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1 Introduction
The Hecke groups H(λ) are the discrete subgroups of PSL(2, R) (the group of orientation pre-
serving isometries of the upper half plane U) generated by two linear fractional transformations

R(z) = −1
z

and T (z) = z + λ,

where λ ∈ R, λ ≥ 2 or λ = λq = 2cos(π
q ), q ∈ N, q ≥ 3. These values of λ are the only ones that

give discrete groups, by a theorem of Hecke [1] (for more information about the Hecke groups,
see [2–7] and [8]). In this paper, we are interested in the case λ ≥ 2. When λ > 2, these Hecke
groups are Fuchsian groups of the second kind. When λ = 2, the element S = RT is parabolic
and when λ > 2, the element S = RT is hyperbolic. It is known that H(λ) is a free product of
a cyclic group of order 2 and an infinite cyclic group where λ ≥ 2 (see [9] and [10]). In other
words

H(λ) ∼= C2 ∗ Z.

Here, we consider only the case λ =
√

q, q > 5 prime number. We determine the quotient
groups of the Hecke groups H(

√
q) by their principal congruence subgroups using a classical

method, defined by Macbeath [11]. Then we compute signatures of these normal subgroups
using the permutation method and Riemann–Hurwitz formula (see [12] and [13]). We make
use of the notion of quadratic reciprocity and the number sequences related to Fibonacci and
Lucas sequences. Note that in [14], principal congruence subgroups of the Hecke group H(

√
5)

were investigated by using Fibonacci and Lucas numbers.
Our argument depends on determining all the powers of S which is one of the gener-

ators of H(
√

q). To answer the question that for what values of n the congruence Sn ≡
±I(mod p), p being an odd prime, holds, we need to compute the n-th power of S, for ev-
ery integer n. It is hard to compute Sn easily. In [15], for each q ≥ 5, it was introduced two
new sequences denoted by U q

n and V q
n , and proved that

S2n =

(
−V q

2n−1 −U q
2n

√
q

U q
2n

√
q V q

2n+1

)
(1)

and

S2n+1 =

(
−U q

2n

√
q −V q

2n+1

V q
2n+1 U q

2n+2

√
q

)
. (2)
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For q = 5, U 5
n = Fn and V 5

n = Ln, where Fn denotes the n-th Fibonacci number and Ln

denotes n-th Lucas number. The sequences U q
n and V q

n are not generalized Fibonacci sequences
except for q = 5. These new sequences have similar properties to those of Fibonacci and Lucas
sequences, some of them the same as ones for Fibonacci and Lucas. For example in [15], it was
shown that

V q
p = U q

p+1 + U q
p−1. (3)

In a sense, U q
n is a generalization of Fn and V q

n is a generalization of Ln (see [15] and [16], for
more details about the U q

n and V q
n ). In [14], some facts were used about the Fibonacci and

Lucas numbers. Here we use some basic properties of the sequences U q
n and V q

n .
In the case λ =

√
q, q > 5 prime, the underlying field is a quadratic extension of Q by

√
q,

i.e., Q(
√

q). A presentation of H(
√

q) is
H(

√
q) =

〈
R, S; R2 = S∞ = (RS)∞ = 1

〉
,

where S = RT and the signature of H(
√

q) is (0; 2,∞; 1). By identifying the transformation
w = az+b

cz+d with the matrix
(

a b
c d

)
, H(

√
q) may be regarded as a multiplicative group of 2 × 2

matrices in which a matrix is identified with its negative. R and S have matrix representations(
0 −1
1 0

)
and

(
0 −1
1

√
q

)
,

respectively. All elements of H(
√

q) are of one of the following two forms:

(i)
(

a b
√

q

c
√

q d

)
; a, b, c, d ∈ Z, ad − qbc = 1; (ii)

(
a
√

q b

c d
√

q

)
; a, b, c, d ∈ Z, qad − bc = 1.

Those of type (i) are called even while those of type (ii) are called odd. R and S, the genera-
tors of H(

√
q), are both odd. The set of all odd elements is not closed as the product of two odd

elements is always even. Similarly we have odd.even = odd, even.odd = odd, even.even = even.
Therefore we guarantee that this classification is a partition. As each element V of H(

√
q) is a

product of generators, we conclude that V is either odd or even. But the converse statement
is not true. That is, all elements of type (i) or (ii) need not be in H(

√
q). In [7], Rosen proved

that ( A B
C D ) ∈ H(λ) if and only if A

C is a finite λ-fraction (see [7] for more details).
The set of all even elements forms a subgroup of index 2 called the even subgroup. It is

denoted by He(
√

q). Having index two, He(
√

q) is a normal subgroup of H(
√

q). Also, He(
√

q)
is the free product of two infinite cyclic groups generated by T = RS and U = SR. Indeed,
being odd elements, R and S both go to 2-cycles under the homomorphism

H(
√

q) → H(
√

q)/He(
√

q) ∼= C2,

that is, R → (1 2), S → (1 2), T → (1)(2), so by the permutation method and Riemann–
Hurwitz formula, the signature of He(

√
q) is (0;∞(2); 1). If we choose {I, R} as a Schreier

transversal for He(
√

q), then by the Reidemeister–Schreier method (see [17]), He(
√

q) has the
parabolic generators T and U = SR. As R /∈ He(

√
q), it is clear that

H(
√

q) = He(
√

q) ∪ RHe(
√

q).
The even subgroup He(

√
q) is the most important amongst the normal subgroups of H(

√
q). It

contains infinitely many normal subgroups of H(
√

q).
Being a free product of a cyclic group of order 2 and an infinite cyclic group, by the Kurosh

subgroup theorem, H(
√

q) has two kinds of subgroups, those which are free and those with
torsion (being a free product of Z2’s and Z’s).

2 Principal Congruence Subgroups
An important class of normal subgroups in H(

√
q) are the principal congruence subgroups. Let

p be a rational prime. The principal congruence subgroup Hp(
√

q) of level p is defined by

Hp(
√

q) =

{
A =

(
a b

√
q

c
√

q d

)
∈ H(

√
q) : A ≡ ±I (mod p)

}
.
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In general, this is equivalent to

Hp(
√

q) =

{(
a b

√
q

c
√

q d

)
: a ≡ d ≡ 1, b ≡ c ≡ 0 (mod p), ad − qbc = 1

}
.

Hp(
√

q) is always a normal subgroup of H(
√

q). Note that by the definition

Hp(
√

q) � He(
√

q). (4)

A subgroup of H(
√

q) containing a principal congruence subgroup of level p is called a
congruence subgroup of level p. In general, not all congruence subgroups are normal in H(

√
q).

Another way of obtaining Hp(
√

q) is to consider the “reduction homomorphism” which is
induced by reducing entries modulo p.

Let ℘ be an ideal of Z[
√

q] which is an extension of the ring of integers by the alge-
braic number

√
q. Then the natural map Θ℘ : Z[

√
q] → Z[

√
q]/℘ induces a map H(

√
q) →

PSL(2, Z[
√

q]/℘), whose kernel is called the principal congruence subgroup of level ℘.

Let now s be an integer such that the polynomial x2 − q has solutions in GF (ps). We know
that such an s exists and satisfies 1 ≤ s ≤ 2 = deg(x2 − q). Let u be a solution of x2 − q in
GF (ps). Let us take ℘ to be the ideal generated by u in Z[

√
q]. As above we can define

Θp,u,q : H(
√

q) → PSL(2, ps)

as the homomorphism induced by
√

q → u. Let Kp,u(
√

q) = Ker(Θp,u,q).
As the kernel of a homomorphism of H(

√
q), Kp,u(

√
q) is normal in H(

√
q).

Given p, as Kp,u(
√

q) depends on p and u, we have a chance of having a different kernel for
each root u. However sometimes they do coincide. Indeed, it trivially follows from Kummer’s
theorem that if u, v correspond to the same irreducible factor f of x2 − q over GF (ps), then
Kp,u(

√
q) = Kp,v(

√
q). Even when u, v give different factors of x2−q, we may have Kp,u(

√
q) =

Kp,v(
√

q). In Lemma 2.3, we show that Kp,u(
√

q) = Kp,−u(
√

q) when q is a quadratic residue
mod p.

It is easy to see that Kp,u(
√

q) is a normal congruence subgroup of level p of H(
√

q), that
is, Hp(

√
q) � Kp,u(

√
q). Therefore Hp(

√
q) ≤

⋂
all u

Kp,u(
√

q). When the index of Hp(
√

q) in
Kp,u(

√
q) is not 1, i.e., when they are different, we shall use Kp,u(

√
q) to calculate Hp(

√
q).

We first try to find the quotient of H(
√

q) with Kp,u(
√

q). It is then easy to determine
H(

√
q)/Hp(

√
q). To determine both quotients we use some results of Macbeath [11]. After

finding the quotients of H(
√

q) by the principal congruence subgroups, we find the group-
theoretic structure of them. For notions and terminology see [11] and [12]. Also for the notion
of quadratic reciprocity see [18].

Before stating our main results we need the following observations and lemma.
In [16], it was shown that U q

2n and V q
2n+1 are in the following formulas for all n:

U q
2n =

1√
q(q − 4)

[(√
q − 4 +

√
q

2

)2n

−
(√

q − 4 −√
q

2

)2n
]

(5)

and

V q
2n+1 =

1√
q − 4

[(√
q − 4 +

√
q

2

)2n+1

+
(√

q − 4 −√
q

2

)2n+1
]

. (6)

For any odd prime p, let us consider Sp in mod p. In H(
√

q), from (2) we have

Sp =

(
−U q

p−1

√
q −V q

p

V q
p U q

p+1

√
q

)
.

From (6), we get
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V q
p =

1√
q − 4

[(√
q − 4 +

√
q

2

)p

+
(√

q − 4 −√
q

2

)p]

=
1

2p
√

q − 4

[
(
√

q − 4)p +

(
p

1

)
(
√

q − 4)p−1√q

+ · · · +
(

p

p − 1

)√
q − 4(

√
q)p−1 + (

√
q)p + (

√
q − 4)p

−
(

p

1

)
(
√

q − 4)p−1√q+ · · ·+
(

p

p − 1

)√
q − 4(

√
q)p−1−(

√
q)p)

]

=
1

2p−1

[
(
√

q − 4)p−1 +
(

p

2

)
(
√

q − 4)p−3(
√

q)2 + · · · +
(

p

p − 1

)
(
√

q)p−1

]
.

As we have ( p
n ) ≡ 0(mod p) for 1 ≤ n ≤ p − 1 and 2p−1 ≡ 1(mod p), we find

V q
p ≡ (q − 4)

p−1
2 (mod p). (7)

Similarly, from (5) we have

U q
p+1 =

1
2p

[(
p + 1

1

)
(
√

q − 4)p−1+
(

p + 1

3

)
(
√

q − 4)p−3q + · · · +
(

p + 1

p

)
(q)

p−1
2

]
.

As ( p+1
n ) ≡ 0(mod p) for 2 ≤ n ≤ p − 1 and

(
p+1
1

) ≡ ( p+1
p

) ≡ 1(mod p), we obtain

2pU q
p+1 ≡ [(q − 4)

p−1
2 + (q)

p−1
2
]
(mod p). (8)

Now we have two cases:
Case 1 Let us take

(
q
p

)
= 1, where

(
q
p

)
is the Legendre symbol. Then we have (q)

p−1
2 ≡

1(mod p) by the Euler criteria [18]. If p | (q − 4), then q − 4 ≡ 0(mod p) and (q − 4)
p−1
2 ≡

0(mod p). So we get V q
p ≡ 0 (mod p) and 2U q

p+1 ≡ 1(mod p) since 2p ≡ 2(mod p). As q −
4 ≡ 0(mod p), then q ≡ 4(mod p). Hence we can take

√
q ≡ ±2(mod p) and so

√
qU q

p+1 ≡
±1(mod p). By (3), we find −√

qU q
p−1 ≡ ±1(mod p). Finally we get

Sp ≡ ±I (mod p). (9)
Clearly, the order of S(mod p) is p in this case.

Let (q − 4, p) = 1. Then by the Euler theorem, (q − 4)ϕ(p) ≡ 1(mod p), i.e., (q − 4)p−1 ≡
1(mod p) and so (q − 4)

p−1
2 ≡ ±1(mod p). If (q − 4)

p−1
2 ≡ 1(mod p), then V q

p ≡ 1(mod p) and
U q

p+1 ≡ 1(mod p). From (3), we get U q
p−1 ≡ 0(mod p). Therefore we have

Sp ≡
(

0 −1

1
√

q

)
= S (mod p),

i.e., Sp−1 ≡ I(mod p). Similarly, if (q − 4)
p−1
2 ≡ −1(mod p), then we have V q

p ≡ −1(mod p)
and U q

p+1 ≡ 0(mod p) as 2p ≡ 2(mod p). Since U q
p−1 ≡ −1(mod p), we have Sp ≡ S−1(mod p),

i.e., Sp+1 ≡ I(mod p). In this case, we can say only that the order of S(mod p) divides p − 1
or p + 1.

Case 2 Let
(

q
p

)
= −1. Then (q)

p−1
2 ≡ −1(mod p). In this case, p can not be divided by

q − 4. For, if p | (q − 4), then q ≡ 4(mod p) and q would be a quadratic residue mod p. Thus
we have (q − 4, p) = 1 and (q − 4)

p−1
2 ≡ ±1(mod p). If (q − 4)

p−1
2 ≡ 1(mod p), then we have

V q
p ≡ 1(mod p), U q

p+1 ≡ 0(mod p) and U q
p−1 ≡ 1(mod p). So we get

Sp ≡
(

−√
q −1

1 0

)
= −S−1(mod p),
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i.e., Sp+1 ≡ −I(mod p). If (q − 4)
p−1
2 ≡ −1(mod p), then we have V q

p ≡ −1(mod p), U q
p+1

≡ −1(mod p) and U q
p−1 ≡ 0(mod p). Therefore we get Sp ≡ −S(mod p) and so Sp−1 ≡

−I(mod p). In this case, the order of S(mod p) divides p − 1 or p + 1.
Therefore we get the following lemma:

Lemma 2.1 (i) Let
(

q
p

)
= 1. If p | (q − 4), then Sp ≡ ±I(mod p) and the order of S is p in

mod p. If (q − 4, p) = 1 and (q − 4)
p−1
2 ≡ 1(mod p), then Sp−1 ≡ I(mod p). If (q − 4, p) = 1

and (q − 4)
p−1
2 ≡ −1(mod p), we have Sp+1 ≡ I(mod p). Then the order of S, say l, divides

p − 1 or p + 1.
(ii) Let

(
q
p

)
= −1. If (q−4)

p−1
2 ≡ 1(mod p), we have Sp+1 ≡ −I(mod p) and if (q−4)

p−1
2 ≡

−1(mod p), we have Sp−1 ≡ I(mod p). Then the order of S divides p − 1 or p + 1.
Now we can give our main theorem.

Theorem 2.2 The quotient groups of the Hecke groups H(
√

q) by their congruence subgroups
Kp,u(

√
q) and their principal congruence subgroups Hp(

√
q) are as follows :

H(
√

q)/Kp,u(
√

q) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PSL(2, p) if q is a quadratic residue mod p,
PGL(2, p) if q is a quadratic nonresidue mod p,

C2 if p = q,
D3 if p = 2,

and

H(
√

q)/Hp(
√

q) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C2 × PSL(2, p) if q is a quadratic residue mod p,
PGL(2, p) if q is a quadratic nonresidue mod p,
C2q if p = q,

D6 if p = 2.

Proof
Case 1 Let p �= 2 be so that q is a square modulo p, that is, q is a quadratic residue mod p
and let p �= q. In this case, there exists an element u in GF (p) such that u2 = q. Therefore√

q can be considered as an element of GF (p). Let us consider the homomorphism of H(
√

q)
reducing all its elements modulo p. The images of R, S and T under this homomorphism are
denoted by rp, sp and tp, respectively. Then clearly rp, sp and tp belong to PSL(2, p). Now
there is a homomorphism θ : H(

√
q) → PSL(2, p) induced by

√
q → u. Then our problem is to

find the subgroup of PSL(2, p) = G, generated by rp, sp and tp.
Following Macbeath’s terminology let k = GF (p). Then κ, the smallest subfield of k

containing α = tr(rp) = 0, β = tr(sp) =
√

q and γ = tr(tp) = 2, is also GF (p) as
√

q ∈ GF (p).
In this case, for all p, the Γp(

√
q)-triple (rp, sp,tp) is not singular since the discriminant of the

associated quadratic form, which is −u2

4 , is not 0 (where Γp(
√

q) denotes the image of H(
√

q)
modulo p, generated by rp and sp).

On the other hand, the associated N-triple (giving the orders of its elements) is (2, l, p)
where l depends on p and q. Now we want to know when the triple is exceptional (remember
that all exceptional triples are (2, 2, n), n ∈ N, (2, 3, 3), (2, 3, 4), (2, 3, 5) and (2, 5, 5) ((2, 3, 5)
is a homomorphic image of (2, 5, 5)), see [11]). Note that l can not be 2 since S2 =

(−1 −√
q√

q q−1

)
.

It would be S2 ≡ ±I only when p is a multiple of q, but in this case we would have
(

q
p

)
= 0.

Firstly, let p = 3. If q is a quadratic residue mod 3, then q ≡ 1(mod 3) by the Euler criteria.
Since q − 4 ≡ 0(mod 3), then by Lemma 2.1(i), we have S3 ≡ ±I(mod 3). Therefore we find
the exceptional triple (2, 3, 3).

Let p = 5. Similarly, if q is a quadratic residue mod 5, then we have q2 ≡ 1(mod 5), so
q ≡ ∓1(mod 10). In this case, it can be l = 3 or l = 5. If q ≡ 1(mod 10), then (q−4, 5) = 1 and
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it is easy to check that S3 ≡ −I(mod 5) (notice that (q−4)
5−1
2 ≡ −1(mod 5) and the order of S

divides 6). If q ≡ −1(mod 10), then 5 | (q−4), and by Lemma 2.1(i) we have S5 ≡ ∓I(mod 5).
Consequently, if q ≡ 1(mod 3), we have the exceptional triple (2, 3, 3). So (r3, s3, t3) gener-

ates a group which is isomorphic to A4 of order 12 and we obtain
H(

√
q)/K3,u(

√
q) ∼= A4

∼= PSL(2, 3).

If q ≡ ±1 (mod 10), we have the exceptional triples (2, 3, 5) and (2, 5, 5). Therefore
(r5, s5, t5) generates a group which is isomorphic to A5 of order 60. So we obtain

H(
√

q)/K5,u(
√

q) ∼= A5
∼= PSL(2, 5).

If (rp, sp,tp) is not exceptional, then by Theorem 4 in [11], (rp, sp, tp) generates a projective
subgroup of G, and by Theorem 5 in [11], as κ = GF (p) is not a quadratic extension of any
other field, this subgroup is the whole PSL(2, p), i.e., H(

√
q)/Kp,u(

√
q) ∼= PSL(2, p).

Let us now find the quotient of H(
√

q) by the principal congruence subgroup Hp(
√

q) in
this case. Note that, by (4), Hp(

√
q) is a subgroup of the even subgroup He(

√
q). Therefore

there are no odd elements in Hp(
√

q).
We now want to find the quotient group Kp,u(

√
q)/Hp(

√
q). To show that it is not the

trivial group, we show that Kp,u(
√

q) contains an odd element.
If A is such an element, then

A =

(
x
√

q y

z t
√

q

)
; Δ = qxt − yz = 1, x, y, z, t ∈ Z

is in Kp,u(
√

q) − Hp(
√

q). Now

A2 =

(
qx2 + yz

√
q(xy + yz)

√
q(xz + tz) qt2 + yz

)
,

and since xu ≡ tu ≡ 1, y ≡ z ≡ 0 mod p, we have x2u2 = qx2 ≡ 1 mod p and similarly
t2u2 = qt2 ≡ 1 mod p. Hence A is of exponent two mod Hp(

√
q). If B is another such

element in Kp,u(
√

q) − Hp(
√

q), then it is easy to see that AB−1 ≡ ±I(mod p) and hence
AHp(

√
q) = BHp(

√
q). Therefore we can write Kp,u(

√
q) = Hp(

√
q)∪AHp(

√
q) as A /∈ Hp(

√
q).

Now we want to show that any element
(

a b
√

q

c
√

q d

)
of He(

√
q)/Hp(

√
q) commutes with A.

This is true since(
x
√

q y

z t
√

q

)(
a b

√
q

c
√

q d

)
=

( √
q(ax + cy) bxq + dy

az + qct
√

q(bz + dt)

)

and (
a b

√
q

c
√

q d

)(
x
√

q y

z t
√

q

)
=

( √
q(ax + bz) ay + btq

qxc + dz
√

q(cy + dt)

)
,

and since y ≡ z ≡ 0 and x ≡ t mod p. Therefore we have the following subgroup lattice (see
Figure 1), and hence

H(
√

q)/Hp(
√

q) ∼= Kp,u(
√

q)/Hp(
√

q) × He(
√

q)/Hp(
√

q) ∼= C2 × PSL(2, p).

Indeed, Kp,u(
√

q) contains an odd element. Let A =
(

x
√

q y

z t
√

q

)
be as above. We have Δ =

qxt − yz = 1, xu ≡ tu ≡ 1, y ≡ z ≡ 0 mod p, where u ≡ √
q mod p. Let v ∈ GF (p) be such

that uv ≡ 1 mod p. Then we can choose

A = (T−vR)3 =

(
v(2 − v2q)

√
q 1 − qv2

qv2 − 1 v
√

q

)
∈ H(

√
q). (10)

That is, it is always possible to find an odd element A of Kp,u(
√

q) which does not belong to
Hp(

√
q).
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Case 2 Let p be so that q is not a square modulo p, i.e., q is a quadratic nonresidue mod p.
In this case

√
q can not be considered as an element of GF (p). Therefore there are no odd

elements in the kernel Kp,u(
√

q) and hence Kp,u(
√

q) = Hp(
√

q).
Now we shall extend GF (p) to its quadratic extension GF (p2). Then u =

√
q can be

considered to be in GF (p2) and there exists a homomorphism θ : H(
√

q) → PSL(2, p2) induced
similarly to Case 1.

Let k = GF (p2). Then κ, the smallest subfield of k containing traces α, β, γ of rp, sp, tp, is
also GF (p2). Then as in Case 1, (rp, sp, tp) is not a singular triple. If the G0-triple (rp, sp, tp)
is not an exceptional triple, since κ is the quadratic extension of κ0 = GF (p) and γ = 2 lies in
κ0 while α = 0, and β =

√
q is the square root in κ of q which is a non-square in κ0, (rp, sp, tp)

generates PGL(2, p), i.e., H(
√

q)/Kp,u(
√

q) ∼= PGL(2, p) (see [11, p. 28]).
If p = 3 or 5, (rp, sp, tp) can be an exceptional triple. So we want to know for what values of

q, ( q
3 )= −1 or ( q

5 )= −1. If ( q
3 )= −1, we have q ≡ −1(mod 3), and if ( q

5 )= −1, we have q2 ≡ −1
(mod 5), so q ≡ ±2(mod 5).

If q ≡ −1 (mod 3), we have q − 4 ≡ 1(mod 3). Again, it is easy to check that S4 ≡
−I(mod 3). Thus we have the N-triple (2, 4, 3) which generates a group isomorphic to the
symmetric group S4 and we get H(

√
q)/K3,u(

√
q) ∼= S4

∼= PGL(2, 3).
Similarly, if q ≡ −2 (mod 5), we have S6 ≡ −I (mod 5), and if q ≡ 2 (mod 5), we have

S4 ≡ −I (mod 5). Therefore we get the N-triples (2, 6, 5) and (2, 4, 5) when q ≡ ∓2 (mod 5).
These triples are not exceptional. In this case (r5, s5, t5) generates PGL(2, p).

Consequently, H(
√

q)/Hp(
√

q) ∼= PGL(2, p).
In this case, we have observed that the order of S mod p is always p − 1 or p + 1 in

examples. At this point, we conjecture that the order of S mod p is p− 1 or p + 1 according to
(q − 4)

p−1
2 ≡ 1(mod p) or (q − 4)

p−1
2 ≡ −1(mod p), respectively. But we have not proved yet

this conjecture.

Case 3 Let p = q. As
√

q can be thought of as the zero element of GF (q) = {0, 1, 2, . . . , q−1},
we have tq ≡ I mod q. As r2

q = 1 as well, we have H(
√

q)/Kq,0(
√

q) ∼= C2.

It is easy to show that S2n ≡
(

(−1)n (−1)nn
√

q

(−1)n+1n
√

q (−1)n

)
(mod q). Therefore, we have

S2q ≡
(

−1 −q
√

q

q
√

q −1

)
(mod q) ≡

(
−1 0

0 −1

)
= −I(mod q).

So, in the quotient H(
√

q)/Hq(
√

q) we have the relations r2
q = s2q

q = tqq = I, sq = rqtq as
(
√

q)2 = q ≡ 0 (mod q). Then we have H(
√

q)/Hq(
√

q) ∼= C2q.

Case 4 Let p = 2. Then (r2, s2, t2) gives the exceptional N-triple (2, 3, 2) and hence generates
a group isomorphic to the dihedral group D3 of order 6.



390 Yilmaz Özgür N.

Let us now consider the quotient group H(
√

q)/H2(
√

q). In this case we have the relations
r2
2 = s6

2 = t22 = I. Therefore H(
√

q)/H2(
√

q) is isomorphic to the dihedral group D6 of order 12.
Lemma 2.3 Let q be a quadratic residue mod p. Then we have Kp,u(

√
q) = Kp,−u(

√
q).

Proof If q is a quadratic residue mod p, then x2 − q ≡ (x − u)(x + u) mod p for some u ∈
GF (p). In Kp,u(

√
q), let us consider the element A = (T−vR)3 obtained in (10). Now we have

R(T−vR)−3R = (T vR)3. Since Kp,u(
√

q) is a normal subgroup, then the equality holds, as
required.

Notice that generators of one of the two principal congruence subgroups corresponding to
values u and −u are just the inverses of the generators of the other.

Now using the Legendre symbol and the law of quadratic reciprocity, it is easy to prove the
following lemma:
Lemma 2.4 Let p be an odd prime. Then ( 7

p ) = 1 if and only if p ≡ ±1,±3,±9 mod 28. If
p ≡ ±5,±11,±13 mod 28, we have ( 7

p ) = −1.

Example 2.5 By Theorem 2.2 and Lemma 2.4, we have the quotient groups of the Hecke
group H(

√
7) by its congruence subgroups Kp,u(

√
7) and its principal congruence subgroups

Hp(
√

7) are as follows:

H(
√

7)/Kp,u(
√

7) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PSL(2, p), p ≡ ±1,±3,±9 mod 28,

PGL(2, p), p ≡ ±5,±11,±13 mod 28,

C2, p = 7,

D3, p = 2,

and

H(
√

7)/Hp(
√

7) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C2 × PSL(2, p), p ≡ ±1,±3,±9 mod 28,

PGL(2, p), p ≡ ±5,±11,±13 mod 28,

C10, p = 7,

D6, p = 2.

Note that we are unable to give conditions when q is a quadratic residue mod p or not, for
any prime p and any q.

Hence we have found all quotient groups of H(
√

q), q > 5 prime, with Kp,u(
√

q) and with
the principal congruence subgroups Hp(

√
q), for all prime p. By means of these we can give the

index formula for these two congruence subgroups.
Corollary 2.6 The indices of the congruence subgroups Kp,u(

√
q) and Hp(

√
q) in H(

√
q) are

|H(
√

q)/Kp,u(
√

q)| =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(p − 1)(p + 1)
2

if q is a square mod p and p �= q,

p(p − 1)(p + 1) if q is not a square mod p,

2 if p = q,

6 if p = 2,

and

|H(
√

q)/Hp(
√

q)| =

⎧⎪⎨
⎪⎩

p(p − 1)(p + 1) if p �= q and p �= 2,

2q if p = q,

12 if p = 2.

We are now able to determine the group-theoretic structure of the subgroups Kp,u(
√

q) and
Hp(

√
q). Recall that Hp(

√
q)	Kp,u(

√
q) and also by the definition of Hp(

√
q), Hp(

√
q)	He(

√
q).

Then we have four cases:
Case 1 Let p = q. We know that H(

√
q)/Kq,0(

√
q) ∼= C2. Since R and S are both mapped

to the generator of C2, we find Kq,0(
√

q) = He(
√

q).
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We also proved that H(
√

q)/Hq(
√

q) ∼= C2q. C2q has a presentation〈
α, β, γ; α2 = βq = γ2q = I

〉
.

Then we have R → α, S → β and therefore RS → αβ, i.e.,
R → (1 2)(3 4) · · · (2q−1 2q), S → (1 3 5 · · · 2q−1)(2 4 6 · · · 2q), T → (1 4 5 8 · · · 2q).
By the permutation method and Riemann–Hurwitz formula we find the signature of Hq(

√
q)

as ( q−1
2 ;∞; 2).

Case 2 Let p = 2. We know that H(
√

q)/K2,u(
√

q) ∼= D3 and H(
√

q)/H2(
√

q) ∼= D6. In the
former one, the quotient group is D3

∼= (2, 3, 2) and hence by the permutation method it is
easy to see that K2,u(

√
q) has the signature (0;∞(3); 2) and therefore K2,u(

√
q) ∼= F4, where

F4 denotes a free group of rank four.
Secondly let us consider H(

√
q)/H2(

√
q) ∼= D6

∼= (2, 6, 2). In a similar way we obtain
the signature of H2(

√
q) as (0;∞(6); 2) and therefore it is a free group of rank seven, i.e.,

H2(
√

q) ∼= F7.

Case 3 Let q is a quadratic residue mod p, p �= q, p �= 2. Then the quotient groups are
PSL(2, p) and C2 × PSL(2, p) as we have proved. Let now rp, sp be the images of R, S in
PSL(2, p) and r

′
p, s

′
p be the images of R, S in C2×PSL(2, p), respectively. Then the relations

r2
p = sl

p = I and (r
′
p)2 = (s

′
p)m = I are satisfied. Here, l depends on p and q. As odd powers of

S are odd and even powers of S are even, we have m = 2l when l is odd and we have m = l
when l is even. In this case both Kp,u(

√
q) and Hp(

√
q) are free groups.

If (q − 4) ≡ 0(mod p) then from Lemma 2.1(i), we know that l = p and so m = 2p. If
p | (q − 4), then the signature of Kp,u(

√
q) is(

1 +
(p − 1)(p + 1)(p − 4)

8
;∞( (p−1)(p+1)

2 );
(p − 1)(p + 1)

2

)
and the signature Hp(

√
q) is(

1 +
(p − 1)(p + 1)(p − 3)

4
; ∞((p−1)(p+1))

;
(p − 1)(p + 1)

2

)
.

If (q − 4, p) = 1, then Sp−1 ≡ I(mod p) or Sp+1 ≡ I(mod p) according to (q − 4)
p−1
2 ≡

±1(mod p). But, l may be a divisor of p− 1 or p + 1 since
√

q can be considered as an element
u of GF (p). So l can be p−1

k or p+1
k for some positive integer k. The orders of the parabolic

elements rpsp and r′ps
′
p are p. Then T goes to an element of order p in both quotient groups. Let

μ be the index of the congruence subgroup Kp,u(
√

q) in H(
√

q). By the permutation method
and Riemann–Hurwitz formula, we find the signature of this subgroup as(

1 +
μ

4pl
(pl − 2p − 2l);∞( µ

p );
μ

l

)
.

Again, if μ′ is the index of the principal congruence subgroup Hp(
√

q) in H(
√

q), we find the
signature of this subgroup as(

1 +
μ′

4pm
(pm − 2p − 2m); ∞( µ′

p
)

;
μ′

m

)
.

Example 2.7 Let q = 7 and p = 19. We have l = m = 10 and μ = 3420, μ′ = 6840.
The signature of K19,8(

√
7) = K19,11(

√
7) is (595;∞(180); 342) and the signature of H19(

√
7) is

(1189;∞(360); 684).

Case 4 Let q be a quadratic nonresidue mod p. We prove that both quotient groups
are isomorphic to PGL(2, p). From Lemma 2.1(ii), we know that the associated N-triple is
(2, p+1

k , p) or (2, p−1
k , p) for some positive integer k according to (q − 4)

p−1
2 ≡ 1(mod p) or

(q − 4)
p−1
2 ≡ −1(mod p), respectively. As in Case 3, we have the signature of Kp,u(

√
q) =
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Hp(
√

q) as (
1 +

(p − 1)(p2 − (2k + 1)p − 2)
4

; ∞((p−1)(p+1)); kp(p − 1)
)

or (
1 +

(p + 1)(p2 − (2k + 3)p + 2)
4

; ∞((p−1)(p+1)); kp(p + 1)
)

,

respectively.
Example 2.8 (i) Let q = 7 and p = 5. In this case we have H(

√
7)/K5,u(

√
7) ∼= H(

√
7)/

H5(
√

7) ∼= PGL(2, 5). As 32 ≡ −1(mod 5), we get the signature of K5,u(
√

7) = H5(
√

7) as
(4;∞(24); 30).

(ii) Let q = 7 and p = 11. As 35 ≡ 1(mod 11), we have K11,u(
√

7) = H11(
√

7) ∼=
(216;∞(120); 110).

Finally, we can give the following corollary:
Corollary 2.9 All principal congruence subgroups of the Hecke group H(

√
q), q ≥ 5 prime

number, are free groups.
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