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Abstract

Let G be a Jordan smooth domain of bounded boundary rotation, let zoe G, and let w =
¢o(z) be the conformal mapping of G onto D(0,ry) == {w: |w|<ro} with the normalization
0o(z0) =0, ¢(z0) = 1. Let also m,(z),n = 1,2, ..., be the Bieberbach polynomials for the pair
(G,zp). We investigate the uniform convergence of these polynomials on G and prove the
estimate

¢

llog — 7allg = max [#0(2) = m(2) < i

for some constant ¢ = ¢(¢) independent of n.
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1. Introduction and new results

Let G be a finite simply connected domain in the complex plane C bounded by
rectifiable Jordan curve L, and let zo€ G. By the Riemann mapping theorem, there
exists a unique conformal mapping w = ¢,(z) of G onto D(0,r¢) = {w: |w|<ro}
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with the normalization ¢(z9) = 0, ¢((20) = 1. The radius ry of this disc is called the
conformal radius of G with respect to z. Let i, (w) be the inverse to ¢(z). Let also
G =extL,D=D(0,1)={w: |w|<l}, T=0D,D = {w:|w|>1},and let ¢ be
the conformal mapping of G~ onto D~ normalized by

¢(c0) = oo, lim ¢(z)/z>0.

We denote by  the inverse mappings of ¢.
For an arbitrary function f given on G we set

|v&@:/ﬁu@w%

If the function f has a continuous extension to G we use also the uniform norm
1/ 1l = sup{| f(2)],z€ G}

It is well known that the function ¢,(z) minimizes the integral || f ’Hiz(G) in the
class of all functions analytic in G with the normalization f(zo) = 0,/"(z9) = 1. On
the other hand, let I, be the class of all polynomials p, of degree at most n satisfying
the conditions p,(zo) = 0,p,(z0) = 1. Then the integral ||p;,||iz(G) is minimized in IT,
by an unique polynomial 7, which is called the nth Bieberbach polynomial for the
pair (G, zg).

As follows from the results due to Farrel and Markushevich, if G is a
Caratheodory domain, then [[¢y — m,|;,(—0(n—o0) and from this it follows
that m,(z) = ¢y(z)(n— o) for ze G, uniformly on compact subsets of G.

First of all, the uniform convergence of the Bieberbach polynomials in the closed
domain G was investigated by Keldych. He showed [15] that if the boundary L of G
is a smooth Jordan curve with bounded curvature then the following estimate holds
for every ¢>0:

const
oo — n”||G<F'

In [15] the author also gives an example of domains G with a Jordan rectifiable
boundary L for which the appropriate sequence of the Bieberbach polynomials
diverges on a set which is everywhere dense in L.

Furthermore, Mergelyan [16] has shown that the Bieberbach polynomials satisfy

const
||QDO_7'CH||G< 1 (l)
n§7l,

for every ¢>0, whenever L is a smooth Jordan curve.

Therefore, the uniform convergence of the sequence {r,},-, in G and the estimate
of the error ||¢, — m,||¢ depend on the geometric properties of boundary L. If L has
a certain degree of smoothness, this error tends to zero with a certain speed. In the
literature there are sufficiently many results about the uniform convergence of the
Bieberbach polynomials in the closed domains G. In several papers (see, for example,
[1-3,9-11,13-16,18,19,21]) various estimates of the error ||¢, — m,||; and sufficient
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conditions on the geometry of the boundary L are given to guarantee the uniform
convergence of the Bieberbach polynomials on G . Recently the important results in
this area has been obtained by Andrievskii [2,3] and by Gaier [9-11]. In particular
Andrievskii proved the uniform convergence of Bieberbach polynomials in closed
domains with quasiconformal and piecewise-quasiconformal boundary, and Gaier
obtained the results about the uniform convergence of these polynomials in closed
domains with the various boundary constructions and also studied the cases when
the rate of this convergence is quite close to the best possible rate in uniform
polynomial approximation of the conformal mapping ¢,. It should also be pointed
out the recent paper of Andrievskii and Pritsker [4], where they investigated the
uniform convergence in closed domains with certain interior zero angles and
discussed the critical order of tangency at this interior zero angle, separating the
convergent behaviour of Bieberbach polynomials from the divergent one for
sufficiently thin cusps.

But no improvement of the Mergelyan’s estimation (1) in the above cited works,
when the boundary of G is smooth has been observed. However, Mergelyan [16]
stated it as a conjecture that the exponent % — ¢ in (1) could be replaced by 1 —&.

In [14] it has been possible for us to obtain some improvement of the above cited
Mergelyan’s estimation (1). From this result in particular it follows that if G is a
finite domain with a smooth Jordan boundary, then

Inn\2
lpg — mall g < const -~ ) nz2,

which improves estimation (1).

Developing the idea used in [14] we shall prove the above cited Mergelyan’s
conjecture for a smooth domain of bounded boundary rotation.

Our main result states as

Theorem 1. If G is a finite smooth domain of bounded boundary rotation, then for every
&>0 there exists a constant ¢ = c(&g) such that

c
||q00_nn||G<F, n=l1.

We shall use ¢,ci,¢2, ... to denote constants (in general, different in different
relations) depending only on numbers that are not important for the questions of
interest.

2. Auxiliary results

We denote by L”(L) and E”(G) the set of all measurable complex valued functions
such that | /| is Lebesgue integrable with respect to arclength, and the Smirnov class
of analytic functions in G, respectively. Each function /'€ EP(G) has a nontangential
limit almost everywhere (a.e.) on L, and if we use the same notation for the
nontangential limit of f, then fe L7 (L).
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For p>1,L7(L) and EP(G) are Banach spaces with respect to the norm

1/p
1 Wi = 1 ey = < / If(Z)I”IdZI> .

For the further fundamental properties, see [6, pp. 168—185]; [12, pp. 438-453].
For a weight function o given on L, and p>1 we also set

(L) ={feLl'(L):|f oLl (L)},
E'(G,0) = {feE'(G):fel’(L,w)}.

We denote by A,(L) the set of all weight functions  satisfying the Muckenhoupt
condition, i.e.,

p—1
1 1 (-
sup sup 7/ o(¢)|dg| 7/ [@(g)] 1 1)|dg| <o,l<p<oo.
zeL r>0\T"JLAD(zr) ' JLAD(zr)

Definition 1. For ge L? = 7(0,2n), | <p< oo, the function
2n 1/p
op(0) = 0p(0.8) = sup { [T ot 0 g(f

0<h<o

is called the integral modulus of continuity of order p for g.

If
(Up(Q,l)ZO(f%), O<O‘<17
we say that g belongs to the class Af.
Definition 2. Let G be a domain with a smooth boundary L, and let ®(w) =
@6 (W (w)). The function
@, (¢, 0) = sup || ®(we™) = @(w)[| 17y = wp(®@,9), p>1

lh|<o

is called the generalized integral modulus of continuity for ¢} € E”(G).

This definition is correct. Indeed, if 1/py+ 1/go =1 and |h|=0, by virtue of
Holder’s inequality we have

190187y = | 160w

/|(po WPln] = [ loy@P 1o/l

1/po 1/q0
< ( / |<p'o<z>|*”’°|dz|) ( / |<p’<z>|‘f°|dz|) <,

because for the smooth domains ¢, ¢'€ LP(L), for every p>1 [20].
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Without loss of generality, we assume that the conformal radius ry of G with
respect to zo equal to 1. Let yy(e),0<7<2n, be the conformal parametrization of
the smooth boundary L and let $(7) be its tangent direction angle at the point i, (e”).

Definition 3 (See, for example, Pommerenke [17, pp. 63-64]). The domain G is of
bounded boundary rotation if f(z) has bounded variation, i.e. if

2n n
| 1apo) = sup > 1800 - Bia,l <0
v v=1
for all partitions 0 = to<t; <--- <t, = 2m.
The following theorem holds.

Theorem 2. Let G be a finite smooth domain of bounded boundary rotation, and let
p>1. Then

Yo (e eAl
p

for every ¢>0.

Proof. Since L is smooth we have [17, Theorem 3.2, pp. 43-44]

argy(") = (1) =1 -3

for the conformal parametrization and

log ¥ (w) i /Ozneiurw(ﬁ(t)z;r)dt, weD. (2)

C2n et —w

It follows from (2) that

o(w) = o) /02“( o 2(lf(t) — l—g) dt, weD,

n el —w)

and also

") = @/{)h(ﬁ(z) z%)d,(ﬁ), weD. (3)

Since the function

(-~ D=

is periodic, an integration by parts gives

g(w):lﬁg(w)/znd(ﬁ(t)—l—g)’ eD. @
0

T et —w
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Denoting

- 1
"o : R NY) I
My (r, i) = i W (re™)["d

from (4) we have
p 1 2n
Mllj(n 0) = ﬁ/o

and applying Holder’s inequality we find
M (r,yrg)

1 2n ) 1/po 2n P40 1/40
< ([ weenman) (| a) .
0 0

where 1/po + 1/qo = 1. Since L is smooth the first integral is finite and hence

p
do

2n —t—7
l“)(rei()) /0 d(ﬁ(l) J /2>

eit — rei()

et — rei(?

/Z“d(ﬁ(l) —t-7/2)
0

1/q0
2n 2n d(ﬁ(l) - 7[/2) Pqo0
M,[;(Va g) S (/0 /0 it — yeil do
or
1/(pg0)
| dp) — 1 —m/2) ™"
M < A A do .
P(ra '700) &) (/0 A elt — rel()

Applying Minkowski’s inequality to the right side we obtain that

2n 2n 4o 1/(pqo)
vz [ ([ ) 00 - =) (5

Take into account the inequality

m do - 3
0 |eit — relt |17110 = (1 _ r)l’q(hl’

which can be verified easily, from relation (5) we get

2n
M) < [ (g — = /2.
(1 — r) P90

Since G is a domain of bounded boundary rotation, the function () — t — n/2
has bounded variation. This property implies that the last integral is also finite and
then

C
Mp(rv g)< > 1

(] — r)17P110
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Choosing the number ¢¢ > 1 sufficiently close to 1 we have

Cs
Mp(rv g)< 1 ’

(1—n)'%

for every ¢>0.
Now applying the well-known Hardy—Littlewood theorem (see for example [6,

p. 78]) from the last inequality we deduce that yr(e”)e A} .
p—ﬁ

Remark 1. Note that for the smooth domains the statement of Theorem in general
is false.

Indeed, consider the function

2+
l//( )—61V+ZW)7 M/ED.
Then
AT
!///(W) = 6 + Z ﬁ
k=1
Hence

o0
Re /' (w)=6— Zki 1 for weD.
k=1

Thus  is univalent. Furthermore, /' is continuous in D and /' (w) #0. It follows that
the image domain is smoothly bounded.
Now take p = 2. We have

1 it+i i
o [ Wyt a
_ 2k} _ -2 mk—1
Zk“'l "—1] —4zysm (25h).
k= k=1
We choose h = n/2", m=1,2,... . Then

4

A>%’

which is not O(h*) = O(5) for any «>0. O

Theorem 3. Let G be a domain with a smooth boundary L, and let p>1. Then

196 = Su(@0, o1y < cOpre(@, 1/m),



D.M. Israfilov | Journal of Approximation Theory 125 (2003) 116—130 123

for every >0, where

n

Su(pp,z) = Z ar(@y)Fr(z), n=0,1,2, ...
k=0

are the nth partial sums of the Faber series of ¢,.

Proof. As we showed after definition 2, ®e L?(T) for every p>1. Let us consider the
functions @ and ®* defined by

Ot (w) :—L/ () dt, weD
T

2ni JrTt—w

and

O (w) = ! /T(D(T) dt, weD.

2ni JrTt—w

Since ¢( € EP(G) for every p>1, we can associate a formal Faber series

o0

> a9 Fil2),

k=0

with the function ¢, i.e.,

o0

P5(2)~ D a(@h)Filz),

k=0

1 [ ®(1)
ar(¢p) :Z%/der, k=0,1,2,..., (6)

are the Faber coefficients of ¢}.

By well-known Privalov’s Lemma ® =®" - ®~ ae. on 7. Moreover,
O eEF(D),® €EF(D™) and @ (00) = 0. Then from (6) we find

,L/@(f) L/dﬁ(r)—@(r) e
ak((pO)72ni =y drfzm, . g dt = ap(dT).

Namely, the kth Faber coefficient of ¢f € E”(G) is the kth-Taylor’s coefficient of
®" € EP(D) at the origin. On the other hand, the relation ¢f, € E”(G) implies

/ 200 g0, Zea,
L

c—7

and considering the relation ® = ®" — ®~ which holds a.e. on 7 we have the
equality

?0(c) = D" ((c)) — @ ((c)) (7)

a.e.on L.
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Let us take a z’e G~. Since ¢(€E?(G) for p>1, using the well-known integral
representation for the Faber polynomials Fy(z),

k(e
() = o) 45 [ D4

~ /
2ni Jp ¢ — 2

)

and (7) we have

Su(@h?) = 3 ar(oh)Fil2)

k=0
n 1 ! (A~
— ak( /Zk Oak (PO/ ( )dg__/ (PO(‘?)/dg
= 2m c—z 2ni Jp ¢ —z
_ - ar(¢) /Zk —o ( (f’o/ " (c )dg
— 2m c—z

1 OR 1 L
L ((p(c))dHi’ (p(c)) de.
2ni J; ¢— 72 2ni J; ¢—Z

It is easy to verify that ® (¢(¢))e E/(G) for p=1 and @ (¢(o0)) = 0. Then

1[92 (e0)) ,

= —(1)7 /
el R LR (G

and we get

Su(06,2) = ale))e*(2)
=0
+%/ Dot (90) 0" (¢) — @* (0(5))] de—

¢—7

O (p()).

Taking limit as z/ —z along all nontangential paths outside of L,

Sn((/)é),z) :%

f)mmwwww@ﬂ
k=0

+ (@ (p(2)) = @ ((2))] + SL( ar(pf) g — " o <p> (2)

k=0

holds a.e. on L. Further, taking relation (7) into account and applying the
boundedness of the singular operator from L7(L),p>1, into itself and Holder’s
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inequality, respectively, from the last equality we obtain

n
106 = Su(@6, Ny < c6|| P (0(2) = Y a(@f)e*(2)
k=0
n
<ol |@F(w) =) ar(ph)w*
k=0 L (T ')
n
< || @ (w) =Y ap(dH)wk ,
k=0 LPo(T)

20

125

for every po> 1. Now applying the appropriate result from L” approximation (see for
example [5, Theorem 2.3, formula (2.11), p. 205] due to Stechkin) we get

n

O (w) — Z a (D )wk

k=0

<prpo(q’+a 1/n),
170(T)

where

Wy (P, 1/m) = sup ||@F (we™) — O ()| o 1),
[h|<1/n

and find that
190 = Su(@0s NI 1r (1) < Cs@ppy (@F, 1/m).
Since

ot = %CD + S7(®),

a.e. on 7T, from the last two inequality we conclude that
Wpp (@, 1/m)< 3 sup [|®(we'™) — Q)| rro (1)

|| <1/n

+ sup [|S7(®)(we™) — S7(®) ()|l o 7)-

|h|<1/n

On the other hand, since

O 2mi et —w

Sr(®)(w) = (P V)L/der, [w| =1,

and therefore

; 1 [ ®(ce™)
S7(®)(we™) = (PV)%/T Pa— dt, |w|=1,

we have

1

.Eeih _ p
Sr(®)(we™) — Sp(®)(w) = (p.V)_/TM

T—Ww

d
oni o

[w] = 1.
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Now applying the boundedness of the singular operator from L?(T),p>1, into
itself we conclude that

sup ||S7(®)(we™) = ST(@) (W)l ymo 1y <o sup ||@(we™) = @(w)[ 7
|h|<1/n |h|<1/n

1
= CoWpp, ((D’ﬁ>' (10)

Then from (8) to (10) we derive the inequality
oo — Su(@o, ')”U’(L) < capp, (D, 1/n).

Choosing the number py> 1 sufficiently close to 1 we finally from here have

oo — Su(p. )l (1) SCOp(P,1/n). U

Lemma 1. If p>1 and G is a smooth domain of bounded boundary rotation, then

C
@p(®, 1/n) S
o’

for every ¢>0.

Proof. In fact, by Holder’s inequality

1/p
o (we™) — (/m wel HMWWO

1 V4 1/p

( PAPROTCDS) %mwmﬁmo
Valoo (b we™)] = Yaloo I, . "

( %%<wm]wawm'mo

1/(ppo)
< ([ Witoututne] - v foutie)lav])

|dw| 1/(p0)
- </r Voo (W (we)) o [oo (3 (w))] m)
=AB, (11)

where 1/po+1/q9 = 1. Later if 1/p; +1/q; =1, then applying again Holder’s
inequality we get

2 1 J 1/(pqo)
1‘(ﬂw%meyw%wmwww>
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1/(pqop1)
</ AN "’W'>

1 1/(pqoqr)
X . Pq0d1 dw = B]]B12
( AT '>

If 1/p, + 1/¢q> = 1, then by Holder’s inequality

1 1/(paor1)
d
</ |lﬁ0 (PO W(W ‘qupl | W|>
(Z) 1/(pqop1) - 1/(pgop1p2)
-/ wrmcr A mrll) < ([l
1/(pqop142)
T a9
: (/L |w6[§00(2)] ‘1”10171!12 | Z|)

1/(pqop142)
< ¢po (/ |¢6(Z)|PQt>P1q2|dZ|> <, (12)
L

because
¢y, @' €LP(L)

for every p>1 [20]. The finiteness of B, may be proved similarly. Finally, from (11)
and (12) we conclude that

|| (we™) — d(w)||, iy Scndi.
Hence
wp(®,1/n) = sup ||@(we™) — D(w)|| 17
|h|<1/n
1/(ppo)
<an s ([ WhlonwOe )] = iloow Ol )
lh|<1/n

and by virtue of Theorem 2 we have
1

op(@, 1n) etz Sup Ioy(ne")) = g0

Since for a smooth boundary L, the mapping functions ¢, and  belong to the
Holder class on L and on T, respectively, with exponent 1 — ¢, for every ¢>0, from
the last inequality we derive

wp(P,1/n)<

np%*l}
Choosing here the number py > 1 sufficiently close to 1 we get

0p(®,1/n) <~ —

nP
for every e>0. [
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3. Proof of main result

For the mapping ¢, and a weight function w we set

en(@0)y = 10f [[0) = Pallz, 6 Ey (90) = Inf [lgg = pallpair),

EI: ((pé)’ Cl))z = 1}71f ||§06 _pﬂHL2(L,(u)7

where inf is taken over all polynomials p, of degree at most n.

Developing the idea used in [14] we apply a traditional method based on the
extremal property of Bieberbach polynomials and also the inequality connecting the
values ¢,(¢g), and E, (¢, ®), established in [7].

Proof of Theorem 1. Since G is a smooth domain the functions |¢;| and 1/|¢’| belong
to LP(L) for every p>1 by Warschawski and Schober [20, Theorem 3]. Hoélder’s
inequality then gives ¢{eL?(L,1/|¢'|). Hence by definition we have
¢, e E*(G,1/|¢']). On the other hand by Israfilov [14, Lemma 12], 1/|¢'|€ A,(L)
for every p>1. Result [7, Theorem 11, Remark (ii)] now implies that, for ¢{, w =
1/l¢'| and p = 2,

i 1
en(py)y <cisn 2E,; (@6,—,> : (13)
|§0| 2

For the polynomials ¢,(z), best approximating ¢ in the norm || - ||, ), we set

On(2) = [h qn(1) dt,  15(2) = Ou(z) + [I = gu(20)(z — 20)-

Then t,(zo) = 0,,(z0) = 1 and from (13) we obtain
@6 — tll 1 6)

= H(p:J —qn— 1+ Qn(ZO)”LZ(G) <‘911(({)2))2 + 1 = QH(ZO)HLZ(G)

L,(G) (14)

o 1
<o E, (%W) 1o (z0) — an(z0)
2

On the other hand, by the inequality

1/ o)
So——

1/ (z0)] dist(zp, L)
which holds for every analytic function f* with || /||, g < 0, from (14) and (13), we
get

’ ’ Ao ;1 8n(¢6>2 L ;1

190 = llsioy s 25 {0077 ) ¥ Gy, 1y <47 20 (P

According to the extremal property of the polynomials 7, we have

i 1
1) — 1oy < crom 2E; (qfo,m) (1)

2
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Further applying Andrievskii’s [2] polynomial lemma (see also [8], for a simpler
proof and more general result),

1
1allg < c(nm)2||p,ll L, 6)

which holds for every polynomial p, of degree <n with p,(z¢) = 0, and using the
familiar method of Simonenko [18] and Andrievskii [2] (described in detail in [9]),
from (15) we get

1
Inn\2 1
~mllo<eis( ) E; (oh ) -
1o 7'CHHG Clﬁ(n> n(q’o |¢/|>2

and later by Holder’s inequality

B|—

Inn ,
llpo — mallg < c16 T mf s _pﬂHLz(L,l/\q)’\)

n
o)
n 1/2
( )||<p0 Sull 11701120,

Inn
<7

where 1/po + 1/g9 = 1.
Then by virtue of Theorem 3 (in the case of p == 2p,) we have

D=

0o = Sull2L.1/101)

o=

D=

|| —Su ||L2"0(L)7

1
Inn\?2
||<Po—nn||c‘;<cl7(7> ®2py1(®, 1/n), n=2

for every pp>1 and ¢>0. Now applying Lemma 1 (in the case of p = 2py) and
choosing the number p, sufficiently close to 1 we get

Inn 1 ¢
||(P0—”n||c';<c<7> n%iggnl—s' =

D=
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