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Abstract 

In this paper we present sampled-data low-gain I-control algo- 
rithms for infinite-dimensional systems in which the sampling 
period is not constant. The system is assumed to be exponen- 
tially stable with invertible steady state gain. The choice of the 
integrator gain is based on steady state gain information. In 
one algorithm the sampling time is divergent and in the other it 
increases adaptively. 

1 Introduction 

The design of low-gain integral (I) and proportional- 
plus-integral (PI) controllers for uncertain stable plants 
has been studied extensively during the last 20 years. 
More recently there has been considerable interest in 
low-gain integral control for infinite-dimensional sys- 
tems. 

The following principle of low-gain integral control 
is well known: Closing the loop around a sta- 
ble, finite-dimensional, continuous-time, single-input, 
single-output plant, with transfer function G(s), pre- 
compensated by an integral controller k / s  leads to a 
stable closed-loop system which achieves asymptotic 
tracking of constant reference signals, provided that I kl 
is sufficiently small and kG(0) > 0. This principle has 
been extended in various directions to encompass multi- 
variable systems Davison [3], Lunze [12] and Logemann 
and Townley [ll], input and output nonlinearities Lo- 
gemann et a1 [6, 81, Logemann and Mawby [18]. Of 
particular relevance here are the results on sampled- 
data low-gain integral control of infinite-dimensional 
systems, see Logemann and Townley [lo, 111, Ozdemir 
and Townley [17]. Note that no matter what the con- 
text, it is a necessary, in achieving tracking of constant 
reference signal, that G(0) is invertible. 

The main issue in the design of low-gain integral con- 
trollers is the tuning of the gain. In the literature, there 
have been essentially two approaches to the tuning of 
the integrator gain: 
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6) 

(ii) 

Now 

Based on step-response data and individual tun- 
ing of the gain for each 1/0 channel. For results 
in this direction see Davison [3], Lunze [12] and 
h t r o m  [l]. For example, Lunze 1121 Section 7 
(50) and (51) gives complicated techniques for 
choosing I' and estimating k in the integral con- 
troller $ in terms of an approximate step re- 
sponse matrix, an upper bound of the approxi- 
mation error, and various time constants. 

By choosing I' so that I'G(0) has eigenvalues in 
C+ and then using error-based adaptive tuning of 
a scalar gain k in the I-controller x = k r e .  Such 
adaptive tuning has been addressed in a number 
of papers, see Cook [2] and Miller and Davison 
[14] for results in the finite-dimensional case and 
Logemann and Townley [9, 10, 111 for the infinite- 
dimensional case. 

the first approach, whilst making use of a variable 
data, is quite complicated, whilst the second is limited 
in design. Indeed, for multivariable systems an adap- 
tive approach ought to adapt on whole gain k r .  Note 
that this involves m2 parameters. One obvious possi- 
bility would be to use searching algorithms for adapting 
these m2 parameters, in the spirit of MBrtensson [13]. 
However, such algorithms would tend to be slow and 
they are not really appropriate in this context. Inspired 
to some extent by the following result due to Astrom 
[l] ,we adopt an alternative approach. 

Proposition 1.1 (Astrom [l]) Let a stable single- 
input, single-output (infinite dimensional) system have 
a monotone increasing step response t e H(t).  Choose 
a fixed sampling period r so that 2H(r)  > G(0) and 
a fixed integrator gain k so that k G ( 0 )  < 2. Then  the 
sampled-data integral controller, with current e m r  in- 
tegrator, 

u(t)  = U ,  for t E [nr, (n + 1)r) 
Un+l = U, + k(T - y((n + 1 ) ~ ) ) .  

achieves tracking of constants r .  



In this result we see that simple estimates for the 
gain and sampling period are derived easily from step- 
response data. Note, this result uses a current error in- 
tegrator and only applies in the SISO case. For MIMO 
systems the relationship between appropriate choices of 
integrator gain and sampling period is rather compli- 
cated. Our aim is to derive simple criteria for choosing 
the integrator gain matrix based on steady-state data 
similar to Astrom's results above. To do so we intro- 
duce the novel idea of using the sampling period as a 
control parameter. We consider sampled-data low-gain 
control of continuous-time infinite-dimensional systems 
of the form 

5( t )  = Az( t )  + Bu( t ) ,  ~ ( 0 )  E X ,  (14 
y( t )  = Ca:(t) . (1b) 

In ( l ) ,  X is a Hilbert space, A is the generator of an 
exponentially stable semigroup T ( t ) ,  t 2 0 on X so 
that IIT(t)II 5 Me-wt for some M 2 1 and w > 0. 
The input operator B is unbounded but we assume 
B E L(Rm,X- l )  (where X-1 is the completion of X 
with respect to the norm 11z11-1 := I(A-lzllx) and the 
output operator C is bounded so that C E L ( X ,  R"). 

Remark 1.2 

(a) The class of systems encompassed by  (1) is large. 
Note that because we use piecewise-constant inputs aris- 
ing from sampled-data control, well-posedness of the 
open-/closed-loop control system does not involve difi- 
cult to check admissibility type assumptions. We need C 
to be bounded because the output y ( - ) ,  which is sampled 
directly, needs to be continuous. If C was not bounded, 
then usually the free output y ( . )  would not be continu- 
ous so that sampling would require pre-filters. 

(b) We emphasize that whilst our results are valid for 
a large class of infinite-dimensional systems, they are 
new euen in the finite-dimensional case. 

We assume that the steady-state gain matrix 

G(0)  := -C.4-lB 

is invertible. For stable systems given by (1) a 
non-adaptive, sampled-data low-gain integral controller 
with 'previous error integrator' takes the form: 

u( t )  = U, for t E [tn,tn+l) with 
%+l = U ,  + K(r  - Y(t,)). 

(2.4 
(2b) 

Analogue-fesults for the current error integrator can be 
found in Ozdemir [16]. 

Here y(t,) is the sampled output at  the sampling time 
t,. Usually, t ,  = n~ where T is the sampling period. 
One of our key ideas is to use the sampling time as a 

control parameter 7, so that the sampling time is given 
instead by tn+l = t ,  + rn, with t o  = 0. This idea is 
not without precendent. Indeed variable and adaptive 
sampling has been used in a high-gain adaptive control 
context, see Owens [15] and Ilchmann and Townley [5]. 
Applying variation of constants to ( l ) ,  (2) gives 

z(t,+l) = T(T,)z, + (T(T,) - I ) A - ~ B ~ , .  

Let Z, := z ( tn ) .  Then 

Xn+l = T(Tn)Zn  + (T(T,) - I)A-'Bu, 
U,+1 = U, + K ( r  - CZ,). 

(3a) 
(3b) 

If we apply the change of coordinates 

z ,  = Z, + A-lBu, and w, = U ,  - U ,  = U ,  - G(O)-'r, 

as in Logemann et a1 [6], then 

zn+1 = ( ~ ( 7 , )  - A - ~ B K C ) ~ ,  - A-~BKG(O)W,  (4a) 

%+I -KCZ,  + ( I  - KG(O))V, (4b) 

Here we clearly see how the gain K ,  the steady state 
gain G(0) and the variable sampling period T, influ- 
ence the system. Our approach is to use T, as a tuning 
parameter, whilst choosing K (robustly) on the basis 
of steady-state information. The paper is organised as 
follows: In Section 2 we consider (4) with divergent 7,. 

This allows us to study first the stability of a much sim- 
pler system with 'infinite sampling period'. Lemma 2.1 
gives a simple criterion for choosing the matrix gain K 
based only on knowledge of the steady-state gain G(0) .  
The main result is Theorem 2.2 which shows that (2) 
achieves tracking if the gain is chosen as in Lemma 2.1 
and {T,} is divergent. In Section 3.1 we look at re- 
finements to Lemma 2.1 by which the matrix gain is 
chosen robustly with respect to error in the measure- 
ment of G(0) .  In Section 3.2 we consider the possibility 
of input-nonlinearity. Finally in Section 3.3 we combine 
the criteria for choosing the gain, either via Lemma 2.1 
or robustly as in Section 3.1, with convergent adapta- 
tion of the sampling period. 

2 Integral control with divergent sampling 
period and an infinite-sampling-period lemma 

If, loosely speaking, we set the sampling period T, = 00 

in (4), then we obtain the much simpler closed-loop 
system 

z,+1 = -A-'BKCZ, - A-~BKG(O)W, 
W ~ + I  = -KCz, + ( I  - KG(O))V, 

(sa) 
(5b) 

Lemma 2.1 Suppose G(0) is invertible and K E 
Rmxm is such that 

(6) det(X(X - 1)I+ KG(0)) 
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has zeros inside the unit circle, equivalently so that the 
matrix 

( -$G(O) :> 
is Schur. Then the system (5) is power stable, i.e. the 
operator 

has spectral radius less one. 

Theorem 2.2 Consider 

u( t )  = U, for  t E [t,, tn+l), with (sa) 
= U, + K(r  - Cx(t,)) and (8b) 

(8c) tn+l = Tn + tn = f n .  

Here {f,} is  any divergent monotone sequence and K 
is chosen as in Lemma 2.1. If u ( t ) ,  given by (Sa) and 
(8b), with samplang times t ,  given by (8c), is applied 
to (l),  then for each x ( 0 )  E X and uo E Rm we have 

( i )  lim Ilr-Cx(t,)ll = 0, (ii) lim u(t)  = U,. := G(O)-'r, 
n-too t+oo 

(iii) lim x( t )  = x,. := -A-'Bu,, (iw) lim y ( t )  = r. 
t+oo t+oo 

! 

Remark 2.3 1. Note that .there exists M p  > .O so 
that 

( Zn ) T P  ( zn ) I MPlI~n112- 
V n  Vn 

so 

2. 

For finite-dimensional systems we could then use 
bounded invertibility of P to conclude that for E E 
(0, &-) we can find M > 0 so that 

I 

i. e 

with exponential decay rate log,(l- &+E), which 
does not depend on { f n } .  

Each choice of { fn}r=o gives a different N so that 

1 
1 - h;[e-w+n > - for all n 2 N .  (9) 2 

holds. This in turn gives 

U, + U ,  and xn + 2,. 

3. 

for all n 2 0, where L depends on { fn}F=o. HOW- 
ever, this exponential convergence is with respect 
to n and not t,. I n  continuous t ime we have 

x(tn+l) = T(7n)Xn + (T(Tn)  - I ) A - l B U n ,  

with U, given by (8)  Hence the exponential con- 
vergence of a, with respect to  n leads via r, = f,, 
to slower continuous-time convergence of x ( t )  + 
x,. as t + 00. Note that a more rapidly diverg- 
ing f n  7 00 gives slower t-convergence, but a 
smaller N and so smaller L in (lo). This leads to  
a trade-off between a reduced overshoot (smaller 
L )  and slower continuous-time convergence that 
more rapidly diverging { f,} gives. An interesting 
question is how to find the best compromise choice 

For systems with small t ime constants the use of 
the above sampled-data integral controllers with 
divergent sampling period is appealing. Indeed, in 
contrast to  the sampled-data control with adap- 
tive gain, considerably more use is made of avail- 
able step-response data. The algorithm can be 
made more practical by allowing reset of the sam- 
pling t ime, in particular in response to set-point 
changes. 

f o r  f n .  

The main benefit of our approach is that we use avail- 
able step-response data. In applications this data will 
be subject to experimental error. In Section 3 we con- 
sider refinements to the selection of K which take ac- 
count of the uncertainty in G(0). We also consider the 
possibility of input nonlinearities and adaptation of the 
sampling period. 

3 Robustness and Sampling Period Adaptation 

3.1 Robustness to Experimental Error 

The steady state gain G(0) is determined by step re- 
sponse experiments. In practice we will only know G(0) 
approximately and the true value of G(0) will be a per- 
turbation of the value obtained experimentally. This 
uncertainty in the value of G(0) can be due to measure- 
ment noise or else to the use of finite-time, as opposed 
to steady-state, experiments when determining G(0). 

Denote the measured G(0) by Gespt(0). Suppose 

G(0) = G , , p t ( O )  + DAE, 
where D E RnxQ, E E Rrxn are fixed and A E Rqx' is 
unknown but IlA(l < 6, some 6 > 0. This is the set-up of 
the so-called structured stability radius, see Hinrichsen 
and Pritchard [4]. For simplicity consider the unstruc- 
tured case E = D = I .  Then 

G(0) = G e z p t ( 0 )  + A. 
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Of course we must have that G(0) = Gezpt(0) + A is 
invertible for all IlAll < 6.  Now 

(Gerpt(0) + A)-' = (Ge+pt(O)(I + Gezpt(o)-'A))-'* 

It follows that necessarily 6 5 IlGePpt(O)-'II-l. Indeed 
for 

vuT 
IIGezpt(O)-' 112 ' 

A = -  

where IJvIJ = l,Gezpt(0)-lv = 

IlAll = ~ ~ G e z p ~ ( 0 ) - l ~ ~ - l  and G e z p t ( 0 )  + A is singular. 

We need to choose K ,  on the basis of the experimental 
Gezpt(0), such that 

and l l ~ l l  = IIGexpt(o>-'ll, 

is Schur (as in Lemma 2.1). Using stability radius tech- 
niques [4] this is guaranteed if 

1 
IlAll I inf f (11) 

Irl=l II(Gezpt(0) + z (z  - l)K-')-'Il 

In order to allow for the maximum experimental error 
(i.e maximum 6 > 0) we should choose K to maximise 
the right-hand side of (11). Now clearly for any choice 
of K ,  the right-hand side of (11) is not greater than 
~ l G e z p ~ ( 0 ) - ' ~ ~ - l  (just choose z = 1). Hence the maxi- 
mum possible 6 > 0 is 

max inf 
1 

I21=l II(Gespt(0) + z (z  - l)K-l)-'Il * 

Theorem 3.1 

max min 1 
IIGexpt(O)-'II 

- - 1 
K 1z1=1 II(Gexpt(0) + z ( z  - l)K-l)-'l[ 

and K achieves the maximum i f  K-' = Gexpt(0)H 
where H = HT > 0, and A,,,(H) 2 3. 

Example 3.2 Consider system (1) with X = R3 and 

A =  
-10 -17 -8 -15 -6 

C = ( ) . In this case G(s) equals 

-57s2-5s+42 -20s2+38s+108 
s3+8s2+17s+10 s3+8s2+17s+10 

-45s2-40~+1 -19s2-1Os+29 
a3+8sZ+17s+10 s3+8s2+17a+10 

W e  assume that knowledge of G(0) can only be obtained 
fkom steady-state experiments. To simulate steady-state 

experimental conditions we truncate the step response 
of the system at t = 3.5. Thas gives 

In this case IlG(0) - Gezp(0)II = 0.5389 and 
~~G&lp(0)~~-'  = 0.8747, Theorem 3.1 applies and we can 
choose K = H-lG;:p(0) with A,i,(H) 2 3. Note that 
Gexp(0) is poorly conditioned. In the simulations we 
use 

0.0545 -0.2288 
-0.0022 0.0980 H = ( ': 405 ) , so that K = 

assume steady-state initial conditions x(0)  = 
(O,O, O ) T ,  u(0) = (0, O ) T ,  with stepped-reference 
r ( t )  = (l , l)T t < 130, r ( t )  = (2,2)T t 2 130, and . .  . .  . .  

choose 7, = log(n + 2). 

7". bp l " 4 1  
2 5  

-.I i 
Figure 2: Input u(t)  

The open-loop step responses produce quite significant 
over-shoot (typically 100%) and the rise-time is of the 
order of 5. In the closed loop simulations the overshoot 
is approximately 25% whilst the rise time is of the order 
15-30. We emphasize that the only information used 
in the controller design was quite poor measurement of 
the steady-state gain (recall I/G(O) -Gezp(0)II = 0.5389 
and IIGezp(0)-'l( = 0.8747.) 
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3.2 Robustness to Input Nonlinearity 

In the previous subsection we considered robustness 
in the choice of K with respect to uncertainty in ex- 
perimental measurement of the steady-state gain. An- 
other common source of uncertainty in low-gain inte  
gral control is that due to input saturation or more 
generally input nonlinearity. Low-gain integral control 
for infinite dimensional systems in the presence of in- 
put nonlinearity has been studied by Logemann, Ryan 
and Townley [6] (continuous time), Logemann and Ryan 
[7] (continuous time, adaptive), Logemann and Mawby 
[ 181 (continuous time, hysteresis nonlinearity). We con- 
sider sampled-data low-gain I-control with input non- 
linearity and in particular the robustness of the design 
of K with respect to such input nonlinearity. We re- 
strict attention to the single input-single output (SISO) 
case and suppose that the input to the system U is re- 
placed by @ ( U )  so that 

i ( t )  = Ax(t)  + B@(un+l), x ( 0 )  E X ,  (12a) 
Y ( t )  = C 4 t )  (12b) 

with u(t)  given by (8).  Then after sampling the closed- 
loop system becomes 

Zn+l = T ( T n ) Z n  + (T(T,) - I ) A - ' B @ ( v n )  (13a) 
vn+1 = 21, + k ( r  - CZn). (13b) 

where k > 0 is the scalar integrator gain. We assume 
throughout this section that there exists v, such that 
@(v,) = @, where G(O)@, = r. Introducing variables 
z,, = xn - z,, vn = U ,  -U, and Q(w) = @(U + v,) - a,, 
then (13) becomes 

Zn+l  = T(7n)zn + (T(T,) - I ) A - l B Q ( ~ n )  (14a) 
vn+1 = vn - kCzn.  (14b) 

As in subsection 2.1 we first consider (14) with ''r, = 
00." Then (14) becomes 

zn+1 = -A-'BQ(TJ,) (154 
0,+1 = U, - kCzn. (15b) 

Lemma 3.3 (CO - Sampling Period Lemma) De- 
fine 

Vn = k2(Cz,)2 + (w, - kCZn)2 

Then Vn+l - V,, computed along solutions of (15a) and 
(1 5b), satisfies 

Vn+l - Vn 5 3k2G(0)2Q2(un)  - 2kG(0)v,Q(vn) (16a) 

If Q2(v)  5 v@(v) and k G ( 0 )  E (0, $), then there exists 
E > 0 such that 

Vn+l 5 Vn - c\E2(vn)- (174 

Theorem 3.4 Consider sampled-data low-gain I- 
control of a continuous-time exponentially stable 
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infinite dimensional system defined by equations (12). 
Define the control input by  (8). If 

k G ( 0 )  E (0, i) and T, 2 alog(n + 2), with (YW > 1, 

then 

(i) lim llxn-xpl( = 0 ,  (ii) lim @(u(t))  = U ,  := G(O)-'r 
n+m t+m 

(iii) lim x ( t )  = 2, := -A-lBu,, (iw) lim y ( t )  = T.  
t+m t+m 

Remark 3.5 Let us compare our estimates on the gain 
k for T,, /' 00 with existing Positive Real (PR) esti- 
mates on the gain for jixed r (see [8] ). First, denote 
G d ( Z )  the transfer function of the discrete-time system 
obtained by  applying sampled data control: 

Now for a discrete-time system with transfer function 
G ( z ) ,  subject to input nonlinearity @ with @2 5 U @  a 
(PR) estimate for  the gain k so that the I-controller 

achieves tracking of r is given b y  

Applying this result to the sampled system, i.e. with 
G ( z )  = G d ( Z )  we have 

After some manipulation this becomes 

1-- IcG(') + kReE( 1) 2 0. 
2 

Where E(z )  is the z-transform of the step-response er- 
ror. Now 

W 

~ ( 1 )  = c ( T ( ~ T ) ) A - ~ B  = C(I  - T ( T ) ) - ~ A - ~ B  
j=O 

and limr+m C ( I  - T ( T ) ) - ~ A - ~ B  = CA-lB = -G(O). 
I t  follows that if kG(0) < 5 i.e. the condition imposed 
in Theorem 3.4, then (18) holds for all large enough r .  
When T is not large, we can estimate the discrete t ime 
condition (18) i.e. 

Here J is the area between the steady state G ( 0 )  and 
step-response. 

'Townley, Logemann and Ryan, Personal Communication 



3.3 Integral Control with Fixed-Gain and Adap- 
tive Sampling 

In this subsection we develop an algorithm for on-line 
adaptation of the sampling period. From the analysis 
of Sections 2.1 and 3 it is reasonable that T, should 
be increasing when e, is large. This gives us the idea 
to choose r, = a log 7,  where 7, increases if e, is not 
converging to zero. 

Theorem 3.6 Let r E R" be an arbitrary constant 
reference signal. Define 

u( t )  = U ,  for t E [tn,tn+l) where (19a) 
un+1 = u n  + K(r  - Cz( tn) ) ,  

7, = tn+l - t ,  = a log 7,  
Tn+l = "/n + IIr - Y( tn) I12 .  

(19b) 
(19c) 
(194  

Choose any a > 0 and K > 0 so that the zeros of 
det (X(X - I )  + KG(0))  have modulus less than one. If 
u ( t )  given by  (19a) and (19b), with sampling times t ,  
given by  (19c) where 'y, is given by  (19d), is applied to 
(l), then for all x(0)  E X ,  uo E R" and 70 > 1 

(a) lim 7, = "/oo < CO, (b )  lim 7, = 700 < CO 
n+cc n+Co 

and (i)-(iv) of Theorem 2.2 hold. 

Note: a > 0 plays a similar role as in Theorem 3.4. It 
helps to improve speed of response/convergence. 

Remark  3.7 We can clearly choose the gain K .  in 
Theorem 3.6 simply as in Theorem 2.2 or robustly as 
in Theorem 3.1. 
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