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Approximation in weighted Smirnov-Orlicz
classes

By

Daniyal M. Israfilov and Ramazan Akgün

Abstract

In this work some direct and inverse theorems of approximation
theory in the weighted Smirnov-Orlicz classes, defined in the domains
with a Dini-smooth boundary, are proved. In particular, a constructive
characterization of the generalized Lipschitz classes Lip∗α (M, ω), α > 0,
is obtained.

1. Introduction and main results

Let Γ ⊂ C be a closed bounded rectifiable Jordan curve in the complex
plane C. Γ separates the plane C into two domains G := intΓ, G− := extΓ.
Without loss of generality we may assume 0 ∈ G. Let D := {w ∈ C : |w| < 1},
T := ∂D, D

− := extT and w = ϕ (z) be the conformal mapping of G− onto D
−

normalized by the conditions

ϕ (∞) = ∞, lim
z→∞ ϕ (z) /z > 0,

and let ψ := ϕ−1 be the inverse mapping of ϕ.
By Ep (G), 0 < p <∞, we denote the Smirnov class of analytic functions

in G. Every function in Ep (G), 1 ≤ p < ∞, has the non-tangential boundary
values almost everywhere (a. e.) on Γ and the boundary function belongs to
Lebesgue space Lp (Γ) [7, p. 438].

Let h be a continuous function on [0, 2π]. Its modulus of continuity is
defined by

ω (t, h) := sup{|h (t1) − h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t}, t ≥ 0.

The function h is called Dini-continuous if

π∫
0

ω (t, h)
t

dt <∞.
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The curve Γ is called Dini-smooth if it has a parametrization

Γ : ϕ0 (τ ) , 0 ≤ τ ≤ 2π

such that ϕ′
0 (τ ) is Dini-continuous and ϕ′

0 (τ ) �= 0 [22, p. 48].
When Γ is Dini-smooth, [24] asserts that

(1.1)
0 < c1 ≤ |ψ′ (w)| ≤ c2, |w| ≥ 1,

0 < c3 ≤ |ϕ′ (z)| ≤ c4, z ∈ G−,

for some constants c1, c2 and c3, c4 independent of w and z, respectively.
A continuous and convex function M : [0,∞) → [0,∞) which satisfies the

conditions

M (0) = 0; M (x) > 0 for x > 0;
lim
x→0

(M (x) /x) = 0; lim
x→∞ (M (x) /x) = ∞,

is called an N -function.
The complementary N -function to M is defined by

N (y) := max
x≥0

(xy −M (x)) , y ≥ 0.

We denote by LM (Γ) the linear space of Lebesgue measurable functions f :
Γ → C satisfying the condition∫

Γ

M [α |f (z)|] |dz| <∞

for some α > 0.
The space LM (Γ) becomes a Banach space with the Luxemburg norm

‖f‖L(M)(Γ) := inf {τ > 0 : ρ (f/τ ;M) ≤ 1},

and also with the Orlicz norm

‖f‖LM (Γ) := sup



∫
Γ

|f (z) g (z)| |dz| : g ∈ LN (Γ) ; ρ (g;N) ≤ 1


,

where N is the complementary N -function to M and

ρ (g;N) :=
∫
Γ

N [|g (z)|] |dz| .

The Banach space LM (Γ) is called Orlicz space.
A function ω is called a weight on Γ if ω : Γ → [0,∞] is measurable and

ω−1 ({0,∞}) has measure zero (with respect to Lebesgue measure).
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The class of measurable functions f defined on Γ and satisfying the con-
dition ωf ∈ LM (Γ) is called weighted Orlicz space LM (Γ, ω) with the norm

‖f‖LM (Γ,ω) := ‖fω‖LM (Γ) .

For z ∈ Γ and ε > 0 let Γ (z, ε) denotes the portion of Γ contained in the
open disc of radius ε and centered at z, i.e. Γ (z, ε) := {t ∈ Γ : |t− z| < ε}.

For fixed p ∈ (1,∞), we define q ∈ (1,∞) by p−1 + q−1 = 1. The set of all
weights ω : Γ → [0,∞] satisfying the relation

sup
t∈Γ

sup
ε>0

(
1
ε

∫
Γ(z,ε)

ω (τ )p |dτ |
)1/p(

1
ε

∫
Γ(z,ε)

ω (τ )−q |dτ |
)1/q

<∞

is denoted by Ap (Γ).
We denote by Lp (Γ, ω) the set of all measurable functions f : Γ → C such

that |f |ω ∈ Lp (Γ), 1 < p <∞.
Let M−1 : [0,∞) → [0,∞) be the inverse function of the N -function M .

The lower and upper indices αM , βM [3, p. 350]

αM := lim
x→0

log �(x)
log x

, βM := lim
x→∞

log �(x)
log x

of the function

� : (0,∞) → (0,∞], �(x) := lim sup
y→∞

M−1 (y)
M−1 (y/x)

, x ∈ (0,∞),

first considered by W. Matuszewska and W. Orlicz [20], are called the Boyd
indices of the Orlicz space LM (Γ). It is well known that 0 ≤ αM ≤ βM ≤ 1.
For this and other properties of Boyd indices of Orlicz spaces we refer to [19].

The indices αM , βM are called nontrivial if 0 < αM and βM < 1.

Definition 1. For a weight ω on Γ we denote by EM (G,ω) the sub-
class of analytic functions of E1 (G) whose boundary value functions belong to
weighted Orlicz space LM (Γ, ω).

The weighted Smirnov-Orlicz class EM (G,ω) is a generalization of the
Smirnov class Ep (G). In particular, if M (x) := xp, 1 < p < ∞, then the
weighted Smirnov-Orlicz class EM (G,ω) coincides with the weighted Smirnov
class Ep (G,ω); if ω := 1, then EM (G,ω) coincides with the Smirnov-Orlicz
class EM (G), defined in [18].

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ). The functions f+ and
f− defined by

f+ (z) =
1

2πi

∫
Γ

f (ς)
ς − z

dς, z ∈ G,

and

f− (z) =
1

2πi

∫
Γ

f (ς)
ς − z

dς, z ∈ G−,
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are analytic in G and G−, respectively and f− (∞) = 0.

For g ∈ LM (T, ω) we set

σ
h

(g) (w) :=
1
2h

h∫
−h

g
(
weit

)
dt, 0 < h < π, w ∈ T.

If αM and βM are nontrivial and ω ∈ A 1
αM

(T)∩A 1
βM

(T), then by [14] we have

(1.2) ‖σ
h

(g)‖LM (T,ω) ≤ c5 ‖g‖LM (T,ω),

and consequently σ
h

(g) ∈ LM (T, ω) for any g ∈ LM (T, ω).

Definition 2. Let αM and βM be nontrivial and ω ∈ A 1
αM

(T)∩
A 1

βM

(T). The function

Ωr
M,ω (g, δ) := sup

0<hi≤δ
i=1,2,...,r

∥∥∥∥∥
r∏

i=1

(
I − σ

hi

)
g

∥∥∥∥∥
LM (T,ω)

, δ > 0, r = 1, 2, . . .

is called rth modulus of smoothness of g ∈ LM (T, ω), where I is the identity
operator.

Note that in case of weighted Lebesgue spaces Lp (T, ω) this definition
originates from [25] (see also [10], [11], [12]).

It is easily verified that the function ΩM,ω (g, ·) is continuous, non-negative
and satisfy

lim
δ→0

Ωr
M,ω (g, δ) = 0, Ωr

M,ω (g + g1, ·) ≤ Ωr
M,ω (g, ·) + Ωr

M,ω (g1, ·)

for g, g1 ∈ LM (T, ω).
Let ω0 (w) := ω(ψ (w)) and f0(w) := f(ψ (w)) for a weight ω on Γ, f ∈

LM (Γ, ω) and w ∈ T. By (1.1) we have f0 ∈ LM (T, ω0) for f ∈ LM (Γ, ω).
Using the nontangential boundary values of f+

0 on T we define the rth modulus
of smoothness of f ∈ LM (Γ, ω) as

Ωr
Γ,M,ω (f, δ) := Ωr

M,ω0

(
f+
0 , δ

)
, δ > 0,

for r = 1, 2, 3, . . . .
Let

En (f,G)M,ω := inf
P∈Pn

‖f − P‖LM (Γ,ω)

be the best approximation to f ∈ EM (G,ω) in the class Pn of algebraic poly-
nomials of degree not greater than n.

When r = 1 and Γ is a Carleson curve, some direct theorems of the ap-
proximation theory in the Smirnov-Orlicz and Orlicz classes are given in [8],
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[9]. One direct theorem in the Smirnov-Orlicz classes EM (G), defined on the
domains with a Dini-smooth boundary, is obtained in [15]. The inverse prob-
lems of approximation theory in these domains have been investigated by V.
M. Kokilashvili [18]. Note that the modulus of smoothness used in these works
are constructed by applying the usual shift f0

(
ei(t+h)

)
, h ∈ [0, 2π], for f0

(
eit
)
.

In this work we prove some direct and inverse theorems in the weighted
Smirnov-Orlicz classes. In particular, we obtain a constructive characterization
of the generalized Lipschitz classes Lip∗α (M,ω), α > 0. Since the usual shift,
in general, is noninvariant in the weighted Orlicz classes, we use the modulus of
smoothness Ωr

Γ,M,ω (f, ·), constructed with respect to the mean value operator
σh.

The main results of this work are the following.

Theorem 1. Let G be a bounded simply connected domain with a Dini-
smooth boundary Γ and let LM (Γ) be an Orlicz space with nontrivial indices
αM , βM and ω ∈ A 1

αM

(Γ)∩A 1
βM

(Γ). If f ∈ EM (G,ω), then for every natural
number n,

En (f,G)M,ω ≤ c6 Ωr
Γ,M,ω

(
f,

1
n+ 1

)
, r = 1, 2, 3, . . .

with some constant c6 > 0 independent of n.

Theorem 2. Let G be a bounded simply connected domain with a Dini-
smooth boundary Γ and let EM (G,ω) be a weighted Smirnov-Orlicz class with
nontrivial indices αM , βM . If ω ∈ A 1

αM

(Γ) ∩ A 1
βM

(Γ) and f ∈ EM (G,ω),
then

Ωr
Γ,M,ω

(
f,

1
n

)
≤ c7
n2r

{
E0 (f,G)M,ω +

n∑
k=1

k2r−1Ek (f,G)M,ω

}
,

r = 1, 2, 3, . . . ,

with some constant c7 > 0 independent of n.

Corollary 1. Under the conditions of Theorem 2, if

En (f,G)M,ω = O (n−α
)
, α > 0, n = 1, 2, 3, . . . ,

then

Ωr
Γ,M,ω (f, δ) =



O (δα) ; r > α/2
O (δα log 1

δ

)
; r = α/2

O (δ2r
)

; r < α/2

for f ∈ LM (Γ, ω).

Definition 3. For α > 0 let r :=
[

α
2

]
+ 1. The set of functions f ∈

EM (G,ω) such that

Ωr
Γ,M,ω (f, δ) = O (δα), δ > 0

is called the generalized Lipschitz class Lip∗α (M,ω).
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According to Corollary 1 we have the following.

Corollary 2. Under the conditions of Theorem 2, if

En (f,G)M,ω = O (n−α
)
, α > 0, n = 1, 2, 3, . . . ,

then f ∈ Lip∗α (M,ω).

Theorem 1 and Corollary 2 imply the following.

Theorem 3. If α > 0, then under the conditions of Theorem 2, the
following conditions are equivalent:

(a) f ∈ Lip∗α (M,ω)
(b) En (f) = O (n−α), n = 1, 2, 3, . . . .

In the case of weighted Smirnov classes Ep (G,ω) the analogues results are
proved in the papers [11], [13].

Throughout this work by c, c1, c2, . . . , we denote the constants which are
different in different places.

2. Auxiliary results

Let Γ be a rectifiable Jordan curve, f ∈ L1 (Γ) and let

(SΓf) (t) := lim
ε→0

1
2πi

∫
Γ\Γ(t,ε)

f (ς)
ς − t

dς, t ∈ Γ

be Cauchy’s singular integral of f . The linear operator SΓ : f → SΓf is called
the Cauchy singular operator.

If one of the functions f+ or f− has the non-tangential limits a. e. on Γ,
then SΓf (z) exist a. e. on Γ and also the other one has non-tangential limits
a. e. on Γ. Conversely, if SΓf (z) exist a. e. on Γ, then both functions f+ and
f− have non-tangential limits a. e. on Γ. In both cases, the formulae

f+ (z) = (SΓf) (z) + f (z) /2,

f− (z) = (SΓf) (z) − f (z) /2,
(2.1)

and hence

f = f+ − f−

holds a. e. on Γ (see, e.g., [7, p. 431]).

Lemma 1. Let 0 < αM , βM < 1, ω ∈ A 1
αM

(Γ) ∩ A 1
βM

(Γ) and f ∈
LM (Γ, ω). Then f+ ∈ EM (G,ω) and f− ∈ EM (G−, ω).
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Proof. Let f ∈ LM (Γ, ω). By [3, p. 58, Th. 2.31] there exist p, q ∈ (1,∞)
such that 1 < p < 1/βM ≤ 1/αM < q <∞, and ω ∈ Ap (Γ)∩Aq (Γ). Then [16,
Th. 2.5] we have

Lq (Γ) ⊂ LM (Γ) ⊂ Lp (Γ),

where the inclusion maps being continuous, and therefore f ∈ Lp (Γ, ω). Now
using Lemmas 2 and 3 of [11] we get

f+ ∈ E1 (G) and f− ∈ E1
(
G−).

Hence, using the relations (2.1) which hold a. e. on Γ, and the boundedness of
the singular operator SΓ in weighted Orlicz spaces [17, Th. 4.5], we conclude
that

f+ ∈ LM (Γ, ω) , f− ∈ LM (Γ, ω)

and the assertion follows.

Lemma 2. Let 0 < αM , βM < 1, ω ∈ A 1
αM

(T) ∩ A 1
βM

(T) and g ∈
EM (D, ω). If

∑n
k=0 αkw

k is the nth partial sum of the Taylor series of the
function g at the origin, then there exists a constant c8 > 0 such that∥∥∥g (w) −

∑n

k=0
αkw

k
∥∥∥

LM (T,ω)
≤ c8 Ωr

M,ω

(
g,

1
n+ 1

)

for every natural number n.

This result was proved in [14, Theorem 3].

The Faber polynomials Φk (z), k = 0, 1, 2, 3, . . ., associated with G∪Γ, are
defined through the expansion

(2.2)
ψ′ (w)

ψ (w) − z
=

∞∑
k=0

Φk (z)
wk+1

, z ∈ G, w ∈ D
−,

and the equalities

Φk (z) =
1

2πi

∫
T

wkψ′ (w)
ψ (w) − z

dw, z ∈ G,(2.3)

Φk (z) = ϕk (z) +
1

2πi

∫
Γ

ϕk (ς)
ς − z

dς, z ∈ G−,(2.4)

hold [23, p. 34].
If f ∈ EM (G,ω), then by definition f ∈ E1 (G) and hence

f (z) =
1

2πi

∫
Γ

f (ς)
ς − z

dς

=
1

2πi

∫
T

f (ψ (w))
ψ′ (w)

ψ (w) − z
dw, z ∈ G.
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Here, taking the relation (2.2) into account, we have

f (z) ∼

∞∑
k=0

akΦk (z) , z ∈ G

where

ak := ak (f) :=
1

2πi

∫
T

f (ψ (w))
wk+1

dw, k = 0, 1, 2, . . . .

This series is called the Faber series of f ∈ EM (G,ω) and the values ak,
k = 0, 1, 2, . . . are called the Faber coefficients of f . Let Sn (f, ·) :=

∑n
k=0 akΦk

be the nth partial sum of the Faber expansion of the function f ∈ EM (G,ω).

Let P := {all polynomials (with no restriction on the degree)}, P (D) :=
{traces of all members of P on D} and let

T (P ) (z) :=
1

2πi

∫
T

P (w)ψ′ (w)
ψ (w) − z

dw, z ∈ G

be an operator T defined on P (D).
Then by (2.3)

T

(
n∑

k=0

bkw
k

)
=

n∑
k=0

bkΦk (z), z ∈ G.

If z′ ∈ G, then

T (P ) (z′) =
1

2πi

∫
T

P (w)ψ′ (w)
ψ (w) − z′

dw =
1

2πi

∫
Γ

(P ◦ ϕ) (ς)
ς − z′

dς

= (P ◦ ϕ)+ (z′),

which by (2.1) implies that

(2.5) T (P ) (z) = SΓ (P ◦ ϕ) (z) +
1
2

(P ◦ ϕ) (z)

a. e. on Γ.
As in the proof of Lemma 1, there exist p, q ∈ (1,∞) such that 1 < p <

1/βM ≤ 1/αM < q <∞, ω ∈ Ap (Γ) ∩Aq (Γ) and the inclusions

Lq (Γ) ⊂ LM (Γ) ⊂ Lp (Γ)

hold. Then P ◦ ϕ ∈ Lq (Γ, ω), for any polynomial P , and hence P ◦ ϕ ∈
LM (Γ, ω). Since SΓ is bounded [17, Th. 4.5] in LM (Γ, ω), from (2.5) we have
that T (P ) ∈ LM (Γ, ω) for every P ∈ P (D). The property T (P ) ∈ E1 (G) can
be obtained from continuity of P ◦ ϕ. Hence we obtain T (P ) ∈ EM (G,ω) for
every P ∈ P (D).

Therefore, we get the following result.
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Lemma 3. If Γ is a Dini-smooth curve, 0 < αM , βM < 1 and ω ∈
A 1

αM

(Γ) ∩A 1
βM

(Γ), then the linear operator

T : P (D) → EM (G,ω)

is bounded.

Extending the operator T from P (D) to the space EM (D, ω0) as a linear
and bounded operator, for the extension T : EM (D, ω0) → EM (G,ω), we have
the representation

T (g) (z) :=
1

2πi

∫
T

g (w)ψ′ (w)
ψ (w) − z

dw, z ∈ G, g ∈ EM (D, ω0).

Theorem 4. If Γ is a Dini-smooth curve, 0 < αM , βM < 1 and ω ∈
A 1

αM

(Γ) ∩A 1
βM

(Γ), then the operator

T : EM (D, ω0) → EM (G,ω)

is one-to-one and onto.

Proof. Let g ∈ EM (D, ω0) with the Taylor expansion

g (w) :=
∞∑

k=0

αkw
k, w ∈ D.

It is easily seen that if Γ is Dini-smooth, then the conditions ω ∈ A 1
αM

(Γ),
ω0 ∈ A 1

αM

(T) and also ω ∈ A 1
βM

(Γ), ω0 ∈ A 1
βM

(T) are equivalent. Since
ω0 ∈ A 1

αM

(T) ∩ A 1
βM

(T), by the proof of Theorem 4.5 of [17] there exist
p, q ∈ (1,∞) such that

1 < p < 1/βM ≤ 1/αM < q <∞ and ω0 ∈ Ap (T) ∩Aq (T),

and then, by [16, Th. 2.5],

Lq (T) ⊂ LM (T) ⊂ Lp (T),

where inclusion maps being continuous.
Let gr (w) := g (rw), 0 < r < 1. Since g ∈ E1 (D) is the Poisson integral

of its boundary function [5, p. 41], using [21, Th. 10] and Boyd interpolation
theorem [2], we get

‖gr − g‖LM (T,ω0)
=
∥∥g (reiθ

)− g
(
eiθ
)∥∥

LM ([0,2π],ω0)
→ 0, as r → 1−.
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Therefore, the boundedness of the operator T implies that

(2.6) ‖T (gr) − T (g)‖LM (Γ,ω) → 0, as r → 1−.

Since the series
∑∞

k=0 αkw
k is uniformly convergent for |w| = r < 1, the series∑∞

k=0 αkr
kwk is uniformly convergent on T, and hence

T (gr) (z′) =
1

2πi

∫
T

gr (w)ψ′ (w)
ψ (w) − z′

dw =
∑∞

m=0
αmr

m 1
2πi

∫
T

wmψ′ (w)
ψ (w) − z′

dw

=
∞∑

m=0

αmr
mΦm (z′) , z′ ∈ G.

Now, taking the limit as z′ → z ∈ Γ along all non-tangential paths inside Γ, we
obtain

T (gr) (z) =
∞∑

m=0

αmr
mΦm (z), z ∈ Γ.

From the last equality and Lemma 3 of [6, p. 43] for the Faber coefficients
ak (T (gr)) we have

ak (T (gr)) =
1

2πi

∫
T

T (gr) (ψ (w))
wk+1

dw

=
1

2πi

∫
T

∑∞
m=0 αmr

mΦm (ψ (w))
wk+1

dw

=
∞∑

m=0

αmr
m 1

2πi

∫
T

Φm (ψ (w))
wk+1

dw = αkr
k

and therefore

(2.7) ak (T (gr)) → αk, as r → 1−.

Now applying (1.1), Hölder’s inequality and Theorem 2.1 of [17], respectively,
we obtain
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|ak (T (gr)) − ak (T (g))| =

∣∣∣∣∣∣
1

2πi

∫
T

[T (gr) − T (g)] (ψ (w))
wk+1

dw

∣∣∣∣∣∣
≤ 1

2π

∫
T

|[T (gr) − T (g)] (ψ (w))| |dw|

=
1
2π

∫
Γ

|[T (gr) − T (g)] (z)| |ϕ′ (z)| |dz|

≤ c11
2π

∫
Γ

|[T (gr) − T (g)] (z)| |dz|

=
c11
2π

∫
Γ

|[T (gr) − T (g)] (z)|ω (z)ω−1 (z) |dz|

≤ c11
2π

‖(T (gr) − T (g))ω (z)‖LM (Γ)

∥∥ω−1 (·)∥∥
LN (Γ)

≤ c12
2π

‖T (gr) − T (g)‖LM (Γ,ω).

From the last inequality and (2.6) we get

ak (T (gr)) → ak (T (g)), as r → 1−,

and then by (2.7) ak (T (g)) = αk, k = 0, 1, 2, . . . . If T (g) = 0, then αk =
ak (T (g)) = 0, k = 0, 1, 2, . . ., and therefore g = 0. This means that the
operator T is one-to-one.

Now we take a function f ∈ EM (G,ω) and consider the function f0 =
f ◦ ψ ∈ LM (T, ω0). The Cauchy type integral

1
2πi

∫
T

f0 (τ )
τ − w

dτ

represents analytic functions f+
0 and f−0 in D and D−, respectively. Since

ω0 ∈ A 1
αM

(T) ∩A 1
βM

(T), by Lemma 1, we have

f+
0 ∈ EM (D, ω0) and f−0 ∈ EM

(
D

−, ω0

)
,

and for the non-tangential boundary values we get

f+
0 (w) = ST (f0) (w) +

1
2
f0 (w),

f−0 (w) = ST (f0) (w) − 1
2
f0 (w).

Therefore

(2.8) f0 (w) = f+
0 (w) − f−0 (w)
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holds a. e. on T and f−0 (∞) = 0. For the Faber coefficients ak of f we get

ak =
1

2πi

∫
T

f0 (w)
wk+1

dw

=
1

2πi

∫
T

f+
0 (w)
wk+1

dw − 1
2πi

∫
T

f−0 (w)
wk+1

dw.

Since the function f−0 belongs to E1 (D−), the second integral vanishes and
hence the values {ak}∞k=0 also become the Taylor coefficients of the function
f+
0 at the origin, namely,

f+
0 (w) =

∞∑
k=0

akw
k, w ∈ D.

From the first part of the proof we get

T
(
f+
0

)
�

∞∑
k=0

akΦk.

Since there is no two different functions in EM (G,ω) that have the same Faber
coefficients [1], we conclude that T

(
f+
0

)
= f . Therefore, the operator T is

onto.

3. Proofs of main results

Proof of Theorem 1. Let f ∈ EM (G,ω). Then f0 ∈ LM (T, ω0). Accord-
ing to (2.8)

(3.1) f (ς) = f+
0 (ϕ (ς)) − f−0 (ϕ (ς))

a. e. on Γ and ∫
Γ

f (ς)
ς − z′

dς = 0, z′ ∈ G−

because f ∈ E1 (G).
Now let z′ ∈ G−. Using (2.4) we have

n∑
k=0

akΦk (z′) =
n∑

k=0

akϕ
k (z′) +

1
2πi

∫
Γ

∑n
k=0 akϕ

k (ς)
ς − z′

dς

=
n∑

k=0

akϕ
k (z′) +

1
2πi

∫
Γ

∑n
k=0 akϕ

k (ς)
ς − z′

dς − 1
2πi

∫
Γ

f (ς)
ς − z′

dς

=
n∑

k=0

akϕ
k (z′) +

1
2πi

∫
Γ

∑n
k=0 akϕ

k (ς)
ς − z′

dς

− 1
2πi

∫
Γ

f+
0 (ϕ (ς))
ς − z′

dς +
1

2πi

∫
Γ

f−0 (ϕ (ς))
ς − z′

dς.
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Since

1
2πi

∫
Γ

f−0 (ϕ (ς))
ς − z′

dς = −f−0 (ϕ (z′)) ,

we get

n∑
k=0

akΦk (z′) =
1

2πi

∫
Γ

∑n
k=0 akϕ

k (ς) − f+
0 (ϕ (ς))

ς − z′
dς

+
n∑

k=0

akϕ
k (z′) − f−0 (ϕ (z′)) .

Hence, taking the limit as z′ → z along all non-tangential paths outside Γ, we
obtain

n∑
k=0

akΦk (z) = −1
2

(
n∑

k=0

akϕ
k (z) − f+

0 (ϕ (z))

)
+ SΓ

[
n∑

k=0

akϕ
k − (f+

0 ◦ ϕ)
]

+
n∑

k=0

akϕ
k (z) − f−0 (ϕ (z))

=
1
2

(
n∑

k=0

akϕ
k (z) − f+

0 (ϕ (z))

)
+
[
f+
0 (ϕ (z)) − f−0 (ϕ (z))

]

+ SΓ

[
n∑

k=0

akϕ
k − (f+

0 ◦ ϕ)
]

a. e. on Γ. Using (3.1), (1.1), Minkowski’s inequality and the boundedness of
SΓ we get

‖f − Sn (f, ·)‖LM (Γ, ω)

=

∥∥∥∥∥1
2

(
n∑

k=0

akϕ
k (z) − f+

0 (ϕ (z))

)
+ SΓ

[
n∑

k=0

akϕ
k − (f+

0 ◦ ϕ)
]∥∥∥∥∥

LM (Γ,ω)

≤ c13

∥∥∥∥∥
n∑

k=0

akϕ
k (z) − f+

0 (ϕ (z))

∥∥∥∥∥
LM (Γ,ω)

≤ c14

∥∥∥∥∥f+
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
LM (T,ω0)

.

On the other hand, from the proof of Theorem 4 we know that the Faber
coefficients of the function f and the Taylor coefficients of the function f+

0 at
the origin are the same. Then taking Lemma 2 into account, we conclude that

En (f,G)M,ω ≤ ‖f − Sn (f, ·)‖LM (Γ,ω) ≤ c15 Ωr
Γ,M,ω

(
f,

1
n+ 1

)
.
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Proof of Theorem 2. Let f ∈ EM (G,ω). Then by the proof of Theorem 4
we have T

(
f+
0

)
= f . Since the operator T : EM (D, ω0) → EM (G,ω) is linear,

bounded, one-to-one and onto, the operator T−1 : EM (G,ω) → EM (D, ω0) is
linear and bounded. We take a p∗n ∈ Pn as the best approximating algebraic
polynomial to f in EM (G,ω), i.e.,

En (f,G)M,ω = ‖f − p∗n‖LM (Γ,ω).

(There exists such a unique polynomial p∗n of Pn, see, for example, [4, p. 59]).
Then T−1 (p∗n) ∈ Pn (D) and therefore

En

(
f+
0 ,D

)
M,ω0

≤ ∥∥f+
0 − T−1 (p∗n)

∥∥
LM (T,ω0)

=
∥∥T−1 (f) − T−1 (p∗n)

∥∥
LM (T,ω0)

=
∥∥T−1 (f − p∗n)

∥∥
LM (T,ω0)

≤ ∥∥T−1
∥∥ ‖f − p∗n‖LM (Γ,ω)

=
∥∥T−1

∥∥En (f,G)M,ω,

(3.2)

because the operator T−1 is bounded.
On the other hand, from [14] we have

Ωr
M,ω0

(
f+
0 ,

1
n

)
≤ c16
n2r

{
E0

(
f+
0 ,D

)
M,ω0

+
n∑

k=1

k2r−1Ek

(
f+
0 ,D

)
M,ω0

}

r = 1, 2, . . . .
The last inequality and (3.2) imply that

Ωr
Γ,M,ω

(
f,

1
n

)
= Ωr

M,ω0

(
f+
0 ,

1
n

)

≤ c16
n2r

{
E0

(
f+
0 ,D

)
M,ω0

+
n∑

k=1

k2r−1Ek

(
f+
0 ,D

)
M,ω0

}

≤ c16
∥∥T−1

∥∥
n2r

{
E0 (f,G)M,ω +

n∑
k=1

k2r−1Ek (f,G)M,ω

}
,

r = 1, 2, . . . .
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