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The counts, the so-called differential counts, and sizes of different types of white blood
cells provide invaluable information to evaluate a wide range of important hematic pathol-
ogies from infections to leukemia. Today, the diagnosis of diseases can still be achieved
mainly by manual techniques. However, this traditional method is very tedious and
time-consuming. The accuracy of it depends on the operator’s expertise. There are laser
based cytometers used in laboratories. These advanced devices are costly and requires
accurate hardware calibration. They also use actual blood samples. Thus there is always
a need for a cost effective and robust automated system. The proposed system in this paper
automatically counts the white blood cells, determine their sizes accurately and classifies
them into five types such as basophil, lymphocyte, neutrophil, monocyte and eosinophil.
The aim of the system is to help for diagnosing diseases. In our work, a new and completely
automatic counting, segmentation and classification process is developed. The outputs of
the system are the number of white blood cells, their sizes and types.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The main purpose of this paper is to describe the devel-
opment of a blood smear image based process to help for
diagnosis of diseases. The diseases can be diagnosed by
the number and morphological changes of white blood
cells. The diagnosis can still be performed mainly by man-
ual techniques. However, the accuracy of it depends on the
operator’s expertise. The situation of the operator may
highly affect the analysis. Another method is to use auto-
mated cell counter systems such as laser based cytometers
[1]. In that paper, authors describe a device that allows car-
rying out optical excitation of separate cells in a flow
cytometer using the radiation of YAG–Ni pulsed laser.
There are a lot of cytometers on the market today. They
may provide automated cell counting but they have lack
of capabilities necessary for automated diagnosis of ALL
disease. They do not have the capability to separate abnor-
mal cells such as lymphoblasts from normal cells. They do
not allow classifying white blood cells according to their
morphologies. They are costly devices and require accurate
hardware calibration and they have to use actual blood
samples. After analysis, the blood sample is totally
destroyed. In recent days, image based cell counting
approaches attract the interest of researchers. Image based
approaches can give rise to cost effective, automated and
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remote systems to be implemented. Although difficulties
on image processing techniques to determine automatic
threshold and segmentation still exist and intelligent clas-
sification has some problems, several good attempts are
available in the literature on these approaches [2]. In [3],
Otsu proposed in his famous paper a method for standard-
ized and automatic threshold selection which is character-
ized by its nonparametric and unsupervised nature and has
the desirable advantages such as it is very simple, straight-
forward extension to multi-threshold problems not based
on the differentiation, but integration of the histogram,
quite general covering a wide scope of unsupervised deci-
sion procedure. In the research in [4], an automatic thresh-
old is used based on the Otsu’s method. In that work, as is
often done, the image mathematical morphology is used as
a final step to smooth the region of interest giving a result
of 92% accuracy. Edge detection methods were also used
widely [5,6] but this method suffers from edges that are
not sharp enough. Another method that joins two tech-
niques, scale space filtering and watershed clustering for
segmenting white blood cells is proposed in [7]. In that
approach, nucleus and cytoplasm of white blood cells are
extracted using different methods. K-mean clustering
method and Fuzzy C-mean clustering method are used in
segmenting white blood cells, respectively, in [8,9]. In the
former, cropping the entire cell to get the real area of the
cell is not clearly shown and in the latter, the computa-
tional time increases if the numbers of clusters are greater
than 2. In [10], authors used MATLAB 7.1 toolkit to seg-
ment and localize the white blood cell nucleus. Our
approach resembles their work in using MATLAB facilities
but differs from it in such a way that we embed segmented
cells in empty sub-matrices and apply them to the classi-
fier for classifying five classes. We use a neural network
(NN) structure as the classification purpose. In our work,
a new and completely automatic counting, segmentation
and classification process is developed. The overall process
Fig. 1. Block diagram represen
is given in Fig. 1. It consists of some important stages such
as taking the image of blood smear in which the white
blood cells were painted, passing it through a couple of
image enhancement and segmentation processes, extract-
ing individual images of white blood cells, counting the
cells and determining the sizes of the cells, producing the
percentage of malignant cells and applying individual
images to a neural network based classifier. The target pro-
cess is aimed to produce the following outputs: (1) the
number of white blood cells within the image; (2) the sizes
of individual white blood cells; (3) the percentage of
malignant (grown) white blood cells called lymphoblasts;
(4) important features by PCA for dimensionality reduc-
tion; (5) the classes of the white blood cells; and (6) the
diagnosis of Acute Lymphocytic Leukemia (ALL) disease
giving positive or negative answer. There are five classes
of white blood cells such as basophil, lymphocyte, neutro-
phil, monocyte and eosinophil. In short, the cell types are
called as {BP, LC, NP, MC, EP}, respectively. However, the
diagnosis of ALL disease is out of the scope of this paper.
The neural network classifier classifies the white blood
cells in one of the above classes.

Our approach resembles to the studies [11,12]. The dif-
ference from them is that the cells are cut through its edges
and extracted one-by-one like a scissors. After extraction,
each of the individual cells is put into empty sub-matrices
whose dimensions are the same for each cell. In this way, a
sub-matrix contains only the cell itself and no other distur-
bance. This is an innovative cell extraction process devel-
oped in this work. This type of extraction process can
facilitate the training of the classifier and can help obtain-
ing accurate results during operation [13]. Another diffi-
culty is that a type of cell extracted and embedded into
an empty matrix may have different size and orientation
than the trained one. In literature, a couple of methods
have been applied to overcome this difficulty. One of the
methods may be to design a classifier that is invariant to
tation of overall process.
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such transformations. Basically, there are at least three
techniques for dealing with invariance [14]: invariance
by structure, invariance by training and invariant feature
space. For example, in [5] the capability of selected fea-
tures in separating classes of cells has been qualitatively
evaluated by plotting the classes with respect to three
most relevant features as cell area, nucleus area and grey
intensity of the cytoplasm. In our approach, we achieve
invariance property somehow similar to invariance by
training technique. We train the classifiers with different
orientations of the same sample. We repeat it for each cell
sample. In this way, the classifier can distinguish accu-
rately the cells encountered after training. In recent papers
[15–19], the authors apply similar methods to the process
of segmentation and classification of white blood cells.
However, the difference between our and their approaches
is that we enforce the classification using NN by applying
PCA to the complete original cells extracted from the
smear after putting them into an empty matrix. In our case
we do not need any expertise because of automatic thresh-
old during segmentation by Otsu’s method. The outputs of
the image processing module are count value, cell sizes
and segmented and extracted individual cells ready for
classification. The microscope magnifies the blood smear
by a magnification factor of �1000 and the camera takes
the image. The organization of the paper is as follows. In
Section 2, the mathematical model of the system, cell
counting, size determination and cell extraction are
explained. In Section 3, the methods for the classification
of white blood cells are given. In Section 4, discussion
and conclusion are presented.

2. Mathematical model, cell counting, size
determination and cell extraction process

The system performs the following processes: reading
the row image to a file, eliminating noise, enhancing the
image, counting the cells, segmenting the cells as sub-
images in the form of sub-matrices, classifying the cells,
storing the count value, size and type of cells. The cell
counting process is the next step after filtering the image.
The blood smear may contain hundreds of malicious white
blood cells together with the other cells such as platelets
and red cells. The white blood cells must be counted in a
high accuracy and identified clearly. In the blood cell
counting problem, five kinds of objects have to be identi-
fied based on their diameters, area, circularity and nucleus
non-uniformities, etc., and also their magnitudes (whether
they are abnormal or not) must be determined. Here, we
added a new feature to the algorithm to solve the segmen-
tation problems. The new feature added is extraction of
individual cells as a compact body from its contours. This
step is new since in the literature the attempts for segmen-
tation are either to solve particular cluster of cells [2,20], to
refine membrane segmentation [3], to detect incorrect
segmentation [4] or to estimate the average diameter and
perform segmentation with different techniques and com-
bine the results in order to exploit all the available a-priori
information achieving a robust identification of white
blood cells. In contrast to these techniques, our method
produces sub-images of single compact bodies of white
blood cells. The new algorithm is explained as follows by
means of MATLAB functions:

Step 0: The original image is taken.
Step 1: The image’s intensity values are mapped to a
new range by using imadjust.
Step 2: The RGB image is converted to the grayscale
image by using rgb2gray.
Step 3: The complement of the image is computed by
using imcomplement.
Step 4: Otsu’s method is used to automatically convert
the grayscale image to the binary image. The global
threshold (level) is computed by using graythresh.
Step 5: The imdilate function dilates the binary image
by using the flat, disk-shaped structuring element with
radius 1. Thus areas of foreground pixels grow in size
while holes within those regions become smaller.
Step 6: The holes of the binary image are filled by using
imfill.
Step 7: The connected components in the image are
found and label matrix from bwconncomp structure is
created by using, respectively, bwconncomp and
labelmatrix.
Step 8: The set of properties for each connected compo-
nent in the image is measured by using regionprops. The
measured properties are,
‘BoundingBox’ – the smallest rectangle containing
the region.
’Area’ – the actual number of pixels in the region.
‘MajorAxisLength’ – scalar specifying the length (in
pixels) of the major axis of the ellipse that has the
same normalized second central moments as the
region.
‘MinorAxisLength’ – scalar specifying the length (in
pixels) of the minor axis of the ellipse that has the
same normalized second central moments as the
region.

Step 9: If the number of the connected components in
the image is larger than one,

Average axis lengthfor connected component

¼Major axis lengthþMinor axis length
2

ð1Þ

Average axis lengthfor image

¼ Average major axis lengthþ Average minor axis length
2

ð2Þ

Size of connected componentð%Þ

¼ 100�
Average axis lengthfor connected component

Average axis lengthfor image
ð3Þ

Step 10: If the number of the connected components in
the image is larger than one, the connected components
that have 30% fewer than average axis length for image
are removed from the binary image by using
bwareaopen.
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Step 11: Using the structuring element defined in Step
5, the imerode function apply the erosion operation to
the binary image.
Step 12: We produce an output image in which the
pixel values of the eroded image are multiplied by the
corresponding pixel values in the complement image.
Step 13: The steps from 7 to 9 are repeated until the last
connected component.
Step 14: The connected components are labeled by
using bwlabel.
Step 15: Each connected component obtained by using
the smallest rectangle containing the region is located
on the center of a black image with (a � b) pixel
resolution.

3. Classification of white blood cells and experimental
results

The classification process is based on a neural network
structure. The subimages contain the segmented individual
white blood cells.
3.1. Image processing

An example for the overall process of cell segmenting,
counting, size determination, cell extracting, cell labeling
and placing into empty sub-matrices for further classifica-
tion process is shown in Fig. 2. Each individual cell is
extracted and put into an empty sub-matrix at the end of
Smear image Image pro

Fig. 2. Overall process of cell segmenting, counting, size determination, cell e
classification process.
the image processing. The results of the image processing
of blood smear cell segmentation are shown in Fig. 3. Notice
that the individual cells are extracted, labeled and placed
into sub-matrices one by one at the end of the image pro-
cessing. They get ready for classification. Thresholds by
using Otsu’s method for Image 1, Image 2, Image 3 and Image
4 are 0.3549, 0.3922, 0.2863 and 0.4157 respectively. As an
example, the properties of the cells in Image 4 are given in
Table 1. According to Table 1, the sizes of Cell 4 and Cell 10
in Image 4 are, respectively, 156.11% and 132.74%. These
cells are much greater than the others since the connected
components labeled as Cell 4 and Cell 10 in Image 4 actually
have two cells rather than one cell, as seen in Fig. 3. In such a
situation, the count number will be erroneous. However,
since we check the ratios as in Table 1, we can easily realize
that the cells that have ratios greater than 100% are partly
occluded by the others or they are so close that they touch
together. In that case, although the algorithm counts them
as a single cell, we correct the count number by increasing
the counter by one if the ratio is in between 100% and
200%. We increment the counter by two if the ratio is greater
than 200%. Normally this is enough in most of the
applications. No manual intervention was needed for the
experiments carried out in the above applications.
3.2. Classification by neural network

During the training and test phases of the neural net-
works, several white blood cells of each type obtained from
cessing Cell extracting 

xtracting, cell labeling and placing into an empty submatrix for further



Fig. 3. Experimental results of the blood cell segmentation process; (a) original images; (b) labeled images and (c) cells extracted for each image.

Table 1
The properties of the cells in Image 4. average axis length for Image 4:
31.17.

Cells in the
Image 4

Major axis
length

Minor axis
length

Average axis
length

Size
(%)

Cell 1 36.07 28.07 32.07 102.88
Cell 2 33.62 25.95 29.79 95.55
Cell 3 31.07 24.00 27.53 88.32
Cell 4 70.76 26.57 48.67 156.11
Cell 5 33.49 23.62 28.55 91.60
Cell 6 33.11 28.50 30.80 98.81
Cell 7 31.53 22.53 27.03 86.71
Cell 8 30.48 22.17 26.32 84.44
Cell 9 38.42 26.26 32.34 103.73
Cell 10 54.31 28.45 41.38 132.74
Cell 11 26.19 24.05 25.12 80.58
Cell 12 25.38 23.59 24.48 78.53
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www.kanbilim.com [21] have been used. The original
white blood cells are shown in Fig. 4 and obtained cells
after applying the steps mentioned in Section 2 are also
in Fig. 4. The thresholds by using Otsu’s method for the
images are computed. To generate the training set for
the classifiers, BP1, LC1, NP1, MC1 and EP1 are rotated by
the steps of 30 degrees in a counterclockwise direction
around their center points. The reason is that the blood
smear may have cells with different orientations. In order
to train the NN with cells having different orientations,
we need to have a rich set of training samples. In addition,
a Gaussian White Noise with zero mean and variances of
0.01 and 0.025 are added to each rotated one. The reason
for adding Gaussian noise to the training samples is that
we obtain an original cell extracted from the blood smear
and it may be noisy originally. Since we do not try to

http://www.kanbilim.com


Segmented cells 
(120x120)

Basophil 1 (BP1) Basophil 2 (BP2)

Lymphocyte 1 (LC1) Lymphocyte 2 (LC2)

Neutrophil 1 (NP1) Neutrophil 2 (NP2)

Monocyte 1 (MC1) Monocyte 2 (MC2)

Eosinophil 1 (EP1) Eosinophil 2 (EP2)

Original images 
(240x240)

Basophil 1 (BP1) Basophil 2 (BP2)

Lymphocyte 1 (LC1) Lymphocyte 2 (LC2)

Neutrophil 1 (NP1) Neutrophil 2 (NP2)

Monocyte 1 (MC1) Monocyte 2 (MC2)

Eosinophil 1 (EP1) Eosinophil 2 (EP2)

Fig. 4. Original and segmented white blood cells used for the classification.
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eliminate noise from the cell itself during the image pro-
cessing, we have to take into account this type of situation
during classification. The overall training set has 180
images (36 images for BP1, 36 images for LC1, 36 images
for NP1, 36 images for MC1, 36 images for EP1). During
the test phases of the classifiers, the rotated images of
BP2, LC2, NP2, MC2 and EP2 only have been used. Thus,
the test set has 60 images (12 images for BP2, 12 images
for LC2, 12 images for NP2, 12 images for MC2, 36 images
for EP2). The trained NNs have been tested with the trained
patterns and also untrained ones.

3.2.1. Classifier A
It is a MultiLayer Perceptron (MLP) with 14,400

(120 � 120) inputs and 5 outputs. It has 4 hidden layers.
The number of neurons are 45, 50, 60, and 60 for these lay-
ers. The neurons have tangent sigmoid nonlinearities.
Training period is 556 s (924 iterations). The mean square
error (MSE) value at the end of the training period is
3.65e�30. The outputs are +1 and �1 for almost all degrees
of rotations and cell types.

3.2.2. Classifier B
It is a MultiLayer Perceptron (MLP) with 242 (the num-

ber of principal components) inputs and 5 outputs. It has 3
hidden layers. The number of neurons are 35, 40 and 40 for
these layers. The neurons have tangent sigmoid nonlinear-
ities. Training period is 11.21 s (466 iterations). The mean
square error, (MSE) value at the end of the training period
is 8.22e�35. The outputs are +1 and �1 for almost all
degrees of rotations and cell types. 65% accuracy for Classi-
fier A and 95% accuracy for Classifier B have been obtained
in the test phases. The accuracy is calculated as

Accuracy¼100�ðNumber of correctly identified imagesÞ=
ðNumber of imagesÞ

Moreover, the training period of Classifier B is much
shorter than the training period of Classifier A.

3.2.3. Principal Component Analysis (PCA)
Principal Component Analysis is one of the oldest and

most widely used data transformation techniques for mul-
tivariable analysis. The dimension of input dataset is
reduced using this technique. PCA is mathematically
defined as an orthogonal linear transformation that trans-
forms the data to a new coordinate system such that the
greatest variance by any projection of the data comes to
lie on the first coordinate (called the first principal compo-
nent), the second greatest variance on the second coordi-
nate and so on [22,23]. PCA is applied to the images in
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Fig. 5. The new data set derived by using k = 3.
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the training and test sets. We choose k = 242 since
r(i) = 100% is firstly achieved by 242nd eigenvector. There-
fore, each image can be represented with 242 variables
instead of a � b = 14,400 (120 � 120). However, we can
visualize the new data set derived by using k = 3, as shown
in Fig.5.
4. Discussion and conclusion

In this work, a new automatic system used to help the
diagnosis of some important blood diseases is developed,
tested and the results are presented. The image taken by
a camera attached to a microscope is processed and then
the results that are necessary for diagnosing the diseases
such as the number of white blood cells, sizes of them
and types of them are accurately produced. The mathemat-
ical model of the images and the process is established. The
RGB image is converted to the grayscale image. Otsu’s
method is used to automatically convert the grayscale
image to the binary image. The binary image is dilated by
using the flat, disk-shaped structuring element with radius
1. The holes of the binary image are filled. The connected
components in the image are found and label matrix cre-
ated. The set of properties for each connected component
in the image such as bounding box, area in pixels, major
axis length and minor axis length is measured. If the num-
ber of the connected components in the image is larger than
one, the average axis length for each connected component
in the image is computed by using the major axis length
and the minor axis length of the related connected compo-
nent. Also, the average axis length for image is computed by
using the average of the major axis lengths and the average
of the minor axis lengths of all connected components in
the image. The size of each connected component in the
image is calculated. If the number of the connected compo-
nents in the image is larger than one, the connected compo-
nents that have 30% fewer than average axis length for
image are removed from the binary image. We produce
an output image in which the pixel values of the eroded
image are multiplied by the corresponding pixel values in
the complement image. The connected components are
labeled by using bwlabel. Each connected component
obtained by using the smallest rectangle containing the
region is located on the center of a black image. There are
some cells that have ratios greater than 100% are partly
occluded by the others or they are so close that they touch
together. In that case, although the algorithm counts them
as a single cell, we correct the count number by increment-
ing the counter by one if the ratio is in between 100% and
200%. We increment the counter by two if the ratio is
greater than 200%. Normally this is enough in most of the
applications. No manual intervention was needed for the
experiments carried out in the above applications. An
image may contain two occluded or cells that stick which
are about 2/14 = 0.143 ffi 14% of all cells. They can easily
be identified. If the cells that stick together exceed four or
more, then a major difficulty arises for segmenting them.
The white blood cells are extracted from their edges and
original cells are put into empty sub-matrices. In the train-
ing phase of the classifier, the cells in the sub-matrices are
applied to the classifier with different orientations and with
additive Gaussian white noise. Any sub-image of a cell is
rotated with 30-degree resolution. Two types of classifiers
are tried in the system. Classifier A: it is a Multi-Layer Per-
ceptron (MLP) with an input size of a � b. For example, in
our experiments we utilized a � b = 14,400 (120 � 120)
inputs and 5 outputs. Classifier B: it is a Multi-Layer Percep-
tron (MLP) with 242 (the number of principal components)
inputs and 5 outputs. 65% accuracy for Classifier A and 95%
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accuracy for Classifier B have been obtained in the test
phases. PCA is applied to the images in the training and test
sets. The percentage of the variance accounted for by the ith
eigenvector is plotted. We choose k = 242 since
r(i) = 100.0000% is firstly achieved by 242nd eigenvector.
Therefore, each image can be represented with 242 vari-
ables instead of 14,400 (120 � 120). However, we can visu-
alize the new data set derived by using k = 3. It is noted that
the classification can be achieved clearly. The sizes of the
cells have been determined and average cell size within
an image has been calculated. This value facilitates the
decision making on the blast cells that may be available
in the blood smear. In order to automate the segmentation
and classification, the Otsu’s method that provides auto-
matic determination of threshold is applied. Without PCA
application, the classifier (NN) has worked with a success
rate of 65% based on the rotated training set. The success
rate has been increased to 95% with the PCA application
to the training set, since the PCA extracts the most impor-
tant features of the data vectors in reduced order. The var-
iance percentage r(i) becomes 100% that is firstly achieved
at the 242nd eigenvector. Therefore, each image can be rep-
resented by 242 variables instead of a � b = 14,400
(120 � 120). We believe that PCA application before classi-
fication by NN gives reasonable results.
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