J. Math. Kyoto Univ. (JMKYAZ) 46-4 (2006), 755–770

Approximation in weighted Smirnov-Orlicz classes

By

Daniyal M. ISRAFILOV and Ramazan AKGÜN

Abstract

In this work some direct and inverse theorems of approximation theory in the weighted Smirnov-Orlicz classes, defined in the domains with a Dini-smooth boundary, are proved. In particular, a constructive characterization of the generalized Lipschitz classes $Lip^*\alpha(M,\omega), \alpha > 0$, is obtained.

1. Introduction and main results

Let $\Gamma \subset \mathbb{C}$ be a closed bounded rectifiable Jordan curve in the complex plane \mathbb{C} . Γ separates the plane \mathbb{C} into two domains $G := int\Gamma$, $G^- := ext\Gamma$. Without loss of generality we may assume $0 \in G$. Let $\mathbb{D} := \{w \in \mathbb{C} : |w| < 1\}$, $\mathbb{T} := \partial \mathbb{D}, \mathbb{D}^- := ext\mathbb{T}$ and $w = \varphi(z)$ be the conformal mapping of G^- onto $\mathbb{D}^$ normalized by the conditions

$$\varphi(\infty) = \infty, \qquad \lim_{z \to \infty} \varphi(z) / z > 0,$$

and let $\psi := \varphi^{-1}$ be the inverse mapping of φ .

By $E^p(G)$, 0 , we denote the*Smirnov class*of analytic functionsin*G* $. Every function in <math>E^p(G)$, $1 \le p < \infty$, has the non-tangential boundary values almost everywhere (a. e.) on Γ and the boundary function belongs to *Lebesgue space* $L^p(\Gamma)$ [7, p. 438].

Let h be a continuous function on $[0, 2\pi]$. Its modulus of continuity is defined by

$$\omega(t,h) := \sup\{|h(t_1) - h(t_2)| : t_1, t_2 \in [0, 2\pi], |t_1 - t_2| \le t\}, \qquad t \ge 0.$$

The function h is called *Dini-continuous* if

$$\int_{0}^{\pi} \frac{\omega\left(t,h\right)}{t} dt < \infty.$$

2000 Mathematics Subject Classification(s). 30E10, 41A10, 41A25, 46E30. Received February 24, 2006 The curve Γ is called *Dini-smooth* if it has a parametrization

 $\Gamma:\varphi_0\left(\tau\right),\qquad 0\leq\tau\leq 2\pi$

such that $\varphi'_0(\tau)$ is Dini-continuous and $\varphi'_0(\tau) \neq 0$ [22, p. 48]. When Γ is Dini-smooth, [24] asserts that

(1.1)
$$\begin{aligned} 0 < c_1 \le |\psi'(w)| \le c_2, & |w| \ge 1, \\ 0 < c_3 \le |\varphi'(z)| \le c_4, & z \in G^-, \end{aligned}$$

for some constants c_1 , c_2 and c_3 , c_4 independent of w and z, respectively.

A continuous and convex function $M: [0, \infty) \to [0, \infty)$ which satisfies the conditions

$$M(0) = 0; \quad M(x) > 0 \quad \text{for } x > 0;$$
$$\lim_{x \to 0} (M(x)/x) = 0; \quad \lim_{x \to \infty} (M(x)/x) = \infty,$$

is called an N-function.

The complementary N-function to M is defined by

$$N(y) := \max_{x \ge 0} \left(xy - M(x) \right), \qquad y \ge 0.$$

We denote by $L_M(\Gamma)$ the linear space of Lebesgue measurable functions $f : \Gamma \to \mathbb{C}$ satisfying the condition

$$\int_{\Gamma} M\left[\alpha \left| f\left(z\right) \right| \right] \left| dz \right| < \infty$$

for some $\alpha > 0$.

The space $L_M(\Gamma)$ becomes a Banach space with the Luxemburg norm

$$\|f\|_{L_{(M)}(\Gamma)} := \inf \{\tau > 0 : \rho(f/\tau; M) \le 1\},\$$

and also with the Orlicz norm

$$\left\|f\right\|_{L_{M}(\Gamma)} := \sup\left\{\int_{\Gamma} \left|f\left(z\right)g\left(z\right)\right| \left|dz\right| : g \in L_{N}\left(\Gamma\right); \ \rho\left(g;N\right) \le 1\right\},\right.$$

where N is the complementary N-function to M and

$$ho\left(g;N
ight):=\int\limits_{\Gamma}N\left[\left|g\left(z
ight)
ight]\left|dz
ight|.$$

The Banach space $L_M(\Gamma)$ is called Orlicz space.

A function ω is called a *weight* on Γ if $\omega : \Gamma \to [0, \infty]$ is measurable and $\omega^{-1}(\{0, \infty\})$ has measure zero (with respect to Lebesgue measure).

The class of measurable functions f defined on Γ and satisfying the condition $\omega f \in L_M(\Gamma)$ is called *weighted Orlicz space* $L_M(\Gamma, \omega)$ with the norm

$$\|f\|_{L_M(\Gamma,\omega)} := \|f\omega\|_{L_M(\Gamma)}.$$

For $z \in \Gamma$ and $\epsilon > 0$ let $\Gamma(z, \epsilon)$ denotes the portion of Γ contained in the open disc of radius ϵ and centered at z, i.e. $\Gamma(z, \epsilon) := \{t \in \Gamma : |t - z| < \epsilon\}.$

For fixed $p \in (1, \infty)$, we define $q \in (1, \infty)$ by $p^{-1} + q^{-1} = 1$. The set of all weights $\omega : \Gamma \to [0, \infty]$ satisfying the relation

$$\sup_{t\in\Gamma} \sup_{\epsilon>0} \left(\frac{1}{\epsilon} \int_{\Gamma(z,\epsilon)} \omega(\tau)^p |d\tau|\right)^{1/p} \left(\frac{1}{\epsilon} \int_{\Gamma(z,\epsilon)} \omega(\tau)^{-q} |d\tau|\right)^{1/q} < \infty$$

is denoted by $A_p(\Gamma)$.

We denote by $L^{p}(\Gamma, \omega)$ the set of all measurable functions $f: \Gamma \to \mathbb{C}$ such that $|f| \omega \in L^{p}(\Gamma), 1 .$

Let $M^{-1}: [0, \infty) \to [0, \infty)$ be the inverse function of the N-function M. The lower and upper *indices* α_M, β_M [3, p. 350]

$$\alpha_M := \lim_{x \to 0} \frac{\log \varrho(x)}{\log x}, \qquad \beta_M := \lim_{x \to \infty} \frac{\log \varrho(x)}{\log x}$$

of the function

$$\varrho:(0,\infty)\to(0,\infty], \ \ \varrho(x):=\limsup_{y\to\infty}\frac{M^{-1}\left(y\right)}{M^{-1}\left(y/x\right)}, \ \ x\in(0,\infty),$$

first considered by W. Matuszewska and W. Orlicz [20], are called the *Boyd* indices of the Orlicz space $L_M(\Gamma)$. It is well known that $0 \le \alpha_M \le \beta_M \le 1$. For this and other properties of Boyd indices of Orlicz spaces we refer to [19].

The indices α_M , β_M are called *nontrivial* if $0 < \alpha_M$ and $\beta_M < 1$.

Definition 1. For a weight ω on Γ we denote by $E_M(G, \omega)$ the subclass of analytic functions of $E^1(G)$ whose boundary value functions belong to weighted Orlicz space $L_M(\Gamma, \omega)$.

The weighted Smirnov-Orlicz class $E_M(G, \omega)$ is a generalization of the Smirnov class $E^p(G)$. In particular, if $M(x) := x^p$, 1 , then the $weighted Smirnov-Orlicz class <math>E_M(G, \omega)$ coincides with the weighted Smirnov class $E^p(G, \omega)$; if $\omega := 1$, then $E_M(G, \omega)$ coincides with the Smirnov-Orlicz class $E_M(G)$, defined in [18].

Let Γ be a rectifiable Jordan curve and $f \in L^1(\Gamma)$. The functions f^+ and f^- defined by

$$f^{+}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma - z} d\varsigma, \qquad z \in G,$$

and

$$f^{-}(z) = rac{1}{2\pi i} \int\limits_{\Gamma} rac{f(\varsigma)}{\varsigma - z} d\varsigma, \qquad z \in G^{-},$$

are analytic in G and G^- , respectively and $f^-(\infty) = 0$.

For $g \in L_M(\mathbb{T}, \omega)$ we set

$$\sigma_{_{h}}\left(g\right)\left(w\right) := \frac{1}{2h} \int_{-h}^{h} g\left(we^{it}\right) dt, \quad 0 < h < \pi, \quad w \in \mathbb{T}.$$

If α_M and β_M are nontrivial and $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T}) \cap A_{\frac{1}{\beta_M}}(\mathbb{T})$, then by [14] we have

(1.2)
$$\|\sigma_h(g)\|_{L_M(\mathbb{T},\omega)} \le c_5 \|g\|_{L_M(\mathbb{T},\omega)}$$

and consequently $\sigma_{_{h}}\left(g\right)\in L_{M}\left(\mathbb{T},\omega\right)$ for any $g\in L_{M}\left(\mathbb{T},\omega\right)$.

Definition 2. Let α_M and β_M be nontrivial and $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T}) \cap A_{\frac{1}{\beta_M}}(\mathbb{T})$. The function

$$\Omega_{M,\omega}^{r}\left(g,\delta\right) := \sup_{\substack{0 < h_{i} \leq \delta \\ i=1,2,\dots,r}} \left\| \prod_{i=1}^{r} \left(I - \sigma_{h_{i}}\right) g \right\|_{L_{M}(\mathbb{T},\omega)}, \quad \delta > 0, \quad r = 1, 2, \dots$$

is called rth modulus of smoothness of $g \in L_M(\mathbb{T}, \omega)$, where I is the identity operator.

Note that in case of weighted Lebesgue spaces $L^{p}(\mathbb{T},\omega)$ this definition originates from [25] (see also [10], [11], [12]).

It is easily verified that the function $\Omega_{M,\omega}(g,\cdot)$ is continuous, non-negative and satisfy

$$\lim_{\delta \to 0} \ \Omega^{r}_{M,\omega}\left(g,\delta\right) = 0, \quad \Omega^{r}_{M,\omega}\left(g+g_{1},\cdot\right) \leq \Omega^{r}_{M,\omega}\left(g,\cdot\right) + \Omega^{r}_{M,\omega}\left(g_{1},\cdot\right)$$

for $g, g_1 \in L_M(\mathbb{T}, \omega)$.

Let $\omega_0(w) := \omega(\psi(w))$ and $f_0(w) := f(\psi(w))$ for a weight ω on Γ , $f \in L_M(\Gamma, \omega)$ and $w \in \mathbb{T}$. By (1.1) we have $f_0 \in L_M(\mathbb{T}, \omega_0)$ for $f \in L_M(\Gamma, \omega)$. Using the nontangential boundary values of f_0^+ on \mathbb{T} we define the *rth modulus* of smoothness of $f \in L_M(\Gamma, \omega)$ as

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right) := \Omega^{r}_{M,\omega_{0}}\left(f_{0}^{+},\delta\right), \qquad \delta > 0,$$

for r = 1, 2, 3, ...Let

$$E_n (f, G)_{M, \omega} := \inf_{P \in \mathcal{P}_n} \|f - P\|_{L_M(\Gamma, \omega)}$$

be the best approximation to $f \in E_M(G, \omega)$ in the class \mathcal{P}_n of algebraic polynomials of degree not greater than n.

When r = 1 and Γ is a Carleson curve, some direct theorems of the approximation theory in the Smirnov-Orlicz and Orlicz classes are given in [8],

[9]. One direct theorem in the Smirnov-Orlicz classes $E_M(G)$, defined on the domains with a Dini-smooth boundary, is obtained in [15]. The inverse problems of approximation theory in these domains have been investigated by V. M. Kokilashvili [18]. Note that the modulus of smoothness used in these works are constructed by applying the usual shift $f_0(e^{i(t+h)})$, $h \in [0, 2\pi]$, for $f_0(e^{it})$.

In this work we prove some direct and inverse theorems in the weighted Smirnov-Orlicz classes. In particular, we obtain a constructive characterization of the generalized Lipschitz classes $Lip^*\alpha(M,\omega)$, $\alpha > 0$. Since the usual shift, in general, is noninvariant in the weighted Orlicz classes, we use the modulus of smoothness $\Omega^r_{\Gamma,M,\omega}(f,\cdot)$, constructed with respect to the mean value operator σ_h .

The main results of this work are the following.

Theorem 1. Let G be a bounded simply connected domain with a Dinismooth boundary Γ and let $L_M(\Gamma)$ be an Orlicz space with nontrivial indices α_M , β_M and $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma) \cap A_{\frac{1}{\beta_M}}(\Gamma)$. If $f \in E_M(G, \omega)$, then for every natural number n,

$$E_n(f,G)_{M,\omega} \le c_6 \ \Omega^r_{\Gamma,M,\omega}\left(f,\frac{1}{n+1}\right), \quad r=1,2,3,\ldots$$

with some constant $c_6 > 0$ independent of n.

Theorem 2. Let G be a bounded simply connected domain with a Dinismooth boundary Γ and let $E_M(G, \omega)$ be a weighted Smirnov-Orlicz class with nontrivial indices α_M , β_M . If $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma) \cap A_{\frac{1}{\beta_M}}(\Gamma)$ and $f \in E_M(G, \omega)$, then

$$\Omega_{\Gamma,M,\omega}^{r}\left(f,\frac{1}{n}\right) \leq \frac{c_{7}}{n^{2r}} \left\{ E_{0}\left(f,G\right)_{M,\omega} + \sum_{k=1}^{n} k^{2r-1} E_{k}\left(f,G\right)_{M,\omega} \right\},\ r = 1, 2, 3, \dots,$$

with some constant $c_7 > 0$ independent of n.

Corollary 1. Under the conditions of Theorem 2, if

$$E_n(f,G)_{M,\omega} = \mathcal{O}(n^{-\alpha}), \quad \alpha > 0, \quad n = 1, 2, 3, \dots,$$

then

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right) = \begin{cases} \mathcal{O}\left(\delta^{\alpha}\right) & ; \ r > \alpha/2\\ \mathcal{O}\left(\delta^{\alpha}\log\frac{1}{\delta}\right) & ; \ r = \alpha/2\\ \mathcal{O}\left(\delta^{2r}\right) & ; \ r < \alpha/2 \end{cases}$$

for $f \in L_M(\Gamma, \omega)$.

Definition 3. For $\alpha > 0$ let $r := \left\lfloor \frac{\alpha}{2} \right\rfloor + 1$. The set of functions $f \in E_M(G, \omega)$ such that

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right) = \mathcal{O}\left(\delta^{\alpha}\right), \quad \delta > 0$$

is called the generalized Lipschitz class $Lip^*\alpha(M,\omega)$.

According to Corollary 1 we have the following.

Corollary 2. Under the conditions of Theorem 2, if

$$E_n(f,G)_{M,\omega} = \mathcal{O}(n^{-\alpha}), \quad \alpha > 0, \quad n = 1, 2, 3, \dots,$$

then $f \in Lip^*\alpha(M, \omega)$.

Theorem 1 and Corollary 2 imply the following.

Theorem 3. If $\alpha > 0$, then under the conditions of Theorem 2, the following conditions are equivalent:

(a) $f \in Lip^*\alpha(M, \omega)$ (b) $E_n(f) = \mathcal{O}(n^{-\alpha}), \quad n = 1, 2, 3, \dots$

In the case of weighted Smirnov classes $E^{p}(G, \omega)$ the analogues results are proved in the papers [11], [13].

Throughout this work by c, c_1, c_2, \ldots , we denote the constants which are different in different places.

2. Auxiliary results

Let Γ be a rectifiable Jordan curve, $f \in L^1(\Gamma)$ and let

$$(S_{\Gamma}f)(t) := \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\Gamma \setminus \Gamma(t,\epsilon)} \frac{f(\varsigma)}{\varsigma - t} d\varsigma, \qquad t \in \Gamma$$

be Cauchy's singular integral of f. The linear operator $S_{\Gamma} : f \to S_{\Gamma} f$ is called the Cauchy singular operator.

If one of the functions f^+ or f^- has the non-tangential limits a. e. on Γ , then $S_{\Gamma}f(z)$ exist a. e. on Γ and also the other one has non-tangential limits a. e. on Γ . Conversely, if $S_{\Gamma}f(z)$ exist a. e. on Γ , then both functions f^+ and f^- have non-tangential limits a. e. on Γ . In both cases, the formulae

(2.1)
$$f^{+}(z) = (S_{\Gamma}f)(z) + f(z)/2, f^{-}(z) = (S_{\Gamma}f)(z) - f(z)/2,$$

and hence

$$f = f^+ - f^-$$

holds a. e. on Γ (see, e.g., [7, p. 431]).

Lemma 1. Let $0 < \alpha_M$, $\beta_M < 1$, $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma) \cap A_{\frac{1}{\beta_M}}(\Gamma)$ and $f \in L_M(\Gamma, \omega)$. Then $f^+ \in E_M(G, \omega)$ and $f^- \in E_M(G^-, \omega)$.

Proof. Let $f \in L_M(\Gamma, \omega)$. By [3, p. 58, Th. 2.31] there exist $p, q \in (1, \infty)$ such that $1 , and <math>\omega \in A_p(\Gamma) \cap A_q(\Gamma)$. Then [16, Th. 2.5] we have

$$L^{q}(\Gamma) \subset L_{M}(\Gamma) \subset L^{p}(\Gamma),$$

where the inclusion maps being continuous, and therefore $f \in L^p(\Gamma, \omega)$. Now using Lemmas 2 and 3 of [11] we get

$$f^{+} \in E^{1}(G) \text{ and } f^{-} \in E^{1}(G^{-}).$$

Hence, using the relations (2.1) which hold a. e. on Γ , and the boundedness of the singular operator S_{Γ} in weighted Orlicz spaces [17, Th. 4.5], we conclude that

$$f^+ \in L_M(\Gamma, \omega), \quad f^- \in L_M(\Gamma, \omega)$$

and the assertion follows.

Lemma 2. Let $0 < \alpha_M$, $\beta_M < 1$, $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T}) \cap A_{\frac{1}{\beta_M}}(\mathbb{T})$ and $g \in E_M(\mathbb{D}, \omega)$. If $\sum_{k=0}^n \alpha_k w^k$ is the nth partial sum of the Taylor series of the function g at the origin, then there exists a constant $c_8 > 0$ such that

$$\left\|g\left(w\right) - \sum_{k=0}^{n} \alpha_{k} w^{k}\right\|_{L_{M}(\mathbb{T},\omega)} \leq c_{8} \Omega_{M,\omega}^{r}\left(g, \frac{1}{n+1}\right)$$

for every natural number n.

This result was proved in [14, Theorem 3].

The Faber polynomials $\Phi_k(z)$, $k = 0, 1, 2, 3, \ldots$, associated with $G \cup \Gamma$, are defined through the expansion

(2.2)
$$\frac{\psi'(w)}{\psi(w)-z} = \sum_{k=0}^{\infty} \frac{\Phi_k(z)}{w^{k+1}}, \qquad z \in G, \quad w \in \mathbb{D}^-,$$

and the equalities

(2.3)
$$\Phi_k(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{w^k \psi'(w)}{\psi(w) - z} dw, \quad z \in G,$$

(2.4)
$$\Phi_{k}(z) = \varphi^{k}(z) + \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi^{k}(\varsigma)}{\varsigma - z} d\varsigma, \quad z \in G^{-},$$

hold [23, p. 34].

If $f \in E_M(G, \omega)$, then by definition $f \in E^1(G)$ and hence

$$\begin{split} f\left(z\right) &= \frac{1}{2\pi i} \int\limits_{\Gamma} \frac{f\left(\varsigma\right)}{\varsigma - z} d\varsigma \\ &= \frac{1}{2\pi i} \int\limits_{\mathbb{T}} f\left(\psi\left(w\right)\right) \frac{\psi'\left(w\right)}{\psi\left(w\right) - z} dw, \quad z \in G. \end{split}$$

Here, taking the relation (2.2) into account, we have

$$f(z) \sim \sum_{k=0}^{\infty} a_k \Phi_k(z), \quad z \in G$$

where

$$a_k := a_k(f) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(\psi(w))}{w^{k+1}} dw, \quad k = 0, 1, 2, \dots$$

This series is called the Faber series of $f \in E_M(G, \omega)$ and the values a_k , $k = 0, 1, 2, \ldots$ are called the Faber coefficients of f. Let $S_n(f, \cdot) := \sum_{k=0}^n a_k \Phi_k$ be the *n*th partial sum of the Faber expansion of the function $f \in E_M(G, \omega)$.

Let $\mathcal{P} := \{ \text{all polynomials (with no restriction on the degree}) \}, \mathcal{P}(\mathbb{D}) := \{ \text{traces of all members of } \mathcal{P} \text{ on } \mathbb{D} \} \text{ and let }$

$$T(P)(z) := \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{P(w)\psi'(w)}{\psi(w) - z} dw, \quad z \in G$$

be an operator T defined on $\mathcal{P}(\mathbb{D})$.

Then by (2.3)

$$T\left(\sum_{k=0}^{n} b_k w^k\right) = \sum_{k=0}^{n} b_k \Phi_k(z), \quad z \in G.$$

If $z' \in G$, then

$$T(P)(z') = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{P(w)\psi'(w)}{\psi(w) - z'} dw = \frac{1}{2\pi i} \int_{\Gamma} \frac{(P \circ \varphi)(\varsigma)}{\varsigma - z'} d\varsigma$$
$$= (P \circ \varphi)^{+}(z'),$$

which by (2.1) implies that

(2.5)
$$T(P)(z) = S_{\Gamma}(P \circ \varphi)(z) + \frac{1}{2}(P \circ \varphi)(z)$$

a. e. on Γ .

As in the proof of Lemma 1, there exist $p, q \in (1, \infty)$ such that $1 , <math>\omega \in A_p(\Gamma) \cap A_q(\Gamma)$ and the inclusions

$$L^{q}(\Gamma) \subset L_{M}(\Gamma) \subset L^{p}(\Gamma)$$

hold. Then $P \circ \varphi \in L^q(\Gamma, \omega)$, for any polynomial P, and hence $P \circ \varphi \in L_M(\Gamma, \omega)$. Since S_{Γ} is bounded [17, Th. 4.5] in $L_M(\Gamma, \omega)$, from (2.5) we have that $T(P) \in L_M(\Gamma, \omega)$ for every $P \in \mathcal{P}(\mathbb{D})$. The property $T(P) \in E^1(G)$ can be obtained from continuity of $P \circ \varphi$. Hence we obtain $T(P) \in E_M(G, \omega)$ for every $P \in \mathcal{P}(\mathbb{D})$.

Therefore, we get the following result.

Lemma 3. If Γ is a Dini-smooth curve, $0 < \alpha_M$, $\beta_M < 1$ and $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma) \cap A_{\frac{1}{\beta_M}}(\Gamma)$, then the linear operator

$$T: \mathcal{P}(\mathbb{D}) \to E_M(G,\omega)$$

is bounded.

Extending the operator T from $\mathcal{P}(\mathbb{D})$ to the space $E_M(\mathbb{D}, \omega_0)$ as a linear and bounded operator, for the extension $T: E_M(\mathbb{D}, \omega_0) \to E_M(G, \omega)$, we have the representation

$$T\left(g\right)\left(z\right):=\frac{1}{2\pi i}\int_{\mathbb{T}}\frac{g\left(w\right)\psi'\left(w\right)}{\psi\left(w\right)-z}dw,\quad z\in G,\quad g\in E_{M}\left(\mathbb{D},\omega_{0}\right).$$

Theorem 4. If Γ is a Dini-smooth curve, $0 < \alpha_M$, $\beta_M < 1$ and $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma) \cap A_{\frac{1}{\beta_M}}(\Gamma)$, then the operator

$$T: E_M(\mathbb{D},\omega_0) \to E_M(G,\omega)$$

is one-to-one and onto.

Proof. Let $g \in E_M(\mathbb{D}, \omega_0)$ with the Taylor expansion

$$g(w) := \sum_{k=0}^{\infty} \alpha_k w^k, \quad w \in \mathbb{D}.$$

It is easily seen that if Γ is Dini-smooth, then the conditions $\omega \in A_{\frac{1}{\alpha_M}}(\Gamma)$, $\omega_0 \in A_{\frac{1}{\alpha_M}}(\mathbb{T})$ and also $\omega \in A_{\frac{1}{\beta_M}}(\Gamma)$, $\omega_0 \in A_{\frac{1}{\beta_M}}(\mathbb{T})$ are equivalent. Since $\omega_0 \in A_{\frac{1}{\alpha_M}}(\mathbb{T}) \cap A_{\frac{1}{\beta_M}}(\mathbb{T})$, by the proof of Theorem 4.5 of [17] there exist $p, q \in (1, \infty)$ such that

$$1 and $\omega_0 \in A_p(\mathbb{T}) \cap A_q(\mathbb{T})$,$$

and then, by [16, Th. 2.5],

$$L^{q}(\mathbb{T}) \subset L_{M}(\mathbb{T}) \subset L^{p}(\mathbb{T}),$$

where inclusion maps being continuous.

Let $g_r(w) := g(rw), 0 < r < 1$. Since $g \in E^1(\mathbb{D})$ is the Poisson integral of its boundary function [5, p. 41], using [21, Th. 10] and Boyd interpolation theorem [2], we get

$$\left\|g_r - g\right\|_{L_M(\mathbb{T},\omega_0)} = \left\|g\left(re^{i\theta}\right) - g\left(e^{i\theta}\right)\right\|_{L_M([0,2\pi],\omega_0)} \to 0, \quad \text{as } r \to 1^-.$$

Therefore, the boundedness of the operator T implies that

(2.6)
$$\|T(g_r) - T(g)\|_{L_M(\Gamma,\omega)} \to 0, \text{ as } r \to 1^-.$$

Since the series $\sum_{k=0}^{\infty} \alpha_k w^k$ is uniformly convergent for |w| = r < 1, the series $\sum_{k=0}^{\infty} \alpha_k r^k w^k$ is uniformly convergent on \mathbb{T} , and hence

$$T(g_r)(z') = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g_r(w)\psi'(w)}{\psi(w) - z'} dw = \sum_{m=0}^{\infty} \alpha_m r^m \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{w^m \psi'(w)}{\psi(w) - z'} dw$$
$$= \sum_{m=0}^{\infty} \alpha_m r^m \Phi_m(z'), \quad z' \in G.$$

Now, taking the limit as $z' \to z \in \Gamma$ along all non-tangential paths inside $\Gamma,$ we obtain

$$T(g_r)(z) = \sum_{m=0}^{\infty} \alpha_m r^m \Phi_m(z), \quad z \in \Gamma.$$

From the last equality and Lemma 3 of [6, p. 43] for the Faber coefficients $a_k(T(g_r))$ we have

$$a_{k}\left(T\left(g_{r}\right)\right) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{T\left(g_{r}\right)\left(\psi\left(w\right)\right)}{w^{k+1}} dw$$
$$= \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\sum_{m=0}^{\infty} \alpha_{m} r^{m} \Phi_{m}\left(\psi\left(w\right)\right)}{w^{k+1}} dw$$
$$= \sum_{m=0}^{\infty} \alpha_{m} r^{m} \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\Phi_{m}\left(\psi\left(w\right)\right)}{w^{k+1}} dw = \alpha_{k} r^{k}$$

and therefore

(2.7)
$$a_k(T(g_r)) \to \alpha_k, \text{ as } r \to 1^-.$$

Now applying (1.1), Hölder's inequality and Theorem 2.1 of [17], respectively, we obtain

$$\begin{aligned} |a_{k} (T (g_{r})) - a_{k} (T (g))| &= \left| \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{[T (g_{r}) - T (g)] (\psi (w))}{w^{k+1}} dw \right| \\ &\leq \frac{1}{2\pi} \int_{\mathbb{T}} |[T (g_{r}) - T (g)] (\psi (w))| |dw| \\ &= \frac{1}{2\pi} \int_{\Gamma} |[T (g_{r}) - T (g)] (z)| |\varphi' (z)| |dz| \\ &\leq \frac{c_{11}}{2\pi} \int_{\Gamma} |[T (g_{r}) - T (g)] (z)| |dz| \\ &= \frac{c_{11}}{2\pi} \int_{\Gamma} |[T (g_{r}) - T (g)] (z)| \omega (z) \omega^{-1} (z) |dz| \\ &\leq \frac{c_{11}}{2\pi} ||(T (g_{r}) - T (g)) \omega (z)||_{L_{M}(\Gamma)} ||\omega^{-1} (\cdot)||_{L_{N}(\Gamma)} \\ &\leq \frac{c_{12}}{2\pi} ||T (g_{r}) - T (g)||_{L_{M}(\Gamma,\omega)}. \end{aligned}$$

From the last inequality and (2.6) we get

$$a_k(T(g_r)) \to a_k(T(g)), \text{ as } r \to 1^-,$$

and then by (2.7) $a_k(T(g)) = \alpha_k$, $k = 0, 1, 2, \ldots$. If T(g) = 0, then $\alpha_k = a_k(T(g)) = 0$, $k = 0, 1, 2, \ldots$, and therefore g = 0. This means that the operator T is one-to-one.

Now we take a function $f \in E_M(G, \omega)$ and consider the function $f_0 = f \circ \psi \in L_M(\mathbb{T}, \omega_0)$. The Cauchy type integral

$$\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_0(\tau)}{\tau - w} d\tau$$

represents analytic functions f_0^+ and f_0^- in \mathbb{D} and \mathbb{D}^- , respectively. Since $\omega_0 \in A_{\frac{1}{\alpha_M}}(\mathbb{T}) \cap A_{\frac{1}{\beta_M}}(\mathbb{T})$, by Lemma 1, we have

$$f_0^+ \in E_M(\mathbb{D}, \omega_0) \text{ and } f_0^- \in E_M(\mathbb{D}^-, \omega_0),$$

and for the non-tangential boundary values we get

$$f_0^+(w) = S_{\mathbb{T}}(f_0)(w) + \frac{1}{2}f_0(w),$$

$$f_0^-(w) = S_{\mathbb{T}}(f_0)(w) - \frac{1}{2}f_0(w).$$

Therefore

(2.8)
$$f_0(w) = f_0^+(w) - f_0^-(w)$$

holds a. e. on \mathbb{T} and $f_0^-(\infty) = 0$. For the Faber coefficients a_k of f we get

$$a_{k} = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{0}(w)}{w^{k+1}} dw$$
$$= \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{0}^{+}(w)}{w^{k+1}} dw - \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_{0}^{-}(w)}{w^{k+1}} dw.$$

Since the function f_0^- belongs to $E^1(\mathbb{D}^-)$, the second integral vanishes and hence the values $\{a_k\}_{k=0}^{\infty}$ also become the Taylor coefficients of the function f_0^+ at the origin, namely,

$$f_0^+(w) = \sum_{k=0}^{\infty} a_k w^k, \quad w \in \mathbb{D}.$$

From the first part of the proof we get

$$T\left(f_{0}^{+}\right) \sim \sum_{k=0}^{\infty} a_{k} \Phi_{k}.$$

Since there is no two different functions in $E_{M}(G,\omega)$ that have the same Faber coefficients [1], we conclude that $T(f_0^+) = f$. Therefore, the operator T is onto.

3. Proofs of main results

Proof of Theorem 1. Let $f \in E_M(G, \omega)$. Then $f_0 \in L_M(\mathbb{T}, \omega_0)$. According to (2.8)

(3.1)
$$f(\varsigma) = f_0^+(\varphi(\varsigma)) - f_0^-(\varphi(\varsigma))$$

a. e. on Γ and

$$\int_{\Gamma} \frac{f(\varsigma)}{\varsigma - z'} d\varsigma = 0, \qquad z' \in G^{-1}$$

because $f \in E^1(G)$. Now let $z' \in G^-$. Using (2.4) we have

$$\begin{split} \sum_{k=0}^{n} a_k \Phi_k \left(z' \right) &= \sum_{k=0}^{n} a_k \varphi^k \left(z' \right) + \frac{1}{2\pi i} \int_{\Gamma} \frac{\sum_{k=0}^{n} a_k \varphi^k \left(\varsigma \right)}{\varsigma - z'} d\varsigma \\ &= \sum_{k=0}^{n} a_k \varphi^k \left(z' \right) + \frac{1}{2\pi i} \int_{\Gamma} \frac{\sum_{k=0}^{n} a_k \varphi^k \left(\varsigma \right)}{\varsigma - z'} d\varsigma - \frac{1}{2\pi i} \int_{\Gamma} \frac{f\left(\varsigma \right)}{\varsigma - z'} d\varsigma \\ &= \sum_{k=0}^{n} a_k \varphi^k \left(z' \right) + \frac{1}{2\pi i} \int_{\Gamma} \frac{\sum_{k=0}^{n} a_k \varphi^k \left(\varsigma \right)}{\varsigma - z'} d\varsigma \\ &- \frac{1}{2\pi i} \int_{\Gamma} \frac{f_0^+ \left(\varphi \left(\varsigma \right) \right)}{\varsigma - z'} d\varsigma + \frac{1}{2\pi i} \int_{\Gamma} \frac{f_0^- \left(\varphi \left(\varsigma \right) \right)}{\varsigma - z'} d\varsigma. \end{split}$$

Since

$$\frac{1}{2\pi i}\int_{\Gamma}\frac{f_{0}^{-}\left(\varphi\left(\varsigma\right)\right)}{\varsigma-z'}d\varsigma=-f_{0}^{-}\left(\varphi\left(z'\right)\right),$$

we get

$$\sum_{k=0}^{n} a_{k} \Phi_{k}\left(z'\right) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\sum_{k=0}^{n} a_{k} \varphi^{k}\left(\varsigma\right) - f_{0}^{+}\left(\varphi\left(\varsigma\right)\right)}{\varsigma - z'} d\varsigma$$
$$+ \sum_{k=0}^{n} a_{k} \varphi^{k}\left(z'\right) - f_{0}^{-}\left(\varphi\left(z'\right)\right).$$

Hence, taking the limit as $z' \to z$ along all non-tangential paths outside $\Gamma,$ we obtain

$$\begin{split} \sum_{k=0}^{n} a_{k} \Phi_{k} \left(z \right) &= -\frac{1}{2} \left(\sum_{k=0}^{n} a_{k} \varphi^{k} \left(z \right) - f_{0}^{+} \left(\varphi \left(z \right) \right) \right) + S_{\Gamma} \left[\sum_{k=0}^{n} a_{k} \varphi^{k} - \left(f_{0}^{+} \circ \varphi \right) \right] \\ &+ \sum_{k=0}^{n} a_{k} \varphi^{k} \left(z \right) - f_{0}^{-} \left(\varphi \left(z \right) \right) \\ &= \frac{1}{2} \left(\sum_{k=0}^{n} a_{k} \varphi^{k} \left(z \right) - f_{0}^{+} \left(\varphi \left(z \right) \right) \right) + \left[f_{0}^{+} \left(\varphi \left(z \right) \right) - f_{0}^{-} \left(\varphi \left(z \right) \right) \right] \\ &+ S_{\Gamma} \left[\sum_{k=0}^{n} a_{k} \varphi^{k} - \left(f_{0}^{+} \circ \varphi \right) \right] \end{split}$$

a. e. on $\Gamma.$ Using (3.1), (1.1), Minkowski's inequality and the boundedness of S_{Γ} we get

$$\begin{split} \|f - S_n(f, \cdot)\|_{L_M(\Gamma, \omega)} \\ &= \left\| \frac{1}{2} \left(\sum_{k=0}^n a_k \varphi^k(z) - f_0^+(\varphi(z)) \right) + S_{\Gamma} \left[\sum_{k=0}^n a_k \varphi^k - \left(f_0^+ \circ \varphi \right) \right] \right\|_{L_M(\Gamma, \omega)} \\ &\leq c_{13} \left\| \sum_{k=0}^n a_k \varphi^k(z) - f_0^+(\varphi(z)) \right\|_{L_M(\Gamma, \omega)} \leq c_{14} \left\| f_0^+(w) - \sum_{k=0}^n a_k w^k \right\|_{L_M(T, \omega_0)} \end{split}$$

On the other hand, from the proof of Theorem 4 we know that the Faber coefficients of the function f and the Taylor coefficients of the function f_0^+ at the origin are the same. Then taking Lemma 2 into account, we conclude that

$$E_n(f,G)_{M,\omega} \le \|f - S_n(f,\cdot)\|_{L_M(\Gamma,\omega)} \le c_{15} \ \Omega^r_{\Gamma,M,\omega}\left(f,\frac{1}{n+1}\right).$$

.

Proof of Theorem 2. Let $f \in E_M(G, \omega)$. Then by the proof of Theorem 4 we have $T(f_0^+) = f$. Since the operator $T : E_M(\mathbb{D}, \omega_0) \to E_M(G, \omega)$ is linear, bounded, one-to-one and onto, the operator $T^{-1} : E_M(G, \omega) \to E_M(\mathbb{D}, \omega_0)$ is linear and bounded. We take a $p_n^* \in \mathcal{P}_n$ as the best approximating algebraic polynomial to f in $E_M(G, \omega)$, i.e.,

$$E_n(f,G)_{M,\omega} = \|f - p_n^*\|_{L_M(\Gamma,\omega)}.$$

(There exists such a unique polynomial p_n^* of \mathcal{P}_n , see, for example, [4, p. 59]). Then $T^{-1}(p_n^*) \in \mathcal{P}_n(\mathbb{D})$ and therefore

$$\begin{aligned} &(3.2)\\ &E_n\left(f_0^+,\mathbb{D}\right)_{M,\omega_0} \le \left\|f_0^+ - T^{-1}\left(p_n^*\right)\right\|_{L_M(\mathbb{T},\omega_0)} = \left\|T^{-1}\left(f\right) - T^{-1}\left(p_n^*\right)\right\|_{L_M(\mathbb{T},\omega_0)} \\ &= \left\|T^{-1}\left(f - p_n^*\right)\right\|_{L_M(\mathbb{T},\omega_0)} \le \left\|T^{-1}\right\| \left\|f - p_n^*\right\|_{L_M(\Gamma,\omega)} \\ &= \left\|T^{-1}\right\| E_n\left(f,G\right)_{M,\omega}, \end{aligned}$$

because the operator T^{-1} is bounded.

On the other hand, from [14] we have

$$\Omega_{M,\omega_0}^r \left(f_0^+, \frac{1}{n} \right) \le \frac{c_{16}}{n^{2r}} \left\{ E_0 \left(f_0^+, \mathbb{D} \right)_{M,\omega_0} + \sum_{k=1}^n k^{2r-1} E_k \left(f_0^+, \mathbb{D} \right)_{M,\omega_0} \right\}$$

 $r = 1, 2, \ldots$

The last inequality and (3.2) imply that

$$\Omega_{\Gamma,M,\omega}^{r}\left(f,\frac{1}{n}\right) = \Omega_{M,\omega_{0}}^{r}\left(f_{0}^{+},\frac{1}{n}\right)$$

$$\leq \frac{c_{16}}{n^{2r}}\left\{E_{0}\left(f_{0}^{+},\mathbb{D}\right)_{M,\omega_{0}} + \sum_{k=1}^{n}k^{2r-1}E_{k}\left(f_{0}^{+},\mathbb{D}\right)_{M,\omega_{0}}\right\}$$

$$\leq \frac{c_{16}\left\|T^{-1}\right\|}{n^{2r}}\left\{E_{0}\left(f,G\right)_{M,\omega} + \sum_{k=1}^{n}k^{2r-1}E_{k}\left(f,G\right)_{M,\omega}\right\},$$

$$= 1, 2, \dots$$

 $r = 1, 2, \ldots$

Acknowledgements. The authors are indebted to Dr. Ali Guven for constructive discussions and also to referees for valuable suggestions.

> BALIKESIR UNIVERSITY FACULTY OF ARTS AND SCIENCES DEPARTMENT OF MATHEMATICS 10145, Balikesir, Turkey e-mail: mdaniyal@balikesir.edu.tr rakgun@balikesir.edu.tr

References

- [1] J-E. Andersson, On the degree of polynomial approximation in $E^p(D)$, J. Approx. Theory **19** (1977), 61–68.
- [2] D. W. Boyd, Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18 (1967), 215–219.
- [3] A. Böttcher and Yu. I. Karlovich, Carleson curves, Muckenhoupt weights, and Toeplitz operators, Progress in Mathematics 154, Birkhäuser Verlag, 1997.
- [4] R. A. DeVore and G. G. Lorentz, *Constructive approximation*, Springer-Verlag, 1993.
- [5] P. L. Duren, Theory of H^p spaces, Academic Press, 1970.
- [6] D. Gaier, Lectures on complex approximation, Birkhäuser, 1987.
- [7] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr. 26, R. I., AMS, Providence, 1969.
- [8] A. Guven and D. M. Israfilov, Polynomial approximation in Smirnov-Orlicz classes, Comput. Methods Funct. Theory 2-2 (2002), 509–517.
- [9] _____, Rational approximation in Orlicz spaces on Carleson curves, Bull. Belg. Math. Soc. Simon Stevin 12-2 (2005), 223–234.
- [10] E. A. Haciyeva, Investigation the properties of the functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces, Author's summary of candidates dissertation, Tbilisi, (Russian), 1986.
- [11] D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E^p(G, \omega)$ and the Bieberbach polynomials, Constr. Approx. 17-3 (2001), 335–351.
- [12] _____, Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54-3 (2004), 751–765.
- [13] D. M. Israfilov and A. Guven, Approximation in weighted Smirnov classes, East J. Approx. 11-1 (2005), 91–102.
- [14] _____, Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174-2 (2006), 147–168.
- [15] D. M. Israfilov, B. Oktay and R. Akgun, Approximation in Smirnov-Orlicz classes, Glasnik Matematički 40-1 (2005), 87–102.
- [16] A. Yu. Karlovich, Algebras of singular integral operators with piecewise coefficients on reflexive Orlicz spaces, Math. Nachr. 179 (1996), 187–222.

- [17] _____, Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights, J. Operator Theory 47 (2002), 303–323.
- [18] V. M. Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia Math. 31 (1968), 43–59.
- [19] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985), 1–49.
- [20] W. Matuszewska and W. Orlicz, On certain properties of φ -functions, Bull. Acad. Polon. Sci., Ser. Math. Aster. et Phys. 8-7 (1960), 439–443.
- [21] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 167 (1972), 207–226.
- [22] Ch. Pommerenke, Boundary behavior of conformal maps, Springer-Verlag, 1992.
- [23] P. K. Suetin, Series of Faber polynomials, Gordon and Breach, 1, Reading, 1998.
- [24] S. E. Warschawski, Über das Ranverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Z. 35 (1932), 321–456.
- [25] M. Wehrens, Best approximation on the unit sphere in \mathbb{R}^n , Proc. Conf. Oberwolfach. August, 9-16, Basel e. a. pp. 233–245, Funct. Anal. Approx., 1981.