Acta Mathematica Sinica, English Series

Mar., 2006, Vol. 22, No. 2, pp. 383-392 Acta Mathematica

Published online: Oct. 17, 2005 ) . .
DOI: 10.1007/510114-005-0609-2 Slnlf:a, English Series
© Springer-Verlag 2006

Http://www.ActaMath.com

Principal Congruence Subgroups of Hecke Groups H(,/q)

Nihal YILMAZ OZGUR
Department of Mathematics, Balikesir University, 10100 Balikesir, Turkey
E-mail: nihal@balikesir.edu.tr

Abstract Using the notion of quadratic reciprocity, we discuss the principal congruence subgroups
of the Hecke groups H(,/g),q > 5 prime number.

Keywords Hecke group, Principal congruence subgroup, Congruence subgroup
MR (2000) Subject Classification 11F06; 20H05, 20H10

1 Introduction

The Hecke groups H(\) are the discrete subgroups of PSL(2,R) (the group of orientation pre-
serving isometries of the upper half plane U) generated by two linear fractional transformations

R(z) = —% and T'(z) =z + A\,

where A\ € R, A>2o0r A=), = 2cos(§), q € N, ¢ > 3. These values of A are the only ones that
give discrete groups, by a theorem of Hecke [1] (for more information about the Hecke groups,
see [2-7] and [8]). In this paper, we are interested in the case A > 2. When A > 2, these Hecke
groups are Fuchsian groups of the second kind. When A = 2, the element S = RT is parabolic
and when A > 2, the element S = RT is hyperbolic. It is known that H()) is a free product of
a cyclic group of order 2 and an infinite cyclic group where A > 2 (see [9] and [10]). In other

words
H\) 2Cy*Z.

Here, we consider only the case A = ,/q, ¢ > 5 prime number. We determine the quotient
groups of the Hecke groups H(,/q) by their principal congruence subgroups using a classical
method, defined by Macbeath [11]. Then we compute signatures of these normal subgroups
using the permutation method and Riemann-Hurwitz formula (see [12] and [13]). We make
use of the notion of quadratic reciprocity and the number sequences related to Fibonacci and
Lucas sequences. Note that in [14], principal congruence subgroups of the Hecke group H(v/5)
were investigated by using Fibonacci and Lucas numbers.

Our argument depends on determining all the powers of S which is one of the gener-
ators of H(,/q). To answer the question that for what values of n the congruence S" =
+I(mod p), p being an odd prime, holds, we need to compute the n-th power of S, for ev-
ery integer n. It is hard to compute S™ easily. In [15], for each ¢ > 5, it was introduced two
new sequences denoted by %2 and 7,4, and proved that

SQn — _7/2%—1 _%227,\/6 (1)
Uy Vans
and

SZnJrl _ < _%231 q _7/2?n+1 ) ) (2)
41/2(£L—‘,-1 %2{1”4_2\/6
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For ¢ = 5, % = F, and ¥, = L, where F,, denotes the n-th Fibonacci number and L,
denotes n-th Lucas number. The sequences %,J and ¥,¢ are not generalized Fibonacci sequences
except for ¢ = 5. These new sequences have similar properties to those of Fibonacci and Lucas
sequences, some of them the same as ones for Fibonacci and Lucas. For example in [15], it was
shown that

RN ®)

In a sense, %7 is a generalization of F,, and %9 is a generalization of L, (see [15] and [16], for
more details about the ZJ and ¥#,2). In [14], some facts were used about the Fibonacci and
Lucas numbers. Here we use some basic properties of the sequences %4 and ¥/9.

In the case A = ,/q, q > 5 prime, the underlying field is a quadratic extension of Q by /g,
ie., Q(,/q). A presentation of H(,/q) is

H(/) = (R.S: B = 5% = (RS)* =1).

where S = RT and the signature of H(,/q) is (0;2,00;1). By identifying the transformation
w = 2+ with the matrix (‘; g) , H(,/q) may be regarded as a multiplicative group of 2 x 2

cz+d
matrices in which a matrix is identified with its negative. R and S have matrix representations

0 -1 0 -1
and ,
10 1 g
respectively. All elements of H(,/q) are of one of the following two forms:

(i) (cj/ab\f); a,b,c,d € Z, ad — qbe = 1; (ii) (a}:/ad\b/a); a,b,c,d € Z, qad — bc = 1.

Those of type (i) are called even while those of type (ii) are called odd. R and S, the genera-
tors of H(,/q), are both odd. The set of all odd elements is not closed as the product of two odd
elements is always even. Similarly we have odd.even = odd, even.odd = odd, even.even = even.
Therefore we guarantee that this classification is a partition. As each element V of H(,/q) is a
product of generators, we conclude that V is either odd or even. But the converse statement
is not true. That is, all elements of type (i) or (ii) need not be in H(,/q). In [7], Rosen proved
that (& B) € H()) if and only if % is a finite A-fraction (see [7] for more details).

The set of all even elements forms a subgroup of index 2 called the even subgroup. It is
denoted by H.(,/q). Having index two, H.(,/q) is a normal subgroup of H(,/q). Also, H.(,/q)
is the free product of two infinite cyclic groups generated by 7' = RS and U = SR. Indeed,
being odd elements, R and S both go to 2-cycles under the homomorphism

H(vq) — H(VQ)/He(Va) = Cs,
that is, R — (1 2), S — (1 2), T'— (1)(2), so by the permutation method and Riemann-
Hurwitz formula, the signature of H.(,/q) is (0;00);1). If we choose {I, R} as a Schreier
transversal for H.(,/q), then by the Reidemeister—Schreier method (see [17]), Hc(,/q) has the
parabolic generators 7' and U = SR. As R ¢ H.(,/q), it is clear that

H(\/q) = He(v/q) U RH.(\/q)-
The even subgroup H,(,/q) is the most important amongst the normal subgroups of H(,/q). It
contains infinitely many normal subgroups of H(,/q).
Being a free product of a cyclic group of order 2 and an infinite cyclic group, by the Kurosh
subgroup theorem, H(,/q) has two kinds of subgroups, those which are free and those with
torsion (being a free product of Zy’s and Z’s).

2 Principal Congruence Subgroups

An important class of normal subgroups in H(,/q) are the principal congruence subgroups. Let
p be a rational prime. The principal congruence subgroup Hy(,/q) of level p is defined by

H,y(\/7) = {A ( Cja b\f ) € H(Jq): A==+l (modp)}.
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In general, this is equivalent to

Hﬂﬁ){(;}q bf): a=d=1, b=c=0 (mod p), adqbcl}.

Hy,(,/q) is always a normal subgroup of H(,/q). Note that by the definition
Hp(v/q) < He(V4). (4)

A subgroup of H(,/q) containing a principal congruence subgroup of level p is called a
congruence subgroup of level p. In general, not all congruence subgroups are normal in H(,/q).

Another way of obtaining H,(,/q) is to consider the “reduction homomorphism” which is
induced by reducing entries modulo p.

Let p be an ideal of Z[,/g] which is an extension of the ring of integers by the alge-
braic number ,/g. Then the natural map O, : Z[,/q] — Z[,/q]/¢ induces a map H(\/q) —
PSL(2,Z[\/q]/ ), whose kernel is called the principal congruence subgroup of level .

Let now s be an integer such that the polynomial 22 — ¢ has solutions in GF (p*). We know
that such an s exists and satisfies 1 < s < 2 = deg(x2 —q). Let u be a solution of 22 — ¢ in
GF(p®). Let us take p to be the ideal generated by u in Z[,/q]. As above we can define

Op,ug : H(V/q) — PSL(2, p°)
as the homomorphism induced by /g — u. Let K, ,(,/q) = Ker(©p . q)-

As the kernel of a homomorphism of H(,/q), Kp.(/q) is normal in H(,/q).

Given p, as K} ,(,/q) depends on p and u, we have a chance of having a different kernel for
each root u. However sometimes they do coincide. Indeed, it trivially follows from Kummer’s
theorem that if u,v correspond to the same irreducible factor f of 22 — q over GF(p®), then
Kpu(v/@) = Kp,v(v/q)- Even when u, v give different factors of 2% — ¢, we may have K, ,(\/q) =
K;.(1/q). In Lemma 2.3, we show that K, ,(,/q) = K, —u(,/q) When ¢ is a quadratic residue
mod p.

It is easy to see that K ,(,/q) is a normal congruence subgroup of level p of H(,/q), that

is, Hy(\/q) < Kpu(\/q). Therefore Hy(\/q) < aHquyu(\/Q). When the index of H,(,/q) in
Ky (y/q) is not 1, i.e., when they are different, we shall use K, . (1/q) to calculate H,(,/q).
We first try to find the quotient of H(,/q) with K, .(,/q). It is then easy to determine
H(\/q)/Hy(,/q). To determine both quotients we use some results of Macbeath [11]. After
finding the quotients of H(,/q) by the principal congruence subgroups, we find the group-
theoretic structure of them. For notions and terminology see [11] and [12]. Also for the notion
of quadratic reciprocity see [18].
Before stating our main results we need the following observations and lemma.

In [16], it was shown that %, and 75!, are in the following formulas for all n:

e g () ()]

and

o (R ()

For any odd prime p, let us consider S? in mod p. In H(,/q), from (2) we have
SP — < _%qul\/q 7 ) )

7/pq %qurl\/a
From (6), we get
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R (e e R e

(P )a=arvaes (7 Vi)

p—1

= g |Vt (D)t (7 .

2 p—1
As we have (£) = 0(mod p) for 1 <n <p—1and 2P~ = 1(mod p), we find
¥ =(¢—4)"7 (mod p). (7)
Similarly, from (5) we have
1 +1 +1 +1
v = (U e (P it (70
As (PF1) = 0(mod p) for 2<n <p-—1and (p+1) (pﬂ) = 1(mod p), we obtain
U, = [(g—4)"7 +(¢)*F | (mod p). (8)
Now we have two cases:
Case 1 Let us take (%) = 1, where (%) is the Legendre symbol. Then we have (q)p%1
1(mod p) by the Euler criteria [18]. If p | (¢ — 4), then ¢ — 4 = 0(mod p) and (q — 4)*F =
0(mod p). So we get ¥/ = 0(mod p) and 2%, = 1(mod p) since 2¥ = 2(mod p). Ab q-—
4 = 0(mod p), then ¢ = 4(mod p). Hence we can take /g = +2(mod p) and so /g%, =
+1(mod p). By (3), we find —\/g%,' , = +1(mod p). Finally we get
SP = 41 (mod p). 9
Clearly, the order of S(mod p) is p in this case.
Let (¢ —4,p) = 1. Then by the Euler theorem, (¢ — 4)¥®) = 1(mod p), i.e., (¢ —4)P~! =
1(mod p) and so (q—4)"z = +1(mod p). If (¢—4)"z = 1(mod p), then 78 = 1(mod p) and
U, = 1(mod p). From (3), we get %," | = 0(mod p). Therefore we have

SPE<O _1>:S(m0dp),

~
v |
-
[

~

1 va
i.e., SP~1 = I(mod p). Similarly, if (g — 4)"> = —1(mod p), then we have 78 = —1(mod p)
and Uy, = 0(mod p) as 2P = 2(mod p). Since %," ; = —1(mod p), we have S? = S~"(mod p),

i.e., SP1 = I(mod p). In this case, we can say only that the order of S(mod p) divides p — 1
orp+ 1.

Case 2 Let (%) = —1. Then (q)p%1 = —1(mod p). In this case, p can not be divided by
g —4. For, if p | (¢ — 4), then ¢ = 4(mod p) and ¢ would be a quadratic residue mod p. Thus

we have (¢ —4,p) =1 and (¢ — )% = +1(mod p). If (g 4)pr1 = 1(mod p), then we have
¥ = 1(mod p), %, = 0(mod p) and %, ; = 1(mod p). So we get

p+1
~J7 -1
SP ( 1/6 > = —S ! (mod p),

0
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ie., SPTL = —I(mod p). If (¢ —4)"s° = —1(mod p), then we have V8 = —1(mod p), %\,
= —1(mod p) and %, ; = 0(mod p). Therefore we get S? = —S(mod p) and so P! =
—I(mod p). In this case, the order of S(mod p) divides p — 1 or p+ 1.

Therefore we get the following lemma:
Lemma 2.1 (i) Let (%) =1. Ifp|(¢g—4), then SP = £I(mod p) and the order of S is p in

mod p. If (¢ —4,p) =1 and (¢ — 4)1)2;1 = 1(mod p), then SP~ = I(mod p). If (¢ —4,p) =1
and (g — ZL)pT_1 = —1(mod p), we have SP*1 = I(mod p). Then the order of S, say I, divides
p—1orp+1.

(i) Let (%) =—1. If (q—4)"z = 1(mod p), we have SP*! = —I(mod p) and if (¢—4)"z =
—1(mod p), we have SP~! = I(mod p). Then the order of S dividesp —1 or p+ 1.

Now we can give our main theorem.
Theorem 2.2 The quotient groups of the Hecke groups H(\/q) by their congruence subgroups
Ky (/q) and their principal congruence subgroups Hy,(,/q) are as follows:

PSL(2,p) if q is a quadratic residue mod p,

PGL(2,p) if q is a quadratic nonresidue mod p,

H(Va)/Kpu(Va) =

Cs ifp=q
D3 pr = 27
and
Co x PSL(2,p) if q is a quadratic residue mod p,
] PGL(2,p) if q is a quadratic nonresidue mod p,
H(\/q)/Hp(Vq) = )
Caq if p=4q,
Proof

Case 1 Let p # 2 be so that g is a square modulo p, that is, ¢ is a quadratic residue mod p
and let p # ¢. In this case, there exists an element u in GF(p) such that u? = q. Therefore
V/q can be considered as an element of GF(p). Let us consider the homomorphism of H(,/q)
reducing all its elements modulo p. The images of R, S and T under this homomorphism are
denoted by r,, s, and t,, respectively. Then clearly r,, s, and ¢, belong to PSL(2,p). Now
there is a homomorphism 6 : H(,/q) — PSL(2,p) induced by /¢ — u. Then our problem is to
find the subgroup of PSL(2,p) = G, generated by r,, s, and ¢,.

Following Macbeath’s terminology let & = GF(p). Then k, the smallest subfield of k
containing a = tr(r,) = 0, 8 = tr(sy) = \/q and v = tr(t,) = 2, is also GF(p) as \/q € GF(p).
In this case, for all p, the I',(,/q)-triple (rp, sp,t,) is not singular since the discriminant of the
associated quadratic form, which is —“TQ, is not 0 (where I'y(,/q) denotes the image of H(,/q)
modulo p, generated by r, and s,).

On the other hand, the associated N-triple (giving the orders of its elements) is (2,1, p)

where [ depends on p and ¢. Now we want to know when the triple is exceptional (remember
that all exceptional triples are (2,2,n), n € N, (2,3,3), (2,3,4), (2,3,5) and (2,5,5) ((2,3,5)
1 —
Va ql/la '
It would be S? = £ only when p is a multiple of ¢, but in this case we would have (%) =0.
Firstly, let p = 3. If ¢ is a quadratic residue mod 3, then ¢ = 1(mod 3) by the Euler criteria.
Since ¢ — 4 = 0(mod 3), then by Lemma 2.1(i), we have S3 = £I(mod 3). Therefore we find
the exceptional triple (2,3, 3).

Let p = 5. Similarly, if ¢ is a quadratic residue mod 5, then we have ¢ = 1(mod 5), so
g = F1(mod 10). In this case, it can be l = 3 or I = 5. If ¢ = 1(mod 10), then (¢—4,5) = 1 and

is a homomorphic image of (2,5,5)), see [11]). Note that [ can not be 2 since S? = (
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it is easy to check that S3 = —I(mod 5) (notice that (g—4)"= = —1(mod 5) and the order of S
divides 6). If ¢ = —1(mod 10), then 5 | (¢ —4), and by Lemma 2.1(i) we have S5 = FI(mod 5).

Consequently, if ¢ = 1(mod 3), we have the exceptional triple (2,3, 3). So (r3, s3,t3) gener-
ates a group which is isomorphic to A4 of order 12 and we obtain

H(a)/Ksu(Va) = Ay = PSL(2,3).

If ¢ = +1 (mod 10), we have the exceptional triples (2,3,5) and (2,5,5). Therefore
(r5, 85,t5) generates a group which is isomorphic to Ay of order 60. So we obtain

H(Vq)/K5u(v/q) = As = PSL(2,5).

If (rp, Sp,tp) is not exceptional, then by Theorem 4 in [11], (rp, S, tp) generates a projective
subgroup of G, and by Theorem 5 in [11], as kK = GF(p) is not a quadratic extension of any
other field, this subgroup is the whole PSL(2,p), i.e., H(\/q)/Kpu(\/q) = PSL(2,p).

Let us now find the quotient of H(,/q) by the principal congruence subgroup H,(,/q) in
this case. Note that, by (4), Hy(y/q) is a subgroup of the even subgroup H.(,/q). Therefore
there are no odd elements in H,(,/g).

We now want to find the quotient group K, .(y/q)/Hp(y/q). To show that it is not the
trivial group, we show that K, ,(,/q) contains an odd element.

If A is such an element, then

A= ey s A=qat —yz=1, z,y,2,t €Z
z t\/q

is in K} (y/q) — Hy(\/q). Now
42— < gz’ +yz Va(ry +yz) >

Va(zz +tz)  qt? +yz

and since zu = tu = 1, y = z = 0 mod p, we have z?u? = gz? = 1 mod p and similarly

t?u? = qt> = 1 mod p. Hence A is of exponent two mod H,(,/q). If B is another such
element in K, ,(,/q) — Hp(y/q), then it is easy to see that AB~' = +I(mod p) and hence
AHy(\/q) = BHy(,/q). Therefore we can write K, ,(\/q) = Hy(\/q) UAH,(\/q) as A ¢ H,(\/q).

Now we want to show that any element (Caq b\f) of He(y/q)/Hp(\/q) commutes with A.
This is true since

<x\/§ Yy )(a b\/§>:<\/§(ax+cy) bxq + dy >
z t\/q /g d az + qct Vq(bz 4+ dt)

a b\/q /g Y [ Valax +bz) ay+ btq

c/q d z t\/q qrc+ dz Va(cy + dt) ’
and since y = z = 0 and = = ¢ mod p. Therefore we have the following subgroup lattice (see
Figure 1), and hence

H(Va)/Hp(Va) = Kpu (V@) [ Hp(Va) X He(Vq)/Hp(Vq) = C2 x PSL(2,p).

Indeed, K, .(y/q) contains an odd element. Let A = (r\z/a t\%) be as above. We have A =

gt —yz =1, 2u =tu =1, y = z = 0 mod p, where u = /g mod p. Let v € GF(p) be such
that wv = 1 mod p. Then we can choose

e [ V20 yg 11— q?
A= (T "R = ( e o ) € H(\/7). (10)

That is, it is always possible to find an odd element A of K, ,(,/q) which does not belong to

Hy(Va)-

and
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Hy(y/a)

Figure 1

Case 2 Let p be so that ¢ is not a square modulo p, i.e., ¢ is a quadratic nonresidue mod p.
In this case /g can not be considered as an element of GF(p). Therefore there are no odd
elements in the kernel K, ,(,/q) and hence K, ,(\/q) = Hy(1/q)

Now we shall extend GF(p) to its quadratic extension GF(p*). Then u = /g can be
considered to be in GF(p?) and there exists a homomorphism 6 : H(,/q) — PSL(2,p?) induced
similarly to Case 1.

Let k = GF(p?). Then &, the smallest subfield of k containing traces a, 3, v of 7, sy, tp, is
also GF(p?). Then as in Case 1, (1, sp,tp) is not a singular triple. If the Go-triple (r,, sp,t,)
is not an exceptional triple, since & is the quadratic extension of kg = GF(p) and v = 2 lies in
ko while & = 0, and 8 = ,/q is the square root in  of ¢ which is a non-square in xq, (75, 5p,tp)
generates PGL(2,p), i.e., H(\/q)/Kp.(/q) = PGL(2,p) (see [11, p. 28§]).

If p=3or5, (rp, sp,tp) can be an exceptional triple. So we want to know for what values of
¢, ($)=—1lor ()= —1.1f ($)= —1, we have ¢ = —1(mod 3), and if (£)= —1, we have ¢* = —1
(mod 5), so ¢ = +2(mod 5).

If ¢ = —1 (mod 3), we have ¢ — 4 = 1(mod 3). Again, it is easy to check that S* =
—I(mod 3). Thus we have the N-triple (2,4,3) which generates a group isomorphic to the
symmetric group Sy and we get H(,/q)/K3,.(\/q) = S4 = PGL(2,3).

Similarly, if ¢ = —2 (mod 5), we have S® = —I (mod 5), and if ¢ = 2 (mod 5), we have
S% = —TI (mod 5). Therefore we get the N-triples (2,6,5) and (2,4,5) when ¢ = F2 (mod 5).
These triples are not exceptional. In this case (5, s5,t5) generates PGL(2, p).

Consequently, H(,/q)/Hy(\/q) = PGL(2,p).

In this case, we have observed that the order of S mod p is always p — 1 or p+ 1 in
examples. At this point, we conjecture that the order of S mod p is p — 1 or p+ 1 according to
(¢ — 4)2%1 = 1(mod p) or (q — 4)on71 = —1(mod p), respectively. But we have not proved yet
this conjecture.

Case 3 Letp = q. As,/q can be thought of as the zero element of GF(q) = {0,1,2,...,¢—1},
we have t; = I mod q. As r2 =1 as well, we have H(,/q)/Kq0(,/q) = Ca.

It is easy to show that S*" = ( (_1();1)1:1 v (_(1_)1;1?/6 ) (mod gq). Therefore, we have

29 — -1 _q\/a mo -1 0 = —1{(Imo
S _<q\/6 1 )( d q) (0 _1> I(mod q).

So, in the quotient H(\/q)/Hy(1/q) we have the relations r2 = s29 = t1 = I, s, = rqty as
(v2)*> = ¢ =0 (mod g). Then we have H(\/q)/Hq(/q) = Caq.

Case 4 Let p=2. Then (rq, $2,t2) gives the exceptional N-triple (2,3, 2) and hence generates
a group isomorphic to the dihedral group D3 of order 6.
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Let us now consider the quotient group H(,/q)/Hz2(,/q). In this case we have the relations
r3 = s5 = t3 = I. Therefore H(/q)/H2(,/q) is isomorphic to the dihedral group Dg of order 12.
Lemma 2.3  Let q be a quadratic residue mod p. Then we have K, (/q) = Kp,—u(1/Q).
Proof 1If q is a quadratic residue mod p, then 22 — ¢ = (z — u)(x + u) mod p for some u €
GF(p). In K, .(,/q), let us consider the element A = (T~"R)* obtained in (10). Now we have
R(T"R)™®R = (T'R)3. Since K, ,(,/q) is a normal subgroup, then the equality holds, as
required.

Notice that generators of one of the two principal congruence subgroups corresponding to
values u and —u are just the inverses of the generators of the other.

Now using the Legendre symbol and the law of quadratic reciprocity, it is easy to prove the
following lemma:

Lemma 2.4 Let p be an odd prime. Then (%) =1 if and only if p = +1,£3,+9 mod 28. If
p = +5,411,£13 mod 28, we have (%) =—1.

Example 2.5 By Theorem 2.2 and Lemma 2.4, we have the quotient groups of the Hecke
group H(\/7) by its congruence subgroups K, ,(v/7) and its principal congruence subgroups
H,(\/7) are as follows:

PSL(2,p), p=+1,+3,49 mod 28,
PGL(2,p), p=+5,+11,+13 mod 28,
Co, p=T,

Ds, P =2,

H(W7) /Ky (VT) =

and
Co x PSL(2,p), p==+1,4£3,49 mod 28,

PGL(2,p), = 45,411, +13 mod 28,
VT H (A = POHED :

CIO; p= 77

D67 b= 2.

Note that we are unable to give conditions when ¢ is a quadratic residue mod p or not, for
any prime p and any q.

Hence we have found all quotient groups of H(,/q), ¢ > 5 prime, with K, ,(,/q) and with
the principal congruence subgroups H,(,/q), for all prime p. By means of these we can give the
index formula for these two congruence subgroups.

Corollary 2.6  The indices of the congruence subgroups K, ,(\/q) and Hy(\/q) in H(\/q) are

—1 1
w if q is a square mod p and p # q,

2
\H (V@) Kpu(VD)| = plp—1D(p+1) if qisnot a square mod p,
if p=gq,

and
plp—1)p+1) if p#qand p#2,
\H(Va)/Hp(vVa)| = 2 if p=agq,
12 if p=2.

We are now able to determine the group-theoretic structure of the subgroups K, ,(,/q) and

Hy(,/q). Recall that Hy,(/q)<K} . (,/q) and also by the definition of H,(\/q), Hp(/q)<He(\/q)-
Then we have four cases:

Case 1  Let p = ¢q. We know that H(,/q)/K0(y/q) = C2. Since R and S are both mapped
to the generator of Cy, we find K, o(1/q) = He(1/q)-
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We also proved that H(,/q)/Hy(,/q) = Caq. C2q has a presentation
(@, B,7v:02 = 1 =~*1 =1T)

Then we have R — «, S — (3 and therefore RS — af, i.e.,
R—(12)(34) -~ (2¢-12¢), S— (135 - 2g—1)(246 ---2¢), T— (1458 --- 2q).
By the permutation method and Riemann-Hurwitz formula we find the signature of Hy(,/q)
as (q%l; 00; 2).
Case 2 Let p = 2. We know that H(,/q)/K2.(\/q) = D3 and H(\/q)/H2(\/q) = Ds. In the
former one, the quotient group is D3 = (2,3,2) and hence by the permutation method it is
easy to see that K»,(,/q) has the signature (0;00();2) and therefore K>, (,/q) = Fy, where
F, denotes a free group of rank four.

Secondly let us consider H(/q)/H2(\/q) = Ds = (2,6,2). In a similar way we obtain

the signature of Hy(,/q) as (0;00(9;2) and therefore it is a free group of rank seven, i.e.,
Hg(\/a) = F7.
Case 3 Let ¢ is a quadratic residue mod p, p # ¢, p # 2. Then the quotient groups are
PSL(2,p) and Cy x PSL(2,p) as we have proved. Let now rp,, s, be the images of R, S in
PSL(2,p) and r;, s; be the images of R, S in Cy x PSL(2,p), respectively. Then the relations
r2 =sh =T and (7";))2 = (s;))m = I are satisfied. Here, [ depends on p and q. As odd powers of
S are odd and even powers of S are even, we have m = 2] when [ is odd and we have m =1
when [ is even. In this case both K, ,(1/q) and Hy(,/q) are free groups.

If (¢ —4) = 0(mod p) then from Lemma 2.1(i), we know that [ = p and so m = 2p. If
p | (¢ —4), then the signature of K, ,(,/q) is

<1 L= 1)(1948r Dp—4), T (p— 1)2(17 + 1))

and the signature H,(,/q) is
—1 1 — —1)(pt+1 -1 1
14 =D+ 3); 0o VB, (P-Dlp+1)Y
4 2
If (¢ —4,p) = 1, then SP~! = I(mod p) or SP*! = I(mod p) according to (¢ — 4)"2 =
+1(mod p). But, / may be a divisor of p — 1 or p+ 1 since /g can be considered as an element

u of GF(p). So I can be % or pTH for some positive integer k. The orders of the parabolic
elements r,s;, and s}, are p. Then T' goes to an element of order p in both quotient groups. Let
p be the index of the congruence subgroup K. (y/q) in H(y/q). By the permutation method
and Riemann-Hurwitz formula, we find the signature of this subgroup as

(1 + 4%)1(]01 —2p— 21);00(%); %) .
Again, if 4/ is the index of the principal congruence subgroup H,(\/q) in H(,/q), we find the
signature of this subgroup as

/ (L’) /
<1+ s (pm —2p —2m); oo " ;i>.

4pm m

Example 2.7 Let ¢ = 7 and p = 19. We have [ = m = 10 and p = 3420, p/ = 6840.
The signature of Klgyg(\/?) = K19,11(\/7) is (595; 00(189); 342) and the signature of Hyg(v/7) is
(1189; 00(369); 684).

Case 4 Let ¢ be a quadratic nonresidue mod p. We prove that both quotient groups
are isomorphic to PGL(2,p). From Lemma 2.1(ii), we know that the associated N-triple is
(2, &kl,’ g) or (2, p—;l, p) for some positive integer k according to (¢ — 4)pr1 = 1(mod p) or
(¢ —4)"= = —1(mod p), respectively. As in Case 3, we have the signature of K,.(yq) =
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Hy,(,/q) as
2

(1+ D *f’”l)l’*?); oo (P DD, o )
or

(1+ (p+1)(p? 512k+3)20+2); oo (P DEHD). (4 1) )
respectively.
Example 2.8 (i) Let ¢ = 7 and p = 5. In this case we have H(v/7)/Ks5.(V/7) = (\/_)/
H5(v/7) &2 PGL(2,5). As 32 = —1(mod 5), we get the signature of K5, (v/7) = Hs(\/7) as

(4; 00?4 30).
(ii) Let ¢ = 7 and p = 11. As 3° = 1(mod 11), we have Ki;,(vV7) = Hy1(V/7)
(216; 00(129): 110).

Finally, we can give the following corollary:

I

Corollary 2.9  All principal congruence subgroups of the Hecke group H(\/q), ¢ > 5 prime
number, are free groups.
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