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ON THE SEQUENCES RELATED TO
FIBONACCI AND LUCAS NUMBERS

NiHAL YiLmaz OzgURr

ABSTRACT. In this paper, we obtain some properties of the se-
quences U and V! introduced in [6]. We find polynomial repre-
sentations and formulas of them. For ¢ = 5, I® is the Fibonacci
sequence F, and V) is the Lucas sequence L.,.

1. Introduction

Hecke groups H (\) are the generalizations of the well-known modular
group
az+b
cz+d

PSL(2,Z):{ ra, b, ¢, deZ, ad—bc:l}.

They are discrete subgroups of PSL(2,R) (the group of orientation pre-
serving isometries of the upper half plane U) generated by two linear
fractional transformations

1
R(z) = - and 7(z) = 2 + A,

where A is a fixed positive real number, [3]. In studying the principal
congruence subgroups of Hecke groups H( V@), ¢ > 5 a prime number,
we need the powers of the transformation S = RT, [7]. In [6], for each g,
two new sequences denoted by U, and V,, were introduced. It has been

shown that
g — [ ~Van-1 —Uan /g
Usn /9 Vopyi ’

g2+l _ [ ~Uzn\ /G —Vonp ‘
Van+1  Usnya\/q

Therefore, these sequences play a very important role in this problem.
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The recurrence relation for U, is
(1) un = (q - 2)2/{71—2 - un—47 n>4

with the initial conditions: Uy =0, U1 =1, Us = 1 and Uz = ¢ — 3. Also
the recurrence relation for V), is

(2) Vn = (q - 2)Vn—2 —Vpg, n 24

with the initial conditions: Vo =2,V; = 1,Vs = ¢—2 and V3 = ¢—1. For
g = 5, U, is the Fibonacci sequence F, and V), is the Lucas sequence
L,. In a sense, U, and V), are the generalizations of Fibonacci and
Lucas sequences. From now on, we denote these sequences by U and
Vi, respectively.

Our problem is to determine for which values of n, the congruence

S™ = £1(modp), p is an odd prime,

holds. For ¢ = 5, the well known properties of Fioonacci and Lucas
sequences are enough to solve the congruence in H (\/5) Therefore,
for all values ¢ > 5 in H(,/g), we need to obtain such properties and
determine formulas of U, and V. In this paper, our aim is to give some
properties of the new sequences (see Section 2). We obtain polynomial
representations and formulas for them (see Section 3). We see that
the sequences Ul and V{ contain a wealth of subtle and fascinating
properties as Fibonacci and Lucas numbers.

Note that, the sequences U;l and V; are not generalized Fibonacci
sequences except for ¢ = 5. For, in [6], it has been shown that

(3) ugn = u2qn—1 + ugn—Q
but

(4) ugn—%—l = (q - 4)ugn + ugn—l‘
Also, '

(5) Vi1 = Vi, + Va1
and

(6) Vgn = (q - 4)Vgn—1 + Vgn—Q‘
In [6], it was also shown that

(7) Vi =Z/IZ+1 +Z/l,ff_1

and

(8) Us,, = UV,
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which are the same well-known properties of Fibonacci and Lucas num-
bers (for more details about the Fibonacci and Lucas numbers one can
consult {1], [2], [4] and [5]). Throughout this paper, we frequently use
the identities given in (3) - (8).

2. Basic properties

In this section, we start a theorem. Afterwards, we develop many
identities.

THEOREM 2.1. Successive terms of Uy, and Vi (except Vg = 2) are
relatively prime.

Proof. Assume that U and U 41 are both divisible by a positive
integer d. Without loss of generahty we can suppose that n is odd. From
(3) we have U | = Ui +U!_,. Then the difference U | — U =U}_,
will also be leHlble by d. As n is odd, from (4) we have

Ul =(g—HUi_, +ul_,

and so U _, = Uq (g — 4) _, will also be divisible by d. Continuing,
we see that d | U _s. d | U]_,, and so on. Finally we must have d | Uj.
Since U3 =1, it is cledr t;hat d = 1. Since the only positive integer which
divides successive terms of Uy is 1, the proof is completed.

The same result can be proved similarly for Vi excluding V§ = 2. O

It is possible to extend U and V;} backward with negative subscripts.
Recwrrences (1) and (2) allow us to do this. For example, from the
equation Uy = (q — 2)UJ — U, = 1, we have U?, = —1. Similarly we
getU?, =1, Z/{ES = g — 3, and so on. Therefore, we can deduce that

(9) ul, = (=1"ug
and similarly
(10) Vi, =(-1)"Vi

Some properties of Fibonacci and Lucas numbers are naturally gen-
eralized to U and VI. We have

(11) Vi1 + Vi = a,

(12) U+ Up g = (0= 2)Uy o
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and
(13) V + Vq+4 = (g~ 2)Vn+2
For the proof of (11), we use induction. For n = 1, we have V{ +Vj =
2+q-2=g=qdf andforn =2, VI +Vi=1+¢g-1 =q = qUj
Suppose that V! _, Vq +1 = qUn. We will show that Vi+V!, , = qU?
From (2) and (1), we have
Vi+ VZ+2 = (@-2Va,—Vig+(@a-2Vi- Vi,
= (@-2)(Vi,+ V) = (Vi + V)
= (¢-2)alhy_y —qUhy_3=q((q—2)Us_, —Up_3)
= quH
The proofs of (12) and (13) are obtained immediately from the recur
rence relations (1) and (2).
For ¢ = 5, we get the well-known formulas L,,.1 + L,11 = BF,

Fn + Fn+4 = 3Fn+2 and Ln + Ln+4 = 3Ln+2, [5]
An interesting property of U] and V{ is the following:

(14) U3+ Uiy = (g = 3)V5.
For the proof, from (7), we have U, , +U;_, = V; and so
(15) (4= 2Upyy +(q—2)Un_y = (@ —2)V].

From (1), we can write U, 5 = (¢ — 2)U,’ b1 —U! | and Un+1 = (q-

2)U!_, — U}l _s. Hence, we have (¢ — 2)U} , = Ul o +U_| and (q -
2)111("_1 = L{q+1 + U] _,. Putting them in (15) we get

Unyz+Un_y +Us o +UL_5 = (¢ —2)V]
Using (7), we obtain
UL+ U+ V= (q—2)VE

and so
Unis+Uy_g=(q—3)V].
For g = 5, we get

(16) Fois+ B3 =2F,.
The following results express properties known for F,, and L,,.
(17) ugn+1 - un—v—lvn—l-l - ugvg

and
(18) V§n+1 =U, +1V +1 + UV

n
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For the proof of (17), by (8) and (3). it is easily deduced that
un-&—lvgz-i-l ugvg = ugn—!—Q o ugn
= Z/[grw-l + ugn - ugn = ugn—%—l'

Now from (17) and (8), we get U3, ; + 2UiVy = UL VI | +UV]
and so

Z/{gn—l-l +2Ugn :Z/{q Vq+1 +quq

Using (4), we have (¢ — U3, + U3, +2U3, = UL VI + UV So
we can write

(q = 20Uy +Usy y —Uspy 5+ Uz o =Us Vi UV
Finally applying (1) and (4), we deduce that
Usp o + Uspy = Uy Vg + UV
and hence using (7) we get
Ving1 =Uni Vi + ULV

Another interesting properties of Uy and Vi are the following:

(19) USUS 5 = UL UL = (=1)" T
and
(20) ViVies = VasiVare = (-1)"¢.

For the proof of (19), without loss of generality, we can assume that n
is odd. Then using (3) we have

uiu?

n+3 -U

niilnyy = U (uq+2 U y) = Un o (U + Uy )
( 11’{24—2 U, un—H)
Using (4), we can repeat the above process on the last line to attain
—Un Uy —Uilhn ) = — [uq ((q — Ui, +Uf)

i ((g—uUi_ +ui y)
(=12 WU U2y~ US_UT)

(=)™ Us — uguf) = (=1
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For the proof of (20), assume that n is even. Similar to the proof of
(19), using (5) and (6), we get

ViViis = VastVaee = ViV +Vi0) = Vi(Vi+ Vi)
= ‘(Vg—1VZ+2 - ngz-{-l)
= ~ Vi ((a—9Vi, +Vi)
Vi ((a=9Vi_ +V, )]
= - [—(VZ—2VZ+1 - VZ—1V3)}
(1)’ (Va_Vai = Vi Vi)
= (=1)"(VgVs - Vivy)
= (=D"Q2-1)-(¢—-2) =(-1)".
We have the following property for U1

(21) ugm+vz - u§m+2ug - UquUZ~2
For n = 0, we have Ug,, = UJ , since Uy = 0 and U?, = —1. For

n =1, we get Us,, ., = Uz, .o — Ug,, which is deduced from (3) since
Ul =land U?, =1.

Now let us assume the identity is true for n = 1,2,3,...,%k and we
will show that it holds for n = £+ 1. By assumption

q — 7744 q q q
u2m+k - u2m+2uk - U2muk—2

and
q Y q q 749
Z’{Qm—f—k—l = Z/{2m+2uk—1 - Z”Zmuk—3'
By (3), if k is odd, the summation of the last two equation gives us

U sgr = Usmao Uy +UL_y) = Uz, Uy +UE_)
which implies
u§m+k+1 = 2qm+2ul(cl+1 - ugmug%l'
If k is even, multiplying Uj,, ., by (¢ —4) and then summing with

q .
Uy, tk_1> WE obtain

(g — 4)u2qm+k + ugm—{-k——l = (¢g— 4)u2qm+2ulg —{q— 4)“3711“13—2
AU Uy — U UL
= u2qm+2((q - 4)“13 + ulg—l)
“‘ugm((q - 4)“13—2 + Z’{IZ—:&)
and by (4) we find

q — 7144 q q q
u2m+k+1 - Z/{2m—$-2blk:—i-1 - u2muk—1’
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Using (21), we get the following result which is well-known for £,
and L,,.

From (21), we have
Ugn = Z’{Zn+2n = uzn—l—?ugn - UZnUQqn-—?
By (8). we get
ugn = ugn (ugn—!—lvgn-l-l - Vgnugn—Q)
and by (7), we find
ugn = ugn [ugn+1(ugn+2 + ugn) - (ugn—i—l + ugn—l)ugn—Q] '
Using (7) and (3), we obtain
ugn = qun [ugn-i—l(qun—i—l + zugn)
— (U + UG, ) U, U3, )]
= ugn [(ugn-i—l)Q + QUgnugn—H - UQqn—%—lugn
+ugn+1u2qn—1 - ugn-lugn + (ugn—l)Q]
- ugn [(ugn—i—l)Q + (Z/{gn—l)2 + ugn—!—lugn—l
+ugnu§n+1 - Mgn—lugn]
= ugn [(u‘gn+1)2 + (ugn—l)2 + Z/l2qn+1ugn—1
+(Z/{2qn—1 + ugn+2)ugn+l - Z’{gn—lZ/{Qqn}
= U, (U, + UG )+ UG, UG, — UG, UG T
Finally by (7) and (19), we get
THEOREM 2.2. U |Ug . for all integers m,n.

Proof. Let m be fixed and we will induct on n. If either m or n equals
zero, then the theorem is true by easy inspection. For n = 1, it is clear
that U | Us .. '

Let us assume that the theorem holds for n = 1,2, ..., k. Using (21),

oo that Y .y — 9 9 _ 309 249
we see that Uy, 1) = Uspiyom = Usmpyollam — UppUoy - By as-
sumption U3, | Ui, and so U3 divides the entire right side of the

equation. Hence U] divides U and the theorem is proved for
q 2m 2m(k+1)

n > 1. Since Ugmn differs from uz2mn by at most a factor of —1, then
Ug. [ug . for n < —1 as well. O
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3. Polynomial representations and formulas

In this section, we find polynomial representations of U and V1. In
particular, for ¢ = 5, we get the polynomial representations of Fibonacci
and Lucas numbers. Next, we obtain formulas for 4 and V.

Let us write out the first 11 terms of U and Vy.

ug Va

Ui =0 V=2

uj=1 Vi=1

U =1 Vi=qg-2

Ui=q-3 Vi=g¢g-1

Ul =q-2 Vi=g¢>—4g+2

Ul =q*>—5q¢+5 Va—q2—3q+1

L{q ¢> —49+3 Vi=¢q*>—6¢"+9g -2

L{q @ =T+ 149 -7 VI = ¢® - 5¢° +6q—1

uq 3—-6q +10g — 4 Vq-q4——8q +20¢% — 16¢ + 2
4 4

L{g-——q —9q +27q —~30g+9 Vi=q¢" -7 +15q -10q+1
Uw—q —8¢% +21¢° —20g+5 VO—-q - 10¢* + 35¢% — 50¢% + 25¢ — 2

Before we find the polynomial representations of U, and Vi, note that
it is easy to see the following identities by straightforward computations:

e (5)(5)-(l) = (57
and
(21) )G =G5

THEOREM 3.1. (i) The polynomial representations of Uy, and U3 .,
are

uzqn — qn_l _ ( 277,1'— 2 ) qn__z + < 2n2— 3 > qn_3
(25)
RN ] GO PR C
and
2n —2
ugn—i—l =q" - (Qn + 1>qn—1 + ( n ) 2n2+1qn—2

1
2n — 3 _
(26) < 2n3+1qn 3

n— n+1 T n
+ o (=1) 1<n_2)2nj11q+(—1) (2n+1).
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(i) The polynomial representations of V3, .| and Vj  are

2n —1 _ 2n — 2 _
v2qn+1:qn—( 1 )qnl+( ) )qn2

(27) g (e ( ntl >q+(_1)n
and

Vi, =4q" —2ng"" ' + ( 2”1_ ’ ) 37
(28) - ( oA ) gy

_ n n
+ (=t n_z)%q+2(—1) .
Proof. (i) Forn = 1, we have U = 1 and for n = 2 we have U] = ¢—2.

Let us assume that the conclusion is true for n = 1,2, ...,k and show
that it holds for n = k£ 4+ 1. By assumption,

U = g+ ( 2k:1—2 )qk”2+ ( 2k:2—3 >qk—3

e GAFR NG

_ 2k — 4 _ 2k -5 _
s (K)o (9 )
— 4 (_1)k_3 < k ﬁ 3 ) q+ (—1)’6“2(16 -1).
By the definition, we get

z/{g(k-H)

= (g - Q)ng _ugk—Q

=(q—2)[q"‘1— ( 2k —2 >q""2+---+(—1)k_2< Zf; )q
qk—3

1
+ (—1)"‘11@} _ [qk~2 B ( 2k1—4 )

il WP PRRCH R
_ k_[<2k1—2>+2]qk_1+[<2k2—3>+2( 2k1——2)

and
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— 1J -4 [(—1)’“‘% + 2(—=1)k1 ( Z f; )

+ (-1 ( . k 3 )}q + [2(—1)’% + (-1 Mk - 1)] :

By (23) and straightforward computations, we obtain

ok 2k \ k-1 2k =1\ k-2
ug(kﬂ)“‘q‘(l ¢ T 2 @ "
k+2
+ (-1 ( P )q+<—1>k<kz+1>. '
Now it is easy to find the polynomial representation of Uy, , ;. Indeed,
by (3) we get

ugfn—%—l = ugn+2 - ugn
2n 2n—1 2n—2
_ n—1 n—2
== |7 ) e [ ) ()]s
n— n+2 n— n+1
e (34 (22

+{(-D)"(n+1)+(-1)"n].

So using (24) we obtain the polynomial representation of U3, | as the
statement of this theorem.

(i4) By (7) it is easy to obtain the polynomial representations of V§,
and Vi . O

Now we want to find a formula for i/}, so we need not have to compute
all the preceding terms. Let

o]
gq(2) = Y Ula’ = Uda® + Ulz + Ula? + Ula® + - .
i=0
It follows that

gg(z) —z — z? — (g —3)z3

= Y ula' =" [(q- Ui, - Ui ,] 2
=4 1=4

o0 (o]
= (¢g— 2)Zuf_2xi — Zuf_4xi
i=4 i=4



Then,

(29)
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o0
= (¢— 2)xQZL{fa:i —(g—2)x 421/{‘7 ¢
i=0
= (g~ 2)a?ge(z) — 2*ge(x) — (¢ - 2)553-
we have gq(z) (1 — (¢ — 2)2® + 2*) = z + 2% — 23. That is,

x+:7c2—x3

1—(q—2)z?+24

gq(x) =

An easy calculation shows that

where 7 = q__ﬁ____m and o = q_Z_\/2(I(q—4)

1-(g—2)2° +2* = (z — V7)(z + VT) (2 — Vo) (z + Vo)

2

ing properties:

(30)

TH+o0=q—-2, T—0=q(g—4), T0 =1.

So we have

@ A B ___C D
e e e A T e et

By straightforward computations, we find

R RS N (L T

2J/r(r—0a) 1T 2/7(r—0)
(31) oo \/c_r(a—l)—ajD:\/E(a—l)%%f
2\/o(Tr —0) 2\/o(1r — o)
Thus we obtain
() A 1 N B 1
ggla) = — —= —
VT 1= VT 1+
C 1 . D 1
Vo 1-2 Vo 1+%
Expressing 7 il and g i1, s the sums of geometric series, we get

145

. 7 and ¢ have the follow-
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B T x? a8
*7(*7*(@2‘(@”“)
C x x
‘%(”’ﬁ*(@”(i@“”)
D x T T
+ﬁ(1_75+(\/5)2_(ﬁ)3+'“)
_ [B—A+D—C]_[A+123+C+12)]
VT Vo VT2 (Vo)
B-A D-C| , [A+B C+D] ,4
+[(\/?)3 i wE)B]‘” ) [(ﬁ)“ i (W}””
...
ian;Azﬁ(io)’D C_ﬁ(‘;_a),A+B=i—;andC+D:$—5§
94(x) = [T_—10+7i0]+|t7'zjj;) cr(l‘r_—aa)Jw
-1 T—1 1-0
Jp[r(T—a) o(¢—a>} 2 [T%—a) 02(7_0)}963
and so
g
=T TN om =T Tn o™

From this, we have

1 -1 1
a- [

T—0 | ™ agh

and Ug, | = =2 [Z=h + 22%] . Furthermore, by (30), we find

1
q __ _ = [ _.n
(33) UQn—_T—O’[T g ]
and
(34) Ugiq = - i = [c™*(r = 1) + 7T (1 - 0)].

Therefore, we have proved the following theorem since

Lo 94+ Vale—4) _4-g+Vala—9)
2 ’ B 2 ’

T —
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(=)

and

2
Vi—4-./4
]
THEOREM 3.2. The sequence U,! satisfies the following formulas:

(S

(g —4) 2
and
(36) Ups=— [(——ﬂ i \/a>2n+l - (____\/FZ v )QnHJ .
\/Zj 2 2
Note that for ¢ = 5, we have
z+a2?—2° z

g5(z) = 1—3z24+2% 1-—z—22

which is the generating function of F, and
U, = —

)52

which is the well-known formula for F,, [5].
Similarly, the corresponding formula for Lucas numbers and their
generalizations V2 can be found from the generating function

Sl

oC
he(z) = ng P = Vgxo +Viz+ ngQ + V§$3 N
i=0
From this equation, we get

. 23— (¢g—2)x*+z+2

By straightforward computations, it is easy to deduce that

o0
1 [(g=2)r—=2 (¢g—2)0—-2] ,
he(z) = nZ—OT g [ L - o+l z"
. —_ 1 [l+o 14+7] a0
(38) +ZT — o | ontl Al z :
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Then by (30), we have

1 :
(39) Vinp1 = ——2 [7"(1+7) =" (1 +0)].
Also by (30), we find

1
Vin =

T —

[6"(g—2—-20)+7"(2—q+27)].
o
Asq—2-20=2-—q+ 27 =7 — 0, we obtain
(40) V] =o"+ 1™
Since 7 —o2r = qglg—4), 1+ 71 2= ————q—hé(q_zl), 1+0 = ——q—”é(q%), T =
(———“”_;H‘/a) and ¢ = < __vq—;—\/ﬁ) , we get the following theorem:

THEOREM 3.3. The formulas of V3 are the following:

(=) ()

1) Vi, =
(4 ) 1’)21'24-1 V&?:TZ 2 9
and

e (AT ()

For ¢ = 5, again note that we get the well-known formula of L,

1+v5\° [1-v5\"
T

and hs(z) = 22, [5].

1-z—z2°
Finally, we list a group of formulas with binomial coefficients. By

(33), we have

= Tia [(1+7)2 — (14 0)*].
Using
1 7= q+’v q 4 V 2+—V@ :‘V@VG:
and

1+o0=
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we obtain
n

L [(av? - (~yave)] = =L - o = Ul

T—0 T—0

that is we have
2n

(43) Z ( 21?1 > ugz' = qnugn'

i=0

By (40), we obtain

() (7 )it

=0

SO
2n 9

(14) Z(i)%=f%.
=0

In a similar way, from (40) and (39), we have

2n+1
2n +1
(45) Z ( ; ) Ve ="/ - V5

[
=0

Furthermore, (33), (34) and (40) enable us to derive further relation-
ships. For example, using (33) and (40), we get

Vgn Z/{qu - U

2(m—n)
1 1
= (t"+d")- (M —o™) = —— (7" " =™
T — T—0
— 1 - [UnTnz _ Um+n + Tm+'n — g™ _ mn + O,m—n]
T —
— - i ~ [Tm—n _ 0_m+n -+ 7_m+n —gmTn _ pm—n -+ 0_m~n]
1
— + +n] _ 744
T or—go [Tm o™ 77] _u2(m+n)
and so
q — 9 244 q
(46) Usmny = Vorllsm —Us -

In (46), if we take m = 2n, we have Ug, = Us, (V4,)* —1).
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Similarly, by (34) and (40), we find

ViU 1 — ug(m—n)—}-l

= (" +0o") 7'——1-—0' [amﬂ(r -1+ 71— U)]

1
- [T - DT (1= 0)]
_ 1 [Um—n _ O_m—n+1 + Tm+n+1(1 . 0,)
T—0
+ o_m+n+1(7_ . 1) + 7_m—-n-i—l _ Tm—n . O_m—n
+ o_m—-n+1 __ 7_m—n—f—l 4 mon
1 m-+n+1
— -1 m-+n+1 1—
—— [ = 1) (L - )]
_ 144
- z/{Q(m—i-n)—l—l
and hence
q — 4 q q
(47) uz(m+n)+1 - V2nu2m+1 - Z’{Z(m—n)+1'

By (40), we get

(Vé]n)Q — (Tﬂ +O,n)2 — 0_2n+7_2n+2

and so
(48) (V3,)? = Vi, +2.
Also by (33) and (40), we obtain
1 1
g N2 _ n_ . m\2\ _ 2n 2n __
U3 = (CEroE <<7‘ o™) ) e (c® +7 2)
1 q
= oo (Vin — 2)
and so
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