3Þ: Let V be any g-preopen set of Y and

x 2 f�1ðVÞ. By hypothesis, there exists a g-a-open set U of

X such that f ðUÞ � V . Hence we obtain

x 2 U � igðcgðigðUÞÞÞ � igðcgðigðf�1ðVÞÞÞÞ:

As a consequence, f�1ðVÞ � igðcgðigðf�1ðVÞÞÞÞ.
ð3Þ ) ð4Þ: Let V be any g-preclosed of Y . Then U ¼

Y � V is g-preopen in Y . By ð3Þ, we have f�1ðUÞ �
igðcgðigðf�1ðUÞÞÞÞ. Therefore

f�1ðUÞ ¼ f�1ðY � VÞ ¼ X � f�1ðVÞ � igðcgðigðf�1ðUÞÞÞÞ
¼ X � cgðigðcgðf�1ðVÞÞÞÞ:

As a consequence, we obtain f�1ðVÞ is g-a-closed set in X.

ð4Þ ) ð5Þ: Let V be any subset of Y . Since cpðVÞ is g-
preclosed subset of Y , then f�1ðcpðVÞÞ is g-a-closed in X

by ð4Þ. Hence
cgðigðcgðf�1ðcpðVÞÞÞÞÞ � f�1ðcpðVÞÞ:

Therefore we obtain cgðigðcgðf�1ðVÞÞÞÞ � f�1ðcpðVÞÞ.
ð5Þ ) ð6Þ: Let U be any subset of X. By hypothesis, we

have

cgðigðcgðUÞÞÞ � cgðigðcgðf�1ðf ðUÞÞÞÞÞ � f�1ðcpðf ðUÞÞÞ:

As a consequence, f ðcgðigðcgðUÞÞÞÞ � cpðf ðUÞÞ.

ð6Þ ) ð1Þ: Let V be any g-preopen subset of Y . f�1ðY �
VÞ ¼ X � f�1ðVÞ is a subset of X and by hypothesis, we

obtain

f ðcgðigðcgðf�1ðY � VÞÞÞÞÞ � cpðf ðf�1ðY � VÞÞÞ
� cpðY � VÞ ¼ Y � ipðVÞ
¼ Y � V

and so

X � igðcgðigðf�1ðVÞÞÞÞ ¼ cgðigðcgðX � f�1ðVÞÞÞÞ ¼
cgðigðcgðf�1ðY � VÞÞÞÞ � f�1ðf ðcgðigðcgðf�1ðY � VÞÞÞÞÞÞ
� f�1ðY � VÞ ¼ X � f�1ðVÞ:

Thus f�1ðVÞ � igðcgðigðf�1ðVÞÞÞÞ and f�1ðVÞ is g-a-open
set in X. As a consequence, f is g-a-preirresolute. h

Theorem 3.8 Let ðX; gXÞ, ðY ; gYÞ be GTS’s and f : X !
Y be a function. The following conditions are equivalent:

(1) f is g-b-preirresolute;
(2) For each x 2 X and each g-preopen set V of Y

containing f ðxÞ, there exists a g-b-open set U of X

containing x such that f ðUÞ � V;

(3) f�1ðVÞ � cgðigðcgðf�1ðVÞÞÞÞ for every g-preopen set

V of Y;

(4) f�1ðVÞ is g-b-closed in X for every g-preclosed set

V of Y;

(5) igðcgðigðf�1ðVÞÞÞÞ � f�1ðcpðVÞÞ for every subset V

of Y ;

(6) f ðigðcgðigðUÞÞÞÞ � cpðf ðUÞÞ for every subset U of X.

Proof It is proved similar to the proof of Theorem 3:7:

h

Theorem 3.9 Let ðX; gXÞ, ðY ; gYÞ be GTS’s and f : X !
Y be a function. The following conditions are equivalent:

(1) f is g-a-preirresolute;
(2) f�1ðFÞ is g-a-closed in X for every g-preclosed set F

of Y;

(3) f ðcaðAÞÞ � cpðf ðAÞÞ for every subset A of X;

(4) caðf�1ðBÞÞ � f�1ðcpðBÞÞ for every subset B of Y ;

(5) f�1ðipðBÞÞ � iaðf�1ðBÞÞ for every subset B of Y ;

(6) f is g-a-preirresolute at every x 2 X.

Proof ð1Þ ) ð2Þ: It is obvious from Theorem 3:7:

ð2Þ ) ð3Þ: Let A � X. Then cpðf ðAÞÞ is a g-preclosed

set of Y . By hypothesis, f�1ðcpðf ðAÞÞÞ is a g-a-closed set.

Now caðAÞ � caðf�1ðf ðAÞÞÞ � caðf�1ðcpðf ðAÞÞÞÞ ¼
f�1ðcpðf ðAÞÞÞ. Hence f ðcaðAÞÞ � cpðf ðAÞÞ.

ð3Þ ) ð4Þ: Let B � Y . Then f�1ðBÞ � X. By hypothesis,

f ðcaðf�1ðBÞÞÞ � cpðf ðf�1ðBÞÞÞ � cpðBÞ. Hence caðf�1ðBÞÞ
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� f�1ðf ðcaðf�1ðBÞÞÞÞ � f�1ðcpðBÞÞ. So we obtain

caðf�1ðBÞÞ � f�1ðcpðBÞÞ.
ð4Þ ) ð5Þ: It is obvious from the complement of ð4Þ.
ð5Þ ) ð1Þ: Let V be any g-preopen set of Y , then

V ¼ ipðVÞ. By hypothesis, f�1ðVÞ ¼ f�1ðipðVÞÞ �
iaðf�1ðVÞÞ � f�1ðVÞ. Hence f�1ðVÞ ¼ iaðf�1ðVÞÞ. Thus
f�1ðVÞ is a g-a-open set of X. As a consequence, f is g-a-
preirresolute.

ð1Þ ) ð6Þ: Let f is g-a-preirresolute, x 2 X and any g-

preopen set V of Y containing f ðxÞ. Then x 2 f�1ðVÞ and
f�1ðVÞ is g-a-open set in X. Suppose U ¼ f�1ðVÞ, then U

is a g-a-open set of X and f ðUÞ � V . Therefore f is g-a-
preirresolute for each x 2 X. h

Theorem 3.10 Let ðX; gXÞ, ðY; gYÞ be GTS’s and f : X !
Y be a function. The following conditions are equivalent:

(1) f is g-b-preirresolute;
(2) f�1ðFÞ is g-b-closed in X for every g-preclosed set F

of Y ;

(3) f ðcbðAÞÞ � cpðf ðAÞÞ for every subset A of X;

(4) cbðf�1ðBÞÞ � f�1ðcpðBÞÞ for every subset B of Y ;

(5) f�1ðipðBÞÞ � ibðf�1ðBÞÞ for every subset B of Y ;

(6) f is g-b-preirresolute at every x 2 X.

Proof It is proved by a similar way in Theorem 3:9:

h

Theorem 3.11 Let f : X ! Y be a function from two

GTS’s. Then f is g-a-preirresolute if f�1ðVÞ �
igðcgðigðf�1ðipðVÞÞÞÞÞ for every g-preopen subset V of Y .

Proof Let V be g-preclosed set of Y . Then Y � V is g-

preopen set in Y . By hypothesis, f�1ðY � VÞ ¼ X � f�1ðVÞ
� igðcgðigðf�1ðipðY � VÞÞÞÞÞ ¼ igðcgðigðf�1ðY � VÞÞÞÞ ¼
X �cgðigðcgðf�1ðVÞÞÞÞ. Hence we obtain cgðigðcg
ðf�1ðVÞÞÞÞ � f�1ðVÞ. Therefore f�1ðVÞ is g-a-closed set in

X. As a consequence, f is g-a-preirresolute from Theorem

3:7ð4Þ. h

Theorem 3.12 Let f : X ! Y be a function from two

GTS’s. Then f is g-b-preirresolute if f�1ðVÞ �
cgðigðcgðf�1ðipðVÞÞÞÞÞ for every g-preopen subset V of Y .

Proof It is similar to Theorem 3:11: h

Theorem 3.13 Let f : X ! Y be a function from two

GTS’s and gX be a strong. f is g-a-preirresolute if the

graph function g : X ! X � Y defined by gðxÞ ¼ ðx; f ðxÞÞ
for each x 2 X, is g-a-preirresolute.

Proof Let x 2 X and V be any g-preopen set of Y con-

taining f ðxÞ. Then X � V is a g-preopen set of X � Y by

Theorem2:12 and contains gðxÞ. Since g is g-a-preirresolute,

there exists a g-a-openU of X containing x such that gðUÞ �
X � V and so f ðUÞ � V . Thus f is g-a-preirresolute. h

Theorem 3.14 Let f : X ! Y be a function from two

GTS’s and gX be a strong. f is g-b-preirresolute if the

graph function g : X ! X � Y defined by gðxÞ ¼ ðx; f ðxÞÞ
for each x 2 X, is g-b-preirresolute.

Proof The proof is similar to that of Theorem 3.13 h

Theorem 3.15 Let gYk be a given GT on Yk for k 2 K and

gYk be a strong. If a function f : X !
Q

Yk is g-a-preir-
resolute, then pk � f : X ! Yk is g-a-preirresolute for each

k 2 K, where pk is the projection of
Q

Yk onto Yk.

Proof Let Vk be any g-preopen set of Yk. pk is

ðpðgYÞ; pðgYkÞÞ-continuous from Proposition 2:11 since gYk
is strong and so p�1

k ðVkÞ is g-preopen set. Since f is g-a-

preirresolute, f�1ðp�1
k ðVkÞÞ ¼ ðpk � f Þ�1ðVkÞ is a g-a-open.

As a consequence, we have pk � f is g-a-preirresolute for

each k 2 K.

h

Theorem 3.16 Let gYk be a given GT on Yk for k 2 K and

gYk be a strong. If a function f : X !
Q

Yk is g-b-preir-
resolute, then pk � f : X ! Yk is g-b-preirresolute for each
k 2 K, where pk is the projection of

Q
Yk onto Yk.

Proof It is proved similar to that of Theorem 3:15:

h

Theorem 3.17 If the function f :
Q

Xk !
Q

Yk defined

by f ðfxkgÞ ¼ ffkðxkÞg for each fxkg 2
Q

Xk, is g-a-
preirresolute, then fk : Xk ! Yk is g-a-preirresolute for

each k 2 K.

Proof Let k0 2 K be an arbitrary fixed index and Vk0 be

any g-preopen set of Yk0 . Then
Q

Ym � Vk0 is g-preopen in
Q

Yk by Theorem 2:12, where k0 6¼ m 2 K. Since f is g-a-
preirresolute, f�1ð

Q
Ym � Vk0Þ ¼

Q
Xm � f�1

k0
ðVk0Þ is g-a-

open in
Q

Xk and f�1
k0

ðVk0Þ is g-a-open in Xk0 . As a con-

sequence, fk0 is g-a-preirresolute. h

Theorem 3.18 If the function f :
Q

Xk !
Q

Yk defined

by f ðfxkgÞ ¼ ffkðxkÞg for each fxkg 2
Q

Xk , is g-b-
preirresolute, then fk : Xk ! Yk is g-b-preirresolute for

each k 2 K.

Proof It is proved by a similar way in Theorem 3:17: h

Theorem 3.19 If f : X ! Y is g-a-preirresolute and A is

a g-a-open in X , then the restriction f jA : A ! Y is g-a-
preirresolute.

Proof Let V be any g-preopen set in Y . Then we have

f�1ðVÞ is a g-a-open set in Y . Since the set A is a g-a-open
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set, we have ðf jAÞ�1ðVÞ ¼ A \ f�1ðVÞ is g-a-open.
Therefore f jA is g-a-preirresolute. h

Theorem 3.20 If f : X ! Y is g-b-preirresolute and A is

g-open in X , then the restriction f jA : A ! Y is g-b-
preirresolute.

Proof It is proved by a similar way of that of Theorem

3:19: h

Definition 3.21 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-preirresolute if f�1ðVÞ is
g-preopen in X for every g-preopen set V of Y .

Theorem 3.22 Let ðX; gXÞ, ðY; gYÞ and ðZ; gZÞ be GTS’s.
If f : X ! Y is g-a-preirresolute and g : Y ! Z is g-

preirresolute, then the composition g � f : X ! Z is g-a-
preirresolute.

Proof Let V be any g-preopen subset of Z. Since g is g-

preirresolute, g�1ðVÞ is g-preopen in Y . Since f is g-a-

preirresolute, then f�1ðg�1ðVÞÞ ¼ ðg � f Þ�1ðVÞ is g-a-open
in X. As a consequence, g � f is g-a-preirresolute. h

Theorem 3.23 Let ðX; gXÞ, ðY; gYÞ and ðZ; gZÞ be GTS’s.
If f : X ! Y is g-b-preirresolute and g : Y ! Z is g-

preirresolute, then the composition g � f : X ! Z is g-b-
preirresolute.

Proof It is similar to that of Theorem 3.22 h

Definition 3.24 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be g-a-pre-continuous if

f�1ðVÞ is g-preopen in X for every g-a-open set V of Y .

Definition 3.25 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be almost g-a-irresolute if

f�1ðVÞ is g-b-open in X for every g-a-open set V of Y .

From the definitions stated above, we obtain the fol-

lowing diagram:

g -α −→ g −→ g -β

g-α −→ g -α −→ almost g -α

-preirresolute -preirresolute -preirresolute

-irresolute -pre-continuity -irresolute

Remark 3.26 The following examples enables us to re-

alize that none of these implications is reversible.

Example 3.27 Let X ¼ Y ¼ fa; b; c; dg, gX ¼
f;; fag; fdg; fb; cg; fa; b; cg; fb; c; dg; fa; dgg and

gY ¼ f;; Y ; fbgg. The identity function f : X ! Y is g-a-
pre-continuous function, but it is not g-a-irresolute. Also, f
is g-preirresolute, but it is not g-a-preirresolute.

Example 3.28 Let X ¼ Y ¼ fa; b; c; dg, gX ¼ f;;X; fag;
fcg; fa; cgg and gY ¼ f;; Y ; fc; dgg. The identity function

f : X ! Y is almost g-a-irresolute function, but it is neither
g-a-pre-continuous nor g-b-preirresolute.

Example 3.29 Let X ¼ Y ¼ fa; bg and gX ¼ gY ¼
f;; fagg. We define the function f : X ! Y such that

f ðaÞ ¼ f ðbÞ ¼ a. Then f is g-b-preirresolute function, but it
is not g-preirresolute.

Example 3.30 Let X ¼ Y ¼ fa; b; cg and gX ¼ gY ¼
f;;X; fag; fb; cgg. The identity function f : X ! Y is g-a-
irresolute function, but it is not g-a-preirresolute.

Contra g-a-preirresolute and contra
g-b-preirresolute functions

Definition 4.1 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be contra g-a-preirresolute if

f�1ðVÞ is g-a-closed in X for every g-preopen V of Y .

Example 4.2 Let X ¼ fx; yg, Y ¼ fa; b; cg, gX ¼
f;; fyg;Xg and gY ¼ f;; fag; fcg; fa; cgg. Then we obtain

pðgYÞ ¼ f;; fag; fcg; fa; cgg.
f : ðX; gXÞ ! ðY ; gYÞ such that

f ðxÞ ¼ a; f ðyÞ ¼ b:

Since f�1ð;Þ ¼ ;, f�1ðfagÞ ¼ fxg, f�1ðfcgÞ ¼ ; and

f�1ðfa; cgÞ ¼ fxg are g-a-closed subsets of X, then f is

contra g-a-preirresolute.

Definition 4.3 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be contra g-b-preirresolute if

f�1ðVÞ is g-b-closed in X for every g-preopen V of Y .

Example 4.4 Let X ¼ fx; y; zg, Y ¼ fa; bg, gX ¼ f;; fxgg
and gY ¼ f;; fagg. Then we obtain pðgYÞ ¼ f;; fagg.

f : ðX; gXÞ ! ðY ; gYÞ such that

f ðxÞ ¼ a; f ðyÞ ¼ f ðzÞ ¼ b:

Since f�1ð;Þ ¼ ; and f�1ðfagÞ ¼ fxg are g-b-closed sub-

sets of X, then f is contra g-b-preirresolute.

Definition 4.5 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be contra g-a-preirresolute at

x 2 X if there exists a g-a-open set U containing x such that

f ðUÞ � V for each g-preclosed V of Y containing f ðxÞ.

Definition 4.6 Let ðX; gXÞ and ðY; gYÞ be GTS’s. Then a

function f : X ! Y is said to be contra g-b-preirresolute at
x 2 X if there exists a g-b-open set U containing x such that

f ðUÞ � V for each g-preclosed V of Y containing f ðxÞ.
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Theorem 4.7 Let f : X ! Y be a function from two

GTS’s. Then the following are equivalent:

(1) f is contra g-a-preirresolute;
(2) f�1ðFÞ is g-a-open set in X for each g-preclosed set

F of Y ;

(3) For each x 2 X and each g-preopen set V of Y with

f ðxÞ 62 V, there exists g-a-closed set U in X such that

x 62 U and f�1ðVÞ � U;

(4) f is contra g-a-preirresolute at any x 2 X;

(5) f�1ðVÞ � iaðf�1ðVÞÞ for any g-preclosed set V of Y;

(6) caðf�1ðUÞÞ � f�1ðUÞ for any g-preopen set U of Y;

(7) caðf�1ðipðAÞÞÞ � f�1ðipðAÞÞ for any A � Y ;

(8) f�1ðcpðAÞÞ � iaðf�1ðcpðAÞÞÞ for any A � Y .

Proof ð1Þ ) ð2Þ: Let F be a g-preclosed set in Y . Then

Y � F is a g-preopen set in Y . By ð1Þ, f�1ðY � FÞ ¼ X�
f�1ðFÞ is a g-a-closed set in X. Hence f�1ðFÞ is a g-a-open
set in X.

ð1Þ ) ð3Þ: Let x 2 X and V be a g-preopen set of Y with

f ðxÞ 62 V . Then x 62 f�1ðVÞ. By ð1Þ, f�1ðVÞ is a g-a-closed
set in X. Suppose U ¼ f�1ðVÞ. Then f�1ðVÞ � U and

x 62 U.

ð3Þ ) ð1Þ: Let V be a g-preopen set of Y . For each

x 2 f�1ðY � VÞ, f ðxÞ 62 V . By ð3Þ, there exists a g-a-closed
set Ux in X such that x 62 Ux and f�1ðVÞ � Ux. Then X �
Ux � X � f�1ðVÞ ¼ f�1ðY � VÞ. Hence we have

[

x2f�1ðY�VÞ
fxg �

[

x2f�1ðY�VÞ
ðX � UxÞ � f�1ðY � VÞ:

Thus f�1ðY � VÞ ¼
S

x2f�1ðY�VÞðX � UxÞ is a g-a-open set

in X. As a consequence, f�1ðVÞ is a g-a-closed set in X and

so f is g-a-preirresolute.
ð2Þ ) ð4Þ: Let x 2 X and V be a g-preclosed set of Y

containing f ðxÞ. By ð2Þ, f�1ðVÞ is a g-a-open set in X

containing x. Put U ¼ f�1ðVÞ. Thus we obtain U is a g-a-
open set in X containing x and f ðUÞ � V .

ð4Þ ) ð5Þ: Let V be a g-preclosed set of Y . For each

x 2 f�1ðVÞ, f ðxÞ 2 V . By ð4Þ, there exists a g-a-open set U

in X containing x such that f ðUÞ � V . Since x 2 U

� f�1ðVÞ, we obtain x 2 iaðf�1ðVÞÞ. Thus f�1ðVÞ �
iaðf�1ðVÞÞ.

ð5Þ ) ð6Þ: Let U be a g-preopen set of Y . Then Y � U is

a g-preclosed set of Y . By ð5Þ, X � f�1ðUÞ ¼ f�1ðY � UÞ
� iaðf�1ðY � UÞÞ ¼ iaðX � f�1ðUÞÞ ¼ X � caðf�1ðUÞÞ.
Thus caðf�1ðUÞÞÞ � f�1ðUÞ.

ð6Þ ) ð7Þ: Let A � Y . Since ipðAÞ is a g-preopen set of

Y , by ð6Þ, we obtain caðf�1ðipðAÞÞÞ � f�1ðipðAÞÞ.
ð7Þ ) ð8Þ: Let A � Y . Then Y � A � Y . By ð7Þ,

caðf�1ðipðY � AÞÞÞ ¼ caðf�1ðY � cpðAÞÞÞ ¼ caðX �
f�1ðcpðAÞÞÞ ¼ X � iaðf�1ðcpðAÞÞÞ � f�1ðipðY � AÞÞ ¼

f�1ðY � cpðAÞÞ ¼ X � f�1ðcpðAÞÞ. Thus f�1ðcpðAÞÞ
� iaðf�1ðcpðAÞÞÞ.

ð8Þ ) ð1Þ: Let V be a g-preopen set of Y . Then Y � V is

g-preclosed set of Y . By ð8Þ, f�1ðcpðY � VÞÞ ¼ f�1ðY �
VÞ ¼ X � f�1ðVÞ � iaðf�1ðcpðY � VÞÞÞ ¼ iaðf�1ðY � VÞÞ
¼ iaðX � f�1ðVÞÞ¼ X � caðf�1ðVÞÞ. Thus we obtain

caðf�1ðVÞÞ � f�1ðVÞ. As a consequence, f�1ðVÞ is a g-a-
closed set in X and f is contra g-a-preirresolute. h

Theorem 4.8 Let f : X ! Y be a function from two

GTS’s. Then the following are equivalent:

(1) f is contra g-b-preirresolute;
(2) f�1ðFÞ is g-b-open set in X for each g-preclosed set

F of Y ;

(3) For each x 2 X and each g-preopen set V of Y with

f ðxÞ 62 V, there exists g-b-closed set U in X such that

x 62 U and f�1ðVÞ � U;

(4) f is contra g-b-preirresolute at any x 2 X;

(5) f�1ðVÞ � ibðf�1ðVÞÞ for any g-preclosed set V of Y ;

(6) cbðf�1ðUÞÞ � f�1ðUÞ for any g-preopen set U of Y ;

(7) cbðf�1ðipðAÞÞÞ � f�1ðipðAÞÞ for any A � Y ;

(8) f�1ðcpðAÞÞ � ibðf�1ðcpðAÞÞÞ for any A � Y .

Proof It is similar to that of Theorem 4.7 h

Theorem 4.9 Let f : X ! Y be a function from two

GTS’s. Then the following are equivalent:

(1) f is contra g-a-preirresolute;
(2) For each g-preclosed set F of Y , f�1ðFÞ is g-a-open

in X;

(3) f�1ðBÞ � igðcgðigðf�1ðcpðBÞÞÞÞÞ for every subset B

of Y .

Proof ð1Þ , ð2Þ : It is obvious from Definition 4:1 and

Theorem 4:7:

ð2Þ ) ð3Þ : Let B � Y . Since the set cpðBÞ is g-

preclosed in Y , f�1ðcpðBÞÞ is g-a-open and so

f�1ðcpðBÞÞ � igðcgðigðf�1ðcpðBÞÞÞÞÞ:

As a consequence, we obtain

f�1ðBÞ � igðcgðigðf�1ðcpðBÞÞÞÞÞ:

ð3Þ ) ð1Þ : Let V be a g-preopen in Y . Then Y � V is a

subset of Y . By ð3Þ,

f�1ðY � VÞ � igðcgðigðf�1ðcpðY � VÞÞÞÞÞ:

Hence we obtain

cgðigðcgðf�1ðVÞÞÞÞ ¼ cgðigðcgðf�1ðipðVÞÞÞÞÞ � f�1ðVÞ:

As a consequence, f�1ðVÞ is g-a-closed. h
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Theorem 4.10 Let f : X ! Y be a function from two

GTS’s. Then the following are equivalent:

(1) f is contra g-b-preirresolute;
(2) For each g-preclosed set F of Y, f�1ðFÞ is g-b-open

in X;

(3) f�1ðBÞ � cgðigðcgðf�1ðcpðBÞÞÞÞÞ for every subset B

of Y .

Proof It is proved by a similar way of that of

Theorem 4:9:

h

Theorem 4.11 Let f : X ! Y be a function from two

GTS’s. Suppose one of the following conditions hold:

(1) f ðcaðAÞÞ � ipðf ðAÞÞ for each subset A in X.

(2) caðf�1ðBÞÞ � f�1ðipðBÞÞ for each subset B in Y .

(3) f�1ðcpðBÞÞ � iaðf�1ðBÞÞ for each subset B in Y .

Then f is contra g-a-preirresolute.

Proof ð1Þ ) ð2Þ : Let B � Y . Then f�1ðBÞ � X. By

hypothesis, f ðcaðf�1ðBÞÞÞ � ipðf ðf�1ðBÞÞÞ � ipðBÞ. Then
f�1ðf ðcaðf�1ðBÞÞÞÞ � f�1ðipðBÞÞ. Hence caðf�1ðBÞÞ �
f�1ðf ðcaðf�1ðBÞÞÞÞ � f�1ðipðBÞÞ. As a consequence, ð2Þ is
obtained.

ð2Þ ) ð3Þ: It is obvious from the complement of ð2Þ.
Suppose ð3Þ holds: Let B � Y be g-preclosed. Then by

ð3Þ, f�1ðcpðBÞÞ � iaðf�1ðBÞÞ. Thus f�1ðBÞ ¼ f�1ðcpðBÞÞ
� iaðf�1ðBÞÞ. Hence f�1ðBÞ is a g-a-open in X. As a

consequence, we obtain f is contra g-a-preirresolute. h

Theorem 4.12 Let f : X ! Y be a function from two

GTS’s. Suppose one of the following conditions hold:

(1) f ðcbðAÞÞ � ipðf ðAÞÞ for each subset A in X.

(2) cbðf�1ðBÞÞ � f�1ðipðBÞÞ for each subset B in Y .

(3) f�1ðcpðBÞÞ � ibðf�1ðBÞÞ for each subset B in Y .

Then f is contra g-b-preirresolute.

Proof It is similar to proof of Theorem 4.11 h

Theorem 4.13 Let f : X ! Y be a function from two

GTS’s and gX is a strong. f is contra g-a-preirresolute if

the graph function g : X ! X � Y defined by gðxÞ ¼
ðx; f ðxÞÞ for each x 2 X, is contra g-a-preirresolute.

Proof Let x 2 X and V be g-preopen containing f ðxÞ in Y .
Then X � V is a g-preopen set of X � Y by Theorem 2:12

and contains gðxÞ. Then g�1ðX � VÞ is a g-a-closed set in

X. Since g�1ðX � VÞ ¼ f�1ðVÞ, f�1ðVÞ is a g-a-closed set

in X. As a consequence, f is contra g-a-preirresolute. h

Theorem 4.14 Let f : X ! Y be a function from two

GTS’s and gX is a strong. f is contra g-b-preirresolute if

the graph function g : X ! X � Y defined by gðxÞ ¼
ðx; f ðxÞÞ for each x 2 X, is contra g-b-preirresolute.

Proof It is proved similar to that of Theorem 4:13:

h

Theorem 4.15 Let gYk be a given GT on Yk for k 2 K and

gYk be a strong. If a function f : X !
Q

Yk is contra g-a-
preirresolute, thenpk � f : X ! Yk is contrag-a-preirresolute
for each k 2 K, where pk is the projection of

Q
Yk onto Yk.

Proof Let Vk be any g-preopen set of Yk. pk is

ðpðgYÞ; pðgYkÞÞ-continuous from Proposition 2:11 since gYk
is strong and so p�1

k ðVkÞ is g-preopen set. Since f is contra

g-a-preirresolute, f�1ðp�1
k ðVkÞÞ ¼ ðpk � f Þ�1ðVkÞ is a g-a-

closed. As a consequence, we have pk � f is contra g-a-
preirresolute for each k 2 K. h

Theorem 4.16 Let gYk be a given GT on Yk for k 2 K and

gYk be a strong. If a function f : X !
Q

Yk is contra g-b-
preirresolute, then pk � f : X ! Yk is contra g-b-preir-
resolute for each k 2 K, where pk is the projection of

Q
Yk

onto Yk.

Proof It is similar to that of Theorem 4.15 h

Theorem 4.17 If the function f :
Q

Xk !
Q

Yk defined

by f ðfxkgÞ ¼ ffkðxkÞg for each fxkg 2
Q

Xk, is contra g-a-
preirresolute, then fk : Xk ! Yk is contra g-a-preirresolute
for each k 2 K.

Proof Let k0 2 K be an arbitrary fixed index and Vk0 be

any g-preopen set of Yk0 . Then
Q

Ym � Vk0 is g-preopen in
Q

Yk by Theorem 2:12, where k0 6¼ m 2 K. Since f is

contra g-a-preirresolute, f�1ð
Q

Ym � Vk0Þ ¼
Q

Xm �
f�1
k0

ðVk0Þ is g-a-closed in
Q

Xk and f
�1
k0

ðVk0Þ is g-a-closed in
Xk0 . As a consequence, fk0 is contra g-a-preirresolute. h

Theorem 4.18 If the function f :
Q

Xk !
Q

Yk defined

by f ðfxkgÞ ¼ ffkðxkÞg for each fxkg 2
Q

Xk, is contra g-

b-preirresolute, then fk : Xk ! Yk is contra g-b-preir-
resolute for each k 2 K.

Proof It is proved similar to Theorem 4:17: h

Theorem 4.19 If f : X ! Y is contra g-a-preirresolute
and A is a g-aclosed in-X, then the restriction f jA : A ! Y

is contra g-a-preirresolute.

Proof Let V be any g-preopen set in Y . Then we have

f�1ðVÞ is a g-a-closed set in Y . Since the set A is g-a-closed

set, we have ðf jAÞ�1ðVÞ ¼ A \ f�1ðVÞ is g-a-closed.
Therefore f jA is contra g-a-preirresolute. h

Theorem 4.20 If f : X ! Y is contra g-b-preirresolute
and A is a g-b-closed in X, then the restriction f jA : A !
Y is contra g-b-preirresolute.
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Proof It is proved by a similar way as that of Theorem

4:19: h

Theorem 4.21 Let ðX; gXÞ, ðY; gYÞ and ðZ; gZÞ be GTS’s.
If f : X ! Y is contra g-a-preirresolute and g : Y ! Z is

g-preirresolute, then the composition g � f : X ! Z is

contra g-a-preirresolute.

Proof Let V be any g-preopen subset of Z. Since g

function is g-preirresolute, g�1ðVÞ is g-preopen in Y . Since

f is contra g-a-preirresolute, then f�1ðg�1ðVÞÞ ¼
ðg � f Þ�1ðVÞ is g-a-closed in X. As a consequence, g � f is
contra g-a-preirresolute.

h

Theorem 4.22 Let ðX; gXÞ, ðY; gYÞ and ðZ; gZÞ be GTS’s.
If f : X ! Y is contra g-b-preirresolute and g : Y ! Z is

g-preirresolute, then the composition g � f : X ! Z is

contra g-b-preirresolute.

Proof It is proved similar to that of Theorem 4.21. h

Conclusion

The concepts of g-a-preirresolute, g-b-preirresolute, contra
g-a-preirresolute, contra g-b-preirresolute have been in-

troduced on generalized topological spaces and some

properties of this continuity have been investigated. These

concepts may be used in other topological spaces and can

be defined in different forms.
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7. Császár, Á..: Product of generalized topologies. Acta Math.

Hung. 123(1–2), 127–132 (2009)

8. Jayanthi, D.: Contra continuity on generalized topological spaces.

Acta Math. Hung. 134(4), 263–271 (2012)

9. Min, W. K.: Generalized continuous functions defined by gen-

eralized open sets on generalized topological spaces. Acta Math.

Hung. 128 (2009). doi:10.1007/s10474-009-9037-6

10. Shen, R.: Remarks on products of generalized topologies. Acta

Math. Hung. 124(4), 363–369 (2009)

86 Math Sci (2015) 9:79–86

123

http://dx.doi.org/10.1007/s10474-009-9037-6

	Contra \curr{g}-\curr{\alpha}- and \curr{g}-\curr{\beta}-preirresolute functions on GTS’s
	Abstract
	Introduction
	Preliminaries
	g-\alpha -Preirresolute and g-\beta -preirresolute functions
	Contra g- alpha -preirresolute and contra g- beta -preirresolute functions
	Conclusion
	Open Access
	References




