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Abstract

Monte Carlo simulations for positron backscattering from the semi-infinite nickel with normal angle of incidence and the transmis-
sion through nickel foils of isotropically implanted positrons from a 22Na b+ source is reported. The elastic scattering cross section, have
been obtained from Rutherford differential cross section where the numerical coefficient in the atomic screening parameter and spin-rel-
ativistic correction factor is taken to be variable. Inelastic scattering model was employed to simulate the energy loss using Gryzinski�s
semi-empirical expression and Liljequist and Gryzinski models to calculate the total inelastic scattering cross section. The simulated
results and the available experimental data are found to be in reasonable agreement.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The electron and positron solid interaction is of great
importance in the field of conventional transmission, scan-
ning transmission, in the area of micro and optoelectronics.
The study of electron and positron transmission and back-
scattering from metal films is important. Backscattering of
electrons and positrons from thin films has impact on a
range of surface science techniques [1–4].

Purely analytical models and simple approaches using
closed formulas were not able to give satisfactory results.
However, the rapid evolution of the computer calculation
capability has made possible. A great deal of theoretical
investigations and the Monte Carlo approach has been
recognized as a powerful technique for performing certain
calculations. The Monte Carlo simulation of positron
transport is based on a stochastic description of the
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scattering process. The accuracy of the simulation depends
entirely upon modeling the scattering processes. The
dominant processes are elastic and inelastic scattering.
The concept of scattering cross section is by itself defined
as a statistical quantity being the probability that a posi-
tron is scattered. In other words, it is a target area that is
statistically meaningful and which a positron would effec-
tively see. When a positron beam impinges on a sample,
some positrons, after doing a number of collisions with
the atoms of target, reflected from the surface, while some
other positrons penetrate a distance larger than the thick-
ness of the material, and are thus transmitted and emerge
from the back of the sample. The remaining positrons that
have a penetration depth less than the thickness of the
material and which are not backscattered are implanted
in the target. The fractions of absorbed, backscattered
and transmitted positrons depend on the thickness of the
target.

Such a study 22Na b+ as positron emitter impinging on
thin nickel target with normal angles of incidence has been
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Fig. 1. Scheme of elastic and inelastic scattering in a film target.
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made in the present paper using Monte Carlo simulation
techniques.

2. Method

The simulation technique is mainly based on the screened
Rutherford differential cross section [5] with a spin-relativis-
tic correction factor for the elastic scattering at high energies
supplemented by total cross sections at low energies. Gryzin-
ski�s the semi-empirical expression [6] is used to simulate the
energy loss due to inelastic scattering, and Gryzinski [6] and
Liljequist�smodel [7] to calculate the total inelastic scattering
cross section. The detailed description of the Monte Carlo
code and the calculation of cross sections have been reported
elsewhere [8–10], only the differences are highlighted here.

2.1. Elastic scattering

The screened Rutherford cross section with the spin-rel-
ativistic factor [5] have been used for elastic scattering

drðh;EÞ
dX

¼ Z2r2e
1� b2

b4

1

ð1� cos hþ 2gÞ2
Krelðh;EÞ; ð1Þ

where h is the scattering angle, E is the kinetic energy of
incoming positron, Z = 28, re is the classical electron
radius, b is the speed of positron in units of c, g is the
screening angle and Krel(h,E) is the spin-relativistic factor.
Krel(h,E) is equal to the ratio of the Mott cross section to
the Rutherford cross section, and its values for several
energies and scattering angles have been tabulated by
Doggett and Spencer [11], and Idoeta and Legarda [12].
An analytic expression for the spin-relativistic factor
Krel(h,E) has been obtained as a function of

Krelðh;EÞ ¼ p1ðEÞ þ p2ðEÞhþ p3ðEÞh2 þ � � � ð2Þ
the kinetic energy E of incident positrons and the scattering
angle h.

The angular dependence of the screened Rutherford
cross section is given by the factor 1/(1 � cosh + 2g)2.
The screening angle g for positrons has been calculated
by Nigam and Mathur [13] using the first and second Born
approximations. By assuming a suitable value of g a rea-
sonable angular distribution can be obtained, tried several
energy dependent expressions for g but the expression

g ¼ expðp1 þ p2xþ p3x
2Þ; ð3Þ

where, x = lnE (keV), p1 = �2.24902, p2 = �0.91813,
p3 = �0.05743, has given the optimum results. This expres-
sion has been obtained by taking g = 0.98 for E = 50 eV
and some calculated values of g using the expression
obtained with the first Born approximation for E = 10–
600 keV and fitting a power expansion on (lnE, lng) points.

The calculation of elastic scattering cross section for
E < 25 keV (0.3Z4/3 keV) should be made with the partial
wave expansion [5]. The total elastic cross section for pos-
itrons on nickel have been obtained by scaling the values
for gallium atoms calculated by Öztürk et al. [14] in the
energy region 50 eV to 2 keV. The total elastic cross sec-
tions have been calculated for several values of E in the
range 25–600 keV by integrating the screened Rutherford
cross section with the spin-relativistic factor. A continuous
expression of the total elastic cross section needs as a func-
tion of E in the range 50 eV to 600 keV. Therefore, the
expression has been obtained

le ðcm�1Þ ¼ expðp1 þ p2xþ p3x
2 þ p4x

3Þ; ð4Þ
x = lnE (keV), p1 = 15.92673, p2 = �0.66347, p3 =
�0.093988, p4 = 0.0175172 by fitting a power expansion
on (lnE, lnle) points.

2.2. Inelastic scattering

The total inelastic scattering cross section can be calcu-
lated using the models given by Liljequist [7]. The following
expression is used to fit the values calculated fromLiljequist�s
model for the macroscopic total inelastic cross section:

li ðcm�1Þ ¼ expðp1 þ p2xþ p3x
2 þ p4x

3Þ; ð5Þ
where x = lnE (keV), p1 = 15.893, p2 = �0.75523, p3 =
�0.0605584, p4 = 0.0116912 by doing a fit over (lnE, lnli)
points. The total ionization cross section, calculated from
Gryzinski�s excitation function [6], has been used to deter-
mine the electron shell from which the scattering occurred.
Then, the energy loss in the inelastic scattering process
using Gryzinski�s excitation function [6] has been sampled.

Treatment of the elastic and inelastic collisions, which
has been explained above, contains several approxima-
tions. As a result the total cross sections given by Eqs.
(4) and (5) could have uncertainties which are estimated
to be of the order of 10–20%. These uncertainties give us
the freedom to optimize the total cross section values to
obtain results which are as close as possible to the experi-
mental values. The calculation results, which are presented
below have been obtained by using the le and li in Eqs. (4)
and (5) multiplied by an overall factors.

A schematic diagram of the model is depicted in Fig. 1.
Elastic and inelastic scattering are assumed to produce



Fig. 2. Transmission probabilities as a function of b+ energy for Ni in
comparison with the experimental data of Hansen et al. [15] and calculated
from expression of Mahony et al. [18].

Fig. 3. Relative proportions b+ transmitted (full curve) and reflected
(dashed curve) as a function of thicknesses for Ni target.
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Fig. 4. Theoretical energy distributions of transmitted and reflected b+ for
Ni target at 28 mg/cm2 thickness.
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angular direction. The computer codes have been written
for foils of various thicknesses and semi-infinite geometries
and for 22Na b+ source and monoenergetic positron beams.
The positrons in a semi-infinite medium or foils of various
thicknesses have been followed until they have backscat-
tered or transmitted or slowed down below 50 eV. A typi-
cal run involves the computation of 10000 trajectories. The
time required to compute a single trajectory clearly
depends on the initial energy and on the material.

3. Results and conclusions

3.1. Slab geometry

The measurements of transmission of positrons emitted
from a 22Na b+ source as a function of Ni foil thickness
were done by Hansen et al. [15] and Linderoth et al. [16].
In addition, the penetration of positrons from a 22Na b+

source into Ni foils sandwiched between different backscat-
tering materials (Ni, Mo, NaCl, Kapton) has been studied
for the geometry commonly used in PAT experiments by
Hansen et al. [15] and Linderoth et al. [16].

The energy of positrons emitted from a 22Na b+ source
was sampled using the theoretical spectrum Konopinski
[17] assuming that positrons emitted isotropically from
the source and the transmission probabilities were deter-
mined for the various thicknesses of nickel.

According to the best of my knowledge no additional
experimental results and/or any theoretical calculations
for the transmission and backscattering probabilities of
positrons and b+ for nickel have been reported in the last
decade. In this study, the transmitted and reflected frac-
tions of positrons emitted from 22Na b+ source as a func-
tion of thickness have been simulated.

Mahony et al. [18] have given an expression for the
transmission of positrons through a foil thickness, x. a is
the absorption coefficients of the foil and b is the backscat-
tering coefficient of the backing material.

T ðxÞ ¼ ð1� bÞ expð�axÞ
1� b expð�2axÞ . ð6Þ

a, is derived specifically from the empirical relation for
22Na

a ¼ 2:8qZ0:15

E
1:19

ðcm�1Þ; ð6aÞ

where, q is the density in g/cm3, Z is the atomic number
and E is the mean energy for the 22Na b+ distribution,
equal to 0.15 MeV. b, is a function of the atomic number,
Z and is empirically described by

b ¼ 0:342 log Z � 0:416. ð6bÞ
Monte Carlo calculations for the transmission rate of using
a 22Na b+ source in the range 1–75 mg/cm2 thicknesses
nickel have been performed for a comparison with the
experimental results. The calculated transmission probabil-
ities in nickel are well agreed with the expression of Mah-
ony et al. [18] and the experiment of Hansen et al. [15].
The results obtained from the analog Monte Carlo code
and calculated using (6) are plotted in Fig. 2 for nickel. Rel-
ative proportions at (Emax = 0.542 MeV) 22Na b+ transmit-
ted and reflected for the various thicknesses Ni target are
shown in Fig. 3. The energy distributions of the transmitted
b+ for the various thicknesses of nickel have been calcu-
lated. Fig. 4 shows the energy distribution of the transmit-
ted and reflected b+, for 28 mg/cm2 thickness. The angular
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distribution of transmitted b+ has also been calculated
from the present Monte Carlo calculation for nickel as well
as the energy distribution. The result is shown in Fig. 5.

3.2. Semi-infinite geometry

The energy and angular distributions, backscattering
probabilities and mean penetration depths of positrons
entering into the semi-infinite nickel target were also stud-
ied. Fig. 6 presents the calculated mean penetration depth
hzi of positrons as a function of their energy at normal inci-
dent angle. Fig. 7 shows the calculated backscattering
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Fig. 5. Theoretical angular distributions of transmitted b+ in Ni target at
10, 25 and 50 mg/cm2 thicknesses.
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Fig. 6. Mean penetration depth hzi as a function of positron energy.
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Fig. 7. Comparison of backscattering probabilities for Ni.
probabilities for positrons entering normally into the
semi-infinite nickel as a function of energy. Direct measure-
ments of doubly differential (angle and energy) distribu-
tions of backscattered positrons are reported by
Massoumi et al. [19] for only 35 keV positrons incident
normally on the target (4 6 Z 6 82). In Fig. 7, the calcu-
lated backscattering probability was found to be 0.163,
while the measurements of Massoumi et al. [19] was
0.164, for 35 keV the energy. Fig. 8 shows the energy distri-
butions of backscattered positron in the semi-infinite nickel
normally incident angle for 35 keV the positron energy.
The angular distribution of backscattered positrons has
also been calculated from the present Monte Carlo calcula-
tion for semi-infinite nickel as well as the energy distribu-
tion. Fig. 9 indicates the positrons angular distribution
for 0� incident angle at 35 keV. Typical implantation pro-
files for positrons at the same angle and energy are shown
in Fig. 10. The reflection probability of positrons was cal-
culated from a 22Na b+ source located at the boundary
of a semi-infinite nickel target to be 0.412.

A Monte Carlo simulation based on screened Ruther-
ford differential scattering cross section and approximate
energy loss expression has been used to transmission and
backscattering probabilities of b+ and positrons normally
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Fig. 8. Energy distributions of backscattered positrons from the semi-
infinite nickel target at 35 keV positron energy and the incident angles of
zero degree.
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Fig. 9. Theoretical angular distributions of transmitted positrons at
35 keV energy for semi-infinite Ni.
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Fig. 10. Typical implantation profiles of positrons at 35 keV, zero degree
incident angles in the semi-infinite Ni.
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incident nickel. The energy and angular distributions and
the positron implantation profile have also been investi-
gated. Good agreement is found with the existing experi-
mental data in the literature. Although the basic physical
mechanisms of positron solid interactions are reasonably
well understood, the intensive research during the last years
has produced many exciting developments.
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