Principal Congruence Subgroups of Hecke Groups $H(\sqrt{q})$

Nihal YILMAZ OZG ¨ UR¨

Department of Mathematics, Balikesir University, 10100 *Balikesir, Turkey E-mail: nihal@balikesir.edu.tr*

Abstract Using the notion of quadratic reciprocity, we discuss the principal congruence subgroups of the Hecke groups $H(\sqrt{q}), q > 5$ prime number.

Keywords Hecke group, Principal congruence subgroup, Congruence subgroup **MR(2000) Subject Classification** 11F06; 20H05, 20H10

1 Introduction

The Hecke groups $H(\lambda)$ are the discrete subgroups of $PSL(2,\mathbb{R})$ (the group of orientation preserving isometries of the upper half plane U) generated by two linear fractional transformations

$$
R(z) = -\frac{1}{z}
$$
 and $T(z) = z + \lambda$,

where $\lambda \in \mathbb{R}, \lambda \geq 2$ or $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \in \mathbb{N}, q \geq 3$. These values of λ are the only ones that give discrete groups, by a theorem of Hecke [1] (for more information about the Hecke groups, see [2–7] and [8]). In this paper, we are interested in the case $\lambda \geq 2$. When $\lambda > 2$, these Hecke groups are Fuchsian groups of the second kind. When $\lambda = 2$, the element $S = RT$ is parabolic and when $\lambda > 2$, the element $S = RT$ is hyperbolic. It is known that $H(\lambda)$ is a free product of a cyclic group of order 2 and an infinite cyclic group where $\lambda \geq 2$ (see [9] and [10]). In other words

$$
H(\lambda) \cong C_2 * \mathbb{Z}.
$$

Here, we consider only the case $\lambda = \sqrt{q}$, $q > 5$ prime number. We determine the quotient groups of the Hecke groups $H(\sqrt{q})$ by their principal congruence subgroups using a classical method, defined by Macbeath [11]. Then we compute signatures of these normal subgroups using the permutation method and Riemann–Hurwitz formula (see [12] and [13]). We make use of the notion of quadratic reciprocity and the number sequences related to Fibonacci and use of the notion of quadratic reciprocity and the number sequences related to r homacci and
Lucas sequences. Note that in [14], principal congruence subgroups of the Hecke group $H(\sqrt{5})$ were investigated by using Fibonacci and Lucas numbers.

Our argument depends on determining all the powers of S which is one of the generators of $H(\sqrt{q})$. To answer the question that for what values of n the congruence $S^n \equiv$ $\pm I$ (mod p), p being an odd prime, holds, we need to compute the n-th power of S, for every integer n. It is hard to compute $Sⁿ$ easily. In [15], for each $q \geq 5$, it was introduced two new sequences denoted by \mathcal{U}_n^q and \mathcal{V}_n^q , and proved that

$$
S^{2n} = \begin{pmatrix} -\mathscr{V}_{2n-1}^q & -\mathscr{U}_{2n}^q \sqrt{q} \\ \mathscr{U}_{2n}^q \sqrt{q} & \mathscr{V}_{2n+1}^q \end{pmatrix}
$$
 (1)

and

$$
S^{2n+1} = \begin{pmatrix} -\mathcal{U}_{2n}^q \sqrt{q} & -\mathcal{V}_{2n+1}^q \\ \mathcal{V}_{2n+1}^q & \mathcal{U}_{2n+2}^q \sqrt{q} \end{pmatrix} . \tag{2}
$$

Received October 10, 2003, Accepted February 17, 2005

For $q = 5$, $\mathscr{U}_n^5 = F_n$ and $\mathscr{V}_n^5 = L_n$, where F_n denotes the *n*-th Fibonacci number and L_n denotes *n*-th Lucas number. The sequences \mathcal{U}_n^q and \mathcal{V}_n^q are not generalized Fibonacci sequences except for $q = 5$. These new sequences have similar properties to those of Fibonacci and Lucas sequences, some of them the same as ones for Fibonacci and Lucas. For example in [15], it was shown that

$$
\mathcal{V}_p^q = \mathcal{U}_{p+1}^q + \mathcal{U}_{p-1}^q. \tag{3}
$$

In a sense, \mathscr{U}_n^q is a generalization of F_n and \mathscr{V}_n^q is a generalization of L_n (see [15] and [16], for more details about the \mathcal{U}_n^q and \mathcal{V}_n^q). In [14], some facts were used about the Fibonacci and Lucas numbers. Here we use some basic properties of the sequences \mathcal{U}_n^q and \mathcal{V}_n^q .

In the case $\lambda = \sqrt{q}$, $q > 5$ prime, the underlying field is a quadratic extension of Q by \sqrt{q} , i.e., $\mathbb{Q}(\sqrt{q})$. A presentation of $H(\sqrt{q})$ is

$$
H(\sqrt{q}) = \langle R, S; R^2 = S^{\infty} = (RS)^{\infty} = 1 \rangle,
$$

where $S = RT$ and the signature of $H(\sqrt{q})$ is $(0; 2, \infty; 1)$. By identifying the transformation $w = \frac{az+b}{cz+d}$ with the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $H(\sqrt{q})$ may be regarded as a multiplicative group of 2×2 matrices in which a matrix is identified with its negative. R and S have matrix representations

$$
\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} 0 & -1 \\ 1 & \sqrt{q} \end{array}\right),
$$

respectively. All elements of $H(\sqrt{q})$ are of one of the following two forms:

(i) $\begin{pmatrix} a & b\sqrt{q} \\ c, \sqrt{q} & d \end{pmatrix}$; $a, b, c, d \in \mathbb{Z}$, $ad - qbc = 1$; (ii) $\begin{pmatrix} a\sqrt{q} & b \\ c & d \end{pmatrix}$ $\left(\begin{smallmatrix} \sqrt{q} & b \ c & d \sqrt{q} \end{smallmatrix} \right); a, b, c, d \in \mathbb{Z}, qad - bc = 1.$

Those of type (i) are called even while those of type (ii) are called odd. R and S , the generators of $H(\sqrt{q})$, are both odd. The set of all odd elements is not closed as the product of two odd elements is always even. Similarly we have odd.even $=$ odd, even.odd $=$ odd, even.even $=$ even. Therefore we guarantee that this classification is a partition. As each element V of $H(\sqrt{q})$ is a product of generators, we conclude that V is either odd or even. But the converse statement is not true. That is, all elements of type (i) or (ii) need not be in $H(\sqrt{q})$. In [7], Rosen proved that $(A \underset{C}{B}) \in H(\lambda)$ if and only if $\frac{A}{C}$ is a finite λ -fraction (see [7] for more details).

The set of all even elements forms a subgroup of index 2 called the even subgroup. It is denoted by $H_e(\sqrt{q})$. Having index two, $H_e(\sqrt{q})$ is a normal subgroup of $H(\sqrt{q})$. Also, $H_e(\sqrt{q})$ is the free product of two infinite cyclic groups generated by $T = RS$ and $U = SR$. Indeed, being odd elements, R and S both go to 2-cycles under the homomorphism

$$
H(\sqrt{q}) \to H(\sqrt{q})/H_e(\sqrt{q}) \cong C_2,
$$

that is, $R \to (1 \ 2)$, $S \to (1 \ 2)$, $T \to (1)(2)$, so by the permutation method and Riemann– Hurwitz formula, the signature of $H_e(\sqrt{q})$ is $(0;\infty^{(2)};1)$. If we choose $\{I,R\}$ as a Schreier transversal for $H_e(\sqrt{q})$, then by the Reidemeister–Schreier method (see [17]), $H_e(\sqrt{q})$ has the parabolic generators T and $U = SR$. As $R \notin H_e(\sqrt{q})$, it is clear that

$$
H(\sqrt{q}) = H_e(\sqrt{q}) \cup RH_e(\sqrt{q}).
$$

The even subgroup $H_e(\sqrt{q})$ is the most important amongst the normal subgroups of $H(\sqrt{q})$. It The even subgroup $H_e(\sqrt{q})$ is the most important ain
contains infinitely many normal subgroups of $H(\sqrt{q})$.

Being a free product of a cyclic group of order 2 and an infinite cyclic group, by the Kurosh subgroup theorem, $H(\sqrt{q})$ has two kinds of subgroups, those which are free and those with torsion (being a free product of \mathbb{Z}_2 's and \mathbb{Z}' s).

2 Principal Congruence Subgroups

An important class of normal subgroups in $H(\sqrt{q})$ are the principal congruence subgroups. Let p be a rational prime. The principal congruence subgroup $H_p(\sqrt{q})$ of level p is defined by

$$
H_p(\sqrt{q}) = \left\{ A = \begin{pmatrix} a & b\sqrt{q} \\ c\sqrt{q} & d \end{pmatrix} \in H(\sqrt{q}) : A \equiv \pm I \pmod{p} \right\}.
$$

Principal Congruence Subgroups of Hecke Groups $H(\sqrt{q})$ \sqrt{q}) 385

In general, this is equivalent to

$$
H_p(\sqrt{q}) = \left\{ \begin{pmatrix} a & b\sqrt{q} \\ c\sqrt{q} & d \end{pmatrix} : a \equiv d \equiv 1, b \equiv c \equiv 0 \pmod{p}, ad-qbc = 1 \right\}.
$$

 $H_p(\sqrt{q})$ is always a normal subgroup of $H(\sqrt{q})$. Note that by the definition

$$
H_p(\sqrt{q}) \lhd H_e(\sqrt{q}).\tag{4}
$$

A subgroup of $H(\sqrt{q})$ containing a principal congruence subgroup of level p is called a congruence subgroup of level p. In general, not all congruence subgroups are normal in $H(\sqrt{q})$.

Another way of obtaining $H_p(\sqrt{q})$ is to consider the "*reduction homomorphism*" which is induced by reducing entries modulo p.

Let φ be an ideal of $\mathbb{Z}[\sqrt{q}]$ which is an extension of the ring of integers by the algebraic number \sqrt{q} . Then the natural map $\Theta_{\wp} : \mathbb{Z}[\sqrt{q}] \to \mathbb{Z}[\sqrt{q}]/\wp$ induces a map $H(\sqrt{q}) \to$ $PSL(2, \mathbb{Z}[\sqrt{q}]/\wp)$, whose kernel is called the principal congruence subgroup of level \wp .

Let now s be an integer such that the polynomial $x^2 - q$ has solutions in $GF(p^s)$. We know that such an s exists and satisfies $1 \leq s \leq 2 = \deg(x^2 - q)$. Let u be a solution of $x^2 - q$ in GF(p^s). Let us take \wp to be the ideal generated by u in $\mathbb{Z}[\sqrt{q}]$. As above we can define

$$
\Theta_{p,u,q}: H(\sqrt{q}) \to PSL(2, p^s)
$$

as the homomorphism induced by $\sqrt{q} \to u$. Let $K_{p,u}(\sqrt{q}) = \text{Ker}(\Theta_{p,u,q})$.

As the kernel of a homomorphism of $H(\sqrt{q})$, $K_{p,u}(\sqrt{q})$ is normal in $H(\sqrt{q})$.

Given p, as $K_{p,u}(\sqrt{q})$ depends on p and u, we have a chance of having a different kernel for each root u. However sometimes they do coincide. Indeed, it trivially follows from Kummer's theorem that if u, v correspond to the same irreducible factor f of $x^2 - q$ over $GF(p^s)$, then $K_{p,u}(\sqrt{q}) = K_{p,v}(\sqrt{q})$. Even when u, v give different factors of $x^2 - q$, we may have $K_{p,u}(\sqrt{q}) =$ $K_{p,\nu}(\sqrt{q})$. In Lemma 2.3, we show that $K_{p,\nu}(\sqrt{q}) = K_{p,-\nu}(\sqrt{q})$ when q is a quadratic residue mod p.

It is easy to see that $K_{p,u}(\sqrt{q})$ is a normal congruence subgroup of level p of $H(\sqrt{q})$, that is, $H_p(\sqrt{q}) \le K_{p,u}(\sqrt{q})$. Therefore $H_p(\sqrt{q}) \le \bigcap_{\text{all } u} K_{p,u}(\sqrt{q})$. When the index of $H_p(\sqrt{q})$ in $K_{p,u}(\sqrt{q})$ is not 1, i.e., when they are different, we shall use $K_{p,u}(\sqrt{q})$ to calculate $H_p(\sqrt{q})$. $\mathcal{L}_{p,u}(\nabla q)$ is not 1, i.e., when they are different, we shall disc $\mathcal{L}_{p,u}(\nabla q)$ to calculate $\mathcal{L}_{p}(\nabla q)$.
We first try to find the quotient of $H(\sqrt{q})$ with $K_{p,u}(\sqrt{q})$. It is then easy to determine $H(\sqrt{q})/H_p(\sqrt{q})$. To determine both quotients we use some results of Macbeath [11]. After finding the quotients of $H(\sqrt{q})$ by the principal congruence subgroups, we find the grouptheoretic structure of them. For notions and terminology see [11] and [12]. Also for the notion of quadratic reciprocity see [18].

Before stating our main results we need the following observations and lemma.

In [16], it was shown that \mathcal{U}_{2n}^q and \mathcal{V}_{2n+1}^q are in the following formulas for all n:

$$
\mathscr{U}_{2n}^{q} = \frac{1}{\sqrt{q(q-4)}} \left[\left(\frac{\sqrt{q-4} + \sqrt{q}}{2} \right)^{2n} - \left(\frac{\sqrt{q-4} - \sqrt{q}}{2} \right)^{2n} \right] \tag{5}
$$

and

$$
\mathscr{V}_{2n+1}^q = \frac{1}{\sqrt{q-4}} \left[\left(\frac{\sqrt{q-4} + \sqrt{q}}{2} \right)^{2n+1} + \left(\frac{\sqrt{q-4} - \sqrt{q}}{2} \right)^{2n+1} \right].
$$
 (6)

For any odd prime p, let us consider S^p in mod p. In $H(\sqrt{q})$, from (2) we have

$$
S^p = \begin{pmatrix} -\mathscr{U}^q_{p-1}\sqrt{q} & -\mathscr{V}^q_p \\ \mathscr{V}^q_p & \mathscr{U}^q_{p+1}\sqrt{q} \end{pmatrix}.
$$

From (6), we get

$$
\mathcal{V}_p^q = \frac{1}{\sqrt{q-4}} \bigg[\left(\frac{\sqrt{q-4} + \sqrt{q}}{2} \right)^p + \left(\frac{\sqrt{q-4} - \sqrt{q}}{2} \right)^p \bigg]
$$

\n
$$
= \frac{1}{2^p \sqrt{q-4}} \bigg[(\sqrt{q-4})^p + {p \choose 1} (\sqrt{q-4})^{p-1} \sqrt{q}
$$

\n
$$
+ \cdots + {p \choose p-1} \sqrt{q-4} (\sqrt{q})^{p-1} + (\sqrt{q})^p + (\sqrt{q-4})^p
$$

\n
$$
- {p \choose 1} (\sqrt{q-4})^{p-1} \sqrt{q} + \cdots + {p \choose p-1} \sqrt{q-4} (\sqrt{q})^{p-1} - (\sqrt{q})^p \bigg]
$$

\n
$$
= \frac{1}{2^{p-1}} \bigg[(\sqrt{q-4})^{p-1} + {p \choose 2} (\sqrt{q-4})^{p-3} (\sqrt{q})^2 + \cdots + {p \choose p-1} (\sqrt{q})^{p-1} \bigg].
$$

\nWe have ${p \choose n} \equiv 0 \pmod{p}$ for $1 \le n \le p-1$ and $2^{p-1} \equiv 1 \pmod{p}$, we find

As w $\mathcal{V}_p^q \equiv (q-4)^{\frac{p-1}{2}} \pmod{p}.$ (7)

Similarly, from (5) we have

$$
\mathcal{U}_{p+1}^q = \frac{1}{2^p} \bigg[\binom{p+1}{1} (\sqrt{q-4})^{p-1} + \binom{p+1}{3} (\sqrt{q-4})^{p-3} q + \dots + \binom{p+1}{p} (q)^{\frac{p-1}{2}} \bigg].
$$

As
$$
\binom{p+1}{n} \equiv 0 \pmod{p}
$$
 for $2 \le n \le p-1$ and
$$
\binom{p+1}{1} \equiv \binom{p+1}{p} \equiv 1 \pmod{p}
$$
, we obtain

$$
2^{p} \mathscr{U}_{p+1}^{q} \equiv \left[(q-4)^{\frac{p-1}{2}} + (q)^{\frac{p-1}{2}} \right] \pmod{p}.
$$
 (8)

Now we have two cases:

Case 1 Let us take $\left(\frac{q}{p}\right) = 1$, where $\left(\frac{q}{p}\right)$ is the Legendre symbol. Then we have $(q)^{\frac{p-1}{2}} \equiv$ 1(mod p) by the Euler criteria [18]. If p | $(q-4)$, then $q-4 \equiv 0 \pmod{p}$ and $(q-4)^{\frac{p-1}{2}} \equiv$ 0(mod p). So we get $\mathcal{V}_p^q \equiv 0 \pmod{p}$ and $2\mathcal{U}_{p+1}^q \equiv 1 \pmod{p}$ since $2^p \equiv 2 \pmod{p}$. As q – $4 \equiv 0 \pmod{p}$, then $q \equiv 4 \pmod{p}$. Hence we can take $\sqrt{q} \equiv \pm 2 \pmod{p}$ and so $\sqrt{q} \mathscr{U}_{p+1}^d \equiv$ $\pm 1 \pmod{p}$, then $q = 4 \pmod{p}$. Hence we can take $\sqrt{q} = \pm 2$.
 $\pm 1 \pmod{p}$. By (3), we find $-\sqrt{q} \mathcal{U}_{p-1}^q \equiv \pm 1 \pmod{p}$. Finally we get $S^p \equiv \pm I \pmod{p}.$ (9)

$$
S' = \pm I \pmod{p}
$$
.
Clearly, the order of $S \pmod{p}$ is p in this case.

Let $(q-4, p)=1$. Then by the Euler theorem, $(q-4)^{\varphi(p)} \equiv 1 \pmod{p}$, i.e., $(q-4)^{p-1} \equiv$ 1(mod p) and so $(q-4)^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. If $(q-4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, then $\mathcal{V}_p^q \equiv 1 \pmod{p}$ and $\mathscr{U}_{p+1}^q \equiv 1 \pmod{p}$. From (3), we get $\mathscr{U}_{p-1}^q \equiv 0 \pmod{p}$. Therefore we have

$$
S^p \equiv \left(\begin{array}{cc} 0 & -1 \\ 1 & \sqrt{q} \end{array} \right) = S \text{ (mod } p),
$$

i.e., $S^{p-1} \equiv I \pmod{p}$. Similarly, if $(q-4)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, then we have $\mathcal{V}_p^q \equiv -1 \pmod{p}$ and $\mathscr{U}_{p+1}^q \equiv 0 \pmod{p}$ as $2^p \equiv 2 \pmod{p}$. Since $\mathscr{U}_{p-1}^q \equiv -1 \pmod{p}$, we have $S^p \equiv S^{-1} \pmod{p}$, i.e., $S^{p+1} \equiv I \pmod{p}$. In this case, we can say only that the order of $S \pmod{p}$ divides $p-1$ or $p+1$.

Case 2 Let $\left(\frac{q}{p}\right) = -1$. Then $(q)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. In this case, p can not be divided by $q-4$. For, if $p \mid (q-4)$, then $q \equiv 4 \pmod{p}$ and q would be a quadratic residue mod p. Thus we have $(q - 4, p) = 1$ and $(q - 4)^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. If $(q - 4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, then we have $\mathcal{V}_p^q \equiv 1 \pmod{p}$, $\mathcal{U}_{p+1}^q \equiv 0 \pmod{p}$ and $\mathcal{U}_{p-1}^q \equiv 1 \pmod{p}$. So we get

$$
S^p \equiv \left(\begin{array}{cc} -\sqrt{q} & -1 \\ 1 & 0 \end{array} \right) = -S^{-1}(\text{mod } p),
$$

i.e., $S^{p+1} \equiv -I(\text{mod } p)$. If $(q-4)^{\frac{p-1}{2}} \equiv -1(\text{mod } p)$, then we have $\mathscr{V}_{p}^{q} \equiv -1(\text{mod } p)$, \mathscr{U}_{p+1}^{q} $\equiv -1(\text{mod } p)$ and $\mathcal{U}_{p-1}^q \equiv 0(\text{mod } p)$. Therefore we get $S^p \equiv -S(\text{mod } p)$ and so $S^{p-1} \equiv$ $-I$ (mod p). In this case, the order of S (mod p) divides p – 1 or p + 1.

Therefore we get the following lemma:

Lemma 2.1 (i) Let $\left(\frac{q}{p}\right) = 1$. If $p \mid (q-4)$, then $S^p \equiv \pm I \pmod{p}$ and the order of S is p in mod p. If $(q-4, p) = 1$ and $(q-4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, then $S^{p-1} \equiv I \pmod{p}$. If $(q-4, p) = 1$ *and* $(q-4)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ *, we have* $S^{p+1} \equiv I \pmod{p}$ *. Then the order of* S*, say* l*, divides* $p-1$ *or* $p+1$ *.*

(ii) Let $\left(\frac{q}{p}\right) = -1$. If $(q-4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, we have $S^{p+1} \equiv -I \pmod{p}$ and if $(q-4)^{\frac{p-1}{2}} \equiv$ -1 (mod p), we have $S^{p-1} \equiv I \pmod{p}$. Then the order of S divides p – 1 or p + 1.

Now we can give our main theorem.

Theorem 2.2 *The quotient groups of the Hecke groups* $H(\sqrt{q})$ *by their congruence subgroups* **EXECUTE:** The quotent groups of the Hence groups $H_p(\sqrt{q})$ are as follows:
 $K_{p,u}(\sqrt{q})$ and their principal congruence subgroups $H_p(\sqrt{q})$ are as follows:

$$
H(\sqrt{q})/K_{p,u}(\sqrt{q}) \cong \begin{cases} PSL(2,p) & \text{if } q \text{ is a quadratic residue mod } p, \\ PGL(2,p) & \text{if } q \text{ is a quadratic nonresidue mod } p, \\ C_2 & \text{if } p = q, \\ D_3 & \text{if } p = 2, \end{cases}
$$

and

$$
H(\sqrt{q})/H_p(\sqrt{q}) \cong \begin{cases} C_2 \times PSL(2,p) & \text{if } q \text{ is a quadratic residue mod } p, \\ PGL(2,p) & \text{if } q \text{ is a quadratic nonresidue mod } p, \\ C_{2q} & \text{if } p = q, \\ D_6 & \text{if } p = 2. \end{cases}
$$

Proof

Case 1 Let $p \neq 2$ be so that q is a square modulo p, that is, q is a quadratic residue mod p and let $p \neq q$. In this case, there exists an element u in $GF(p)$ such that $u^2 = q$. Therefore \sqrt{q} can be considered as an element of $GF(p)$. Let us consider the homomorphism of $H(\sqrt{q})$ reducing all its elements modulo p . The images of R , S and T under this homomorphism are denoted by r_p , s_p and t_p , respectively. Then clearly r_p , s_p and t_p belong to $PSL(2, p)$. Now there is a homomorphism $\theta : H(\sqrt{q}) \to PSL(2,p)$ induced by $\sqrt{q} \to u$. Then our problem is to find the subgroup of $PSL(2,p) = G$, generated by r_p, s_p and t_p .

Following Macbeath's terminology let $k = GF(p)$. Then κ , the smallest subfield of k containing $\alpha = \text{tr}(r_p) = 0$, $\beta = \text{tr}(s_p) = \sqrt{q}$ and $\gamma = \text{tr}(t_p) = 2$, is also $GF(p)$ as $\sqrt{q} \in GF(p)$. In this case, for all p, the $\Gamma_p(\sqrt{q})$ -triple (r_p, s_p, t_p) is not singular since the discriminant of the associated quadratic form, which is $-\frac{u^2}{4}$, is not 0 (where $\Gamma_p(\sqrt{q})$ denotes the image of $H(\sqrt{q})$ modulo p, generated by r_p and s_p).

On the other hand, the associated N-triple (giving the orders of its elements) is $(2,l,p)$ where l depends on p and q. Now we want to know when the triple is exceptional (remember that all exceptional triples are $(2, 2, n)$, $n \in \mathbb{N}$, $(2, 3, 3)$, $(2, 3, 4)$, $(2, 3, 5)$ and $(2, 5, 5)$ $((2, 3, 5)$ is a homomorphic image of $(2,5,5)$, see [11]). Note that l can not be 2 since $S^2 = \begin{pmatrix} -1 & -\sqrt{q} \\ \sqrt{q} & q-1 \end{pmatrix}$. It would be $S^2 \equiv \pm I$ only when p is a multiple of q, but in this case we would have $\begin{pmatrix} q \\ p \end{pmatrix} = 0$. Firstly, let $p = 3$. If q is a quadratic residue mod 3, then $q \equiv 1 \pmod{3}$ by the Euler criteria. Since $q - 4 \equiv 0 \pmod{3}$, then by Lemma 2.1(i), we have $S^3 \equiv \pm I \pmod{3}$. Therefore we find the exceptional triple (2, 3, 3).

Let $p = 5$. Similarly, if q is a quadratic residue mod 5, then we have $q^2 \equiv 1 \pmod{5}$, so $q \equiv \pm 1 \pmod{10}$. In this case, it can be $l = 3$ or $l = 5$. If $q \equiv 1 \pmod{10}$, then $(q-4, 5) = 1$ and

it is easy to check that $S^3 \equiv -I \pmod{5}$ (notice that $(q-4)^{\frac{5-1}{2}} \equiv -1 \pmod{5}$ and the order of S divides 6). If $q \equiv -1 \pmod{10}$, then $5 \mid (q-4)$, and by Lemma 2.1(i) we have $S^5 \equiv \mp I \pmod{5}$.

Consequently, if $q \equiv 1 \pmod{3}$, we have the exceptional triple $(2,3,3)$. So (r_3, s_3, t_3) generates a group which is isomorphic to A_4 of order 12 and we obtain

$$
H(\sqrt{q})/K_{3,u}(\sqrt{q}) \cong A_4 \cong PSL(2,3).
$$

If $q \equiv \pm 1 \pmod{10}$, we have the exceptional triples $(2,3,5)$ and $(2,5,5)$. Therefore (r_5, s_5, t_5) generates a group which is isomorphic to A_5 of order 60. So we obtain

$$
H(\sqrt{q})/K_{5,u}(\sqrt{q}) \cong A_5 \cong PSL(2,5).
$$

If (r_p, s_p, t_p) is not exceptional, then by Theorem 4 in [11], (r_p, s_p, t_p) generates a projective subgroup of G, and by Theorem 5 in [11], as $\kappa = GF(p)$ is not a quadratic extension of any other field, this subgroup is the whole $PSL(2, p)$, i.e., $H(\sqrt{q})/K_{p,u}(\sqrt{q}) \cong PSL(2, p)$.

Let us now find the quotient of $H(\sqrt{q})$ by the principal congruence subgroup $H_p(\sqrt{q})$ in this case. Note that, by (4), $H_p(\sqrt{q})$ is a subgroup of the even subgroup $H_e(\sqrt{q})$. Therefore there are no odd elements in $H_p(\sqrt{q})$.

We now want to find the quotient group $K_{p,u}(\sqrt{q})/H_p(\sqrt{q})$. To show that it is not the trivial group, we show that $K_{p,u}(\sqrt{q})$ contains an odd element.

If A is such an element, then

$$
A = \begin{pmatrix} x\sqrt{q} & y \\ z & t\sqrt{q} \end{pmatrix}; \ \Delta = qx t - y z = 1, \ x, y, z, t \in \mathbb{Z}
$$

is in $K_{p,u}(\sqrt{q}) - H_p(\sqrt{q})$. Now

$$
A^{2} = \begin{pmatrix} qx^{2} + yz & \sqrt{q}(xy + yz) \\ \sqrt{q}(xz + tz) & qt^{2} + yz \end{pmatrix},
$$

and since $xu \equiv tu \equiv 1$, $y \equiv z \equiv 0 \mod p$, we have $x^2u^2 = qx^2 \equiv 1 \mod p$ and similarly $t^2u^2 = qt^2 \equiv 1 \mod p$. Hence A is of exponent two mod $H_p(\sqrt{q})$. If B is another such element in $K_{p,u}(\sqrt{q}) - H_p(\sqrt{q})$, then it is easy to see that $AB^{-1} \equiv \pm I \pmod{p}$ and hence $AH_p(\sqrt{q}) = BH_p(\sqrt{q})$. Therefore we can write $K_{p,u}(\sqrt{q}) = H_p(\sqrt{q}) \cup AH_p(\sqrt{q})$ as $A \notin H_p(\sqrt{q})$.

Now we want to show that any element $\begin{pmatrix} a & b\sqrt{q} \\ c\sqrt{q} & d \end{pmatrix}$ of $H_e(\sqrt{q})/H_p(\sqrt{q})$ commutes with A. This is true since

$$
\begin{pmatrix} x\sqrt{q} & y \\ z & t\sqrt{q} \end{pmatrix} \begin{pmatrix} a & b\sqrt{q} \\ c\sqrt{q} & d \end{pmatrix} = \begin{pmatrix} \sqrt{q}(ax+cy) & bxq+dy \\ az+qct & \sqrt{q}(bz+dt) \end{pmatrix}
$$

and

 H

$$
\left(\begin{array}{cc} a & b\sqrt{q} \\ c\sqrt{q} & d \end{array}\right) \left(\begin{array}{cc} x\sqrt{q} & y \\ z & t\sqrt{q} \end{array}\right) = \left(\begin{array}{cc} \sqrt{q}(ax+bz) & ay+btq \\ qxc+dz & \sqrt{q}(cy+dt) \end{array}\right),
$$

and since $y \equiv z \equiv 0$ and $x \equiv t \mod p$. Therefore we have the following subgroup lattice (see Figure 1), and hence

$$
(\sqrt{q})/H_p(\sqrt{q}) \cong K_{p,u}(\sqrt{q})/H_p(\sqrt{q}) \times H_e(\sqrt{q})/H_p(\sqrt{q}) \cong C_2 \times PSL(2,p).
$$

Indeed, $K_{p,u}(\sqrt{q})$ contains an odd element. Let $A = \begin{pmatrix} x\sqrt{q} & y \\ z & t\sqrt{q} \end{pmatrix}$ be as above. We have $\Delta =$ $qxt - yz = 1, xu \equiv tu \equiv 1, y \equiv z \equiv 0 \mod p$, where $u \equiv \sqrt{q} \mod p$. Let $v \in GF(p)$ be such that $uv \equiv 1 \mod p$. Then we can choose

$$
A = (T^{-v}R)^3 = \begin{pmatrix} v(2 - v^2q)\sqrt{q} & 1 - qv^2 \\ qv^2 - 1 & v\sqrt{q} \end{pmatrix} \in H(\sqrt{q}).
$$
 (10)

That is, it is always possible to find an odd element A of $K_{p,u}(\sqrt{q})$ which does not belong to $H_p(\sqrt{q}).$

Case 2 Let p be so that q is not a square modulo p, i.e., q is a quadratic nonresidue mod p. In this case \sqrt{q} can not be considered as an element of $GF(p)$. Therefore there are no odd elements in the kernel $K_{p,u}(\sqrt{q})$ and hence $K_{p,u}(\sqrt{q}) = H_p(\sqrt{q})$.

Now we shall extend $GF(p)$ to its quadratic extension $GF(p^2)$. Then $u = \sqrt{q}$ can be considered to be in $GF(p^2)$ and there exists a homomorphism $\theta : H(\sqrt{q}) \to PSL(2, p^2)$ induced similarly to Case 1.

Let $k = GF(p^2)$. Then κ , the smallest subfield of k containing traces α , β , γ of r_p , s_p , t_p , is also $GF(p^2)$. Then as in Case 1, (r_p, s_p, t_p) is not a singular triple. If the G_0 -triple (r_p, s_p, t_p) is not an exceptional triple, since κ is the quadratic extension of $\kappa_0 = GF(p)$ and $\gamma = 2$ lies in κ_0 while $\alpha = 0$, and $\beta = \sqrt{q}$ is the square root in κ of q which is a non-square in κ_0 , (r_p, s_p, t_p) generates $PGL(2,p)$, i.e., $H(\sqrt{q})/K_{p,u}(\sqrt{q}) \cong PGL(2,p)$ (see [11, p. 28]).

If $p = 3$ or 5, (r_p, s_p, t_p) can be an exceptional triple. So we want to know for what values of $q, (\frac{q}{3}) = -1$ or $(\frac{q}{5}) = -1$. If $(\frac{q}{3}) = -1$, we have $q \equiv -1$ (mod 3), and if $(\frac{q}{5}) = -1$, we have $q^2 \equiv -1$ (mod 5), so $q \equiv \pm 2 \pmod{5}$.

If $q \equiv -1 \pmod{3}$, we have $q - 4 \equiv 1 \pmod{3}$. Again, it is easy to check that $S^4 \equiv$ $-I$ (mod 3). Thus we have the N-triple $(2, 4, 3)$ which generates a group isomorphic to the symmetric group S_4 and we get $H(\sqrt{q})/K_{3,u}(\sqrt{q}) \cong S_4 \cong PGL(2,3)$.

Similarly, if $q \equiv -2 \pmod{5}$, we have $S^6 \equiv -I \pmod{5}$, and if $q \equiv 2 \pmod{5}$, we have $S^4 \equiv -I \pmod{5}$. Therefore we get the N-triples (2, 6, 5) and (2, 4, 5) when $q \equiv \pm 2 \pmod{5}$. These triples are not exceptional. In this case (r_5, s_5, t_5) generates $PGL(2, p)$.

Consequently, $H(\sqrt{q})/H_p(\sqrt{q}) \cong PGL(2, p)$.

In this case, we have observed that the order of S mod p is always $p-1$ or $p+1$ in examples. At this point, we conjecture that the order of S mod p is $p-1$ or $p+1$ according to $(q-4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ or $(q-4)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, respectively. But we have not proved yet this conjecture.

Case 3 Let $p = q$. As \sqrt{q} can be thought of as the zero element of $GF(q) = \{0, 1, 2, \ldots, q-1\}$, we have $t_q \equiv I \mod q$. As $r_q^2 = 1$ as well, we have $H(\sqrt{q})/K_{q,0}(\sqrt{q}) \cong C_2$.

It is easy to show that $S^{2n} \equiv \begin{pmatrix} (-1)^n & (-1)^n n \sqrt{q} \\ (-1)^{n+1} & \sqrt{q} & (-1)^n \end{pmatrix}$ $\frac{(-1)^n}{(-1)^{n+1}n\sqrt{q}}$ $\frac{(-1)^n n\sqrt{q}}{(-1)^n}$ (mod q). Therefore, we have

$$
S^{2q} \equiv \begin{pmatrix} -1 & -q\sqrt{q} \\ q\sqrt{q} & -1 \end{pmatrix} (\text{mod } q) \equiv \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I (\text{mod } q).
$$

So, in the quotient $H(\sqrt{q})/H_q(\sqrt{q})$ we have the relations $r_q^2 = s_q^{2q} = t_q^q = I$, $s_q = r_q t_q$ as $(\sqrt{q})^2 = q \equiv 0 \pmod{q}$. Then we have $H(\sqrt{q})/H_q(\sqrt{q}) \cong C_{2q}$.

Case 4 Let $p = 2$. Then (r_2, s_2, t_2) gives the exceptional N-triple $(2, 3, 2)$ and hence generates a group isomorphic to the dihedral group D_3 of order 6.

Let us now consider the quotient group $H(\sqrt{q})/H_2(\sqrt{q})$. In this case we have the relations $r_2^2 = s_2^6 = t_2^2 = I$. Therefore $H(\sqrt{q})/H_2(\sqrt{q})$ is isomorphic to the dihedral group D_6 of order 12. **Lemma 2.3** *Let* q *be a quadratic residue mod p. Then we have* $K_{p,u}(\sqrt{q}) = K_{p,-u}(\sqrt{q})$.

Proof If q is a quadratic residue mod p, then $x^2 - q \equiv (x - u)(x + u) \mod p$ for some $u \in$ $GF(p)$. In $K_{p,u}(\sqrt{q})$, let us consider the element $A = (T^{-v}R)^3$ obtained in (10). Now we have $R(T^{-v}R)^{-3}R = (T^vR)^3$. Since $K_{p,u}(\sqrt{q})$ is a normal subgroup, then the equality holds, as required.

Notice that generators of one of the two principal congruence subgroups corresponding to values u and $-u$ are just the inverses of the generators of the other.

Now using the Legendre symbol and the law of quadratic reciprocity, it is easy to prove the following lemma:

Lemma 2.4 *Let* p *be an odd prime. Then* $(\frac{7}{p}) = 1$ *if and only if* $p \equiv \pm 1, \pm 3, \pm 9 \mod 28$ *. If* $p \equiv \pm 5, \pm 11, \pm 13 \mod 28$, we have $(\frac{7}{p}) = -1$.

Example 2.5 By Theorem 2.2 and Lemma 2.4, we have the quotient groups of the Hecke **Example 2.5** By Theorem 2.2 and Lemma 2.4, we have the quotient groups of the riecker group $H(\sqrt{7})$ by its congruence subgroups $K_{p,u}(\sqrt{7})$ and its principal congruence subgroups group $H(\sqrt{7})$ by its contract $H_p(\sqrt{7})$ are as follows:

$$
H(\sqrt{7})/K_{p,u}(\sqrt{7}) \cong \begin{cases} PSL(2,p), & p \equiv \pm 1, \pm 3, \pm 9 \mod 28, \\ PGL(2,p), & p \equiv \pm 5, \pm 11, \pm 13 \mod 28, \\ C_2, & p = 7, \\ D_3, & p = 2, \end{cases}
$$

and

$$
H(\sqrt{7})/H_p(\sqrt{7}) \cong \begin{cases} C_2 \times PSL(2, p), & p \equiv \pm 1, \pm 3, \pm 9 \mod 28, \\ PGL(2, p), & p \equiv \pm 5, \pm 11, \pm 13 \mod 28, \\ C_{10}, & p = 7, \\ D_6, & p = 2. \end{cases}
$$

Note that we are unable to give conditions when q is a quadratic residue mod p or not, for any prime p and any q.

Hence we have found all quotient groups of $H(\sqrt{q})$, $q > 5$ prime, with $K_{p,u}(\sqrt{q})$ and with the principal congruence subgroups $H_p(\sqrt{q})$, for all prime p. By means of these we can give the index formula for these two congruence subgroups.

Corollary 2.6 *The indices of the congruence subgroups* $K_{p,u}(\sqrt{q})$ *and* $H_p(\sqrt{q})$ *in* $H(\sqrt{q})$ *are*

$$
|H(\sqrt{q})/K_{p,u}(\sqrt{q})| = \begin{cases} \begin{array}{ll} \frac{p(p-1)(p+1)}{2} & \text{if } q \text{ is a square mod } p \text{ and } p \neq q, \\ \frac{p(p-1)(p+1)}{2} & \text{if } q \text{ is not a square mod } p, \\ 2 & \text{if } p = q, \\ 6 & \text{if } p = 2, \end{array} \end{cases}
$$

and

$$
|H(\sqrt{q})/H_p(\sqrt{q})| = \begin{cases} p(p-1)(p+1) & \text{if } p \neq q \text{ and } p \neq 2, \\ 2q & \text{if } p = q, \\ 12 & \text{if } p = 2. \end{cases}
$$

We are now able to determine the group-theoretic structure of the subgroups $K_{p,u}(\sqrt{q})$ and $H_p(\sqrt{q})$. Recall that $H_p(\sqrt{q}) \triangleleft K_{p,u}(\sqrt{q})$ and also by the definition of $H_p(\sqrt{q})$, $H_p(\sqrt{q}) \triangleleft H_e(\sqrt{q})$. Then we have four cases:

Case 1 Let $p = q$. We know that $H(\sqrt{q})/K_{q,0}(\sqrt{q}) \cong C_2$. Since R and S are both mapped to the generator of C_2 , we find $K_{q,0}(\sqrt{q}) = H_e(\sqrt{q})$.

Principal Congruence Subgroups of Hecke Groups $H(\sqrt{q})$ \sqrt{q}) 391

We also proved that $H(\sqrt{q})/H_q(\sqrt{q}) \cong C_{2q}$. C_{2q} has a presentation

$$
\langle \alpha, \beta, \gamma; \alpha^2 = \beta^q = \gamma^{2q} = I \rangle.
$$

Then we have $R \to \alpha$, $S \to \beta$ and therefore $RS \to \alpha\beta$, i.e.,

 $R \rightarrow (1\ 2)(3\ 4) \ \cdots \ (2q-1\ 2q), \quad S \rightarrow (1\ 3\ 5\ \cdots \ 2q-1)(2\ 4\ 6\ \cdots \ 2q), \quad T \rightarrow (1\ 4\ 5\ 8\ \cdots \ 2q).$ By the permutation method and Riemann–Hurwitz formula we find the signature of $H_q(\sqrt{q})$ as $\left(\frac{q-1}{2};\infty;2\right)$.

Case 2 Let $p = 2$. We know that $H(\sqrt{q})/K_{2,u}(\sqrt{q}) \cong D_3$ and $H(\sqrt{q})/H_2(\sqrt{q}) \cong D_6$. In the former one, the quotient group is $D_3 \cong (2, 3, 2)$ and hence by the permutation method it is easy to see that $K_{2,u}(\sqrt{q})$ has the signature $(0, \infty^{(3)}; 2)$ and therefore $K_{2,u}(\sqrt{q}) \cong F_4$, where F_4 denotes a free group of rank four.

Secondly let us consider $H(\sqrt{q})/H_2(\sqrt{q}) \cong D_6 \cong (2,6,2)$. In a similar way we obtain the signature of $H_2(\sqrt{q})$ as $(0, \infty^{(6)}; 2)$ and therefore it is a free group of rank seven, i.e., $H_2(\sqrt{q}) \cong F_7.$

Case 3 Let q is a quadratic residue mod p, $p \neq q$, $p \neq 2$. Then the quotient groups are $PSL(2, p)$ and $C_2 \times PSL(2, p)$ as we have proved. Let now r_p , s_p be the images of R, S in $PSL(2,p)$ and $r_p^{'}, s_p^{'}$ be the images of R, S in $C_2 \times PSL(2,p)$, respectively. Then the relations $r_p^2 = s_p^l = I$ and $(r_p^{'})^2 = (s_p^{'})^m = I$ are satisfied. Here, l depends on p and q. As odd powers of S are odd and even powers of S are even, we have $m = 2l$ when l is odd and we have $m = l$ when l is even. In this case both $K_{p,u}(\sqrt{q})$ and $H_p(\sqrt{q})$ are free groups.

If $(q-4) \equiv 0 \pmod{p}$ then from Lemma 2.1(i), we know that $l = p$ and so $m = 2p$. If $p \mid (q-4)$, then the signature of $K_{p,u}(\sqrt{q})$ is

$$
\left(1+\frac{(p-1)(p+1)(p-4)}{8};\infty^{(\frac{(p-1)(p+1)}{2})};\frac{(p-1)(p+1)}{2}\right)
$$

and the signature $H_p(\sqrt{q})$ is

$$
\left(1+\frac{(p-1)(p+1)(p-3)}{4};\infty^{((p-1)(p+1))};\frac{(p-1)(p+1)}{2}\right).
$$

If $(q-4, p) = 1$, then $S^{p-1} \equiv I \pmod{p}$ or $S^{p+1} \equiv I \pmod{p}$ according to $(q-4)^{\frac{p-1}{2}} \equiv$ $\pm 1 \pmod{p}$. But, l may be a divisor of $p-1$ or $p+1$ since \sqrt{q} can be considered as an element u of $GF(p)$. So l can be $\frac{p-1}{k}$ or $\frac{p+1}{k}$ for some positive integer k. The orders of the parabolic elements $r_p s_p$ and $r'_p s'_p$ are p . Then T goes to an element of order p in both quotient groups. Let μ be the index of the congruence subgroup $K_{p,u}(\sqrt{q})$ in $H(\sqrt{q})$. By the permutation method and Riemann–Hurwitz formula, we find the signature of this subgroup as

$$
\left(1+\frac{\mu}{4pl}(pl-2p-2l); \infty^{(\frac{\mu}{p})}; \frac{\mu}{l}\right).
$$

Again, if μ' is the index of the principal congruence subgroup $H_p(\sqrt{q})$ in $H(\sqrt{q})$, we find the signature of this subgroup as

$$
\left(1+\frac{\mu'}{4pm}(pm-2p-2m);\ \infty^{(\frac{\mu'}{p})};\frac{\mu'}{m}\right).
$$

Example 2.7 Let $q = 7$ and $p = 19$. We have $l = m = 10$ and $\mu = 3420$, $\mu' = 6840$. The signature of $K_{19,8}(\sqrt{7}) = K_{19,11}(\sqrt{7})$ is (595; $\infty^{(180)}$; 342) and the signature of $H_{19}(\sqrt{7})$ is $(1189; \infty^{(360)}; 684).$

Case 4 Let q be a quadratic nonresidue mod p. We prove that both quotient groups are isomorphic to $PGL(2, p)$. From Lemma 2.1(ii), we know that the associated N-triple is $(2, \frac{p+1}{k}, p)$ or $(2, \frac{p-1}{k}, p)$ for some positive integer k according to $(q-4)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ or $(q-4)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, respectively. As in Case 3, we have the signature of $K_{p,u}(\sqrt{q})$ $H_p(\sqrt{q})$ as

$$
\begin{array}{l} \left(1+\frac{(p-1)(p^2-(2k+1)p-2)}{4}; \ \infty^{((p-1)(p+1))};kp(p-1)\right)\\\\ \left(1+\frac{(p+1)(p^2-(2k+3)p+2)}{4}; \ \infty^{((p-1)(p+1))};kp(p+1)\right), \end{array}
$$

respectively.

Example 2.8 (i) Let $q = 7$ and $p = 5$. In this case we have $H(\sqrt{7})/K_{5,u}(\sqrt{7}) \cong H(\sqrt{7})/$ **Example 2.6** (i) Let $q = r$ and $p = 3$. In this case we have $H(\sqrt{r})/K_{5,u}(\sqrt{r}) = H(\sqrt{r})/K_{5,u}(\sqrt{r}) = H_5(\sqrt{r})$ as $H_5(\sqrt{r}) \cong PGL(2, 5)$. As $3^2 \equiv -1$ (mod 5), we get the signature of $K_{5,u}(\sqrt{r}) = H_5(\sqrt{r})$ as $(4;\infty^{(24)};30).$

(ii) Let $q = 7$ and $p = 11$. As $3^5 \equiv 1 \pmod{11}$, we have $K_{11,u}(\sqrt{7}) = H_{11}(\sqrt{7}) \approx$ $(216;\infty^{(120)};110).$

Finally, we can give the following corollary:

Corollary 2.9 All principal congruence subgroups of the Hecke group $H(\sqrt{q})$, $q \geq 5$ prime *number, are free groups.*

References

- [1] Hecke, E.: Uber die bestimmung dirichletscher reihen durch ihre funktionalgleichung. ¨ *Math. Ann*., **112**, 664–699 (1936)
- [2] Cangül, İ. N., Singerman, D.: Normal Ssubgroups of Hecke groups and regular maps. Math. Proc. Camb. *Phil. Soc*., **123**(1), 59–74 (1998)
- [3] Lang, M. L., Lim, C. H., Tan, S. P.: Principal congruence subgroups of the Hecke groups. *J. Number Theory*, **85**(2), 220–230 (2000)
- [4] Newman, M.: Integral Matrices, Academic Press, New York, 1972
- [5] Parson, L. A.: Generalized Kloosterman sums and the Fourier coefficients of cusp forms. *Trans. A.M.S*., **217**, 329–350 (1976)
- [6] Parson, L. A.: Normal congruence subgroups of the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$. *Pacific J. Math.*, **70**, 481–487 (1977)
- [7] Rosen, D.: A class of continued fractions associated with certain properly discontinuous groups. *Duke Math. J.*, **21**, 549–563 (1954)
- [8] Schmidt, T. A., Sheingorn, M.: Length spectra of the Hecke triangle groups. *Math. Z*., **220**(3), 369–397 (1995)
- [9] Lyndon, R. C., Ullman, J. L.: Pairs of real 2-by-2 matrices that generate free products. *Mich. Math. J*., **15**, 161–166 (1968)
- [10] Yılmaz Özgür, N., Cangül, İ. N.: On the group structure and parabolic points of the Hecke group $H(\lambda)$. *Proc. Estonian Acad. Sci. Phys. Math*., **51**(1), 35–46 (2002)
- [11] Macbeath, A. M.: Generators of the linear fractional groups. *Proc. Symp. Pure. Math. A.M.S*., **12**, 14–32 (1969)
- [12] Singerman, D.: Subgroups of Fuchsian Groups and finite permutation groups. *Bull. London Math. Soc*., **2**, 319–323 (1970)
- [13] Maclachlan, C.: Maximal normal Fuchsian groups. *Illionis J. Math.*, **15**, 104–113 (1971)
- [14] Yılmaz Özgür, N., Cangül, İ. N.: On the principal congruence subgroups of the Hecke group $H(\sqrt{5})$. *Beitr¨age Algebra Geom*., **45**(1), 75–85 (2004)
- [15] Yılmaz Ozgür, N.: Generalizations of Fibonacci and Lucas sequences. *Note Mat.*, $21(1)$, 113–125 (2002)
- [16] Yilmaz Özgür, N.: On the sequences related to Fibonacci and Lucas numbers. *J. Korean Math. Soc.*, **42**(1), 135–151 (2005)
- [17] Magnus, W., Karras, A., Solitar, D.: Combinatorial Group Theory, Dover Publication, Inc., New York, 1976
- [18] Rose, H. E.: A Course in Number Theory, Oxford Science Publications, Second Edition, Oxford, 1998

or

Copyright of Acta Mathematica Sinica is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Acta Mathematica Sinica is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Acta Mathematica Sinica is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.