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In terms of origin, the most important manganese deposits are sedimentary deposits which grow
on the surface and/or fractures of the natural magnesite ore. They reveal various morphological char-
acteristic according to their location in origin. Some of them may be fractal in appearance. Although
several studies have been completed with regards to their growth mechanism, it may be safe to say that
their cluster statistics and scaling properties have rarely been subject an academic scrutiny. Hence, the
subject of this study has been designed to calculate cluster statistics of manganese deposits by first;
transferring the images of manganese deposits into a computer and then scaling them with the help of
software. Secondly, the root-mean square (rms) thickness (also called as expected value in systems),
the number of particles, clusters and cluster sizes are computed by means of scaling method. In doing
so it has been found that the rms thickness and the number of particles are in correlation, a result
which is called as power-law behaviour, T ~ N~¢ (the critical exponent is computed as € = 1.743). It
has also been found that the correlation between the number of clusters and their sizes are determined
with the power-law behaviour n(s) ~ s~ 7 (the critical exponent 7 may vary between 1.054 and 1.321).
Finally, the distribution functions of natural manganese clusters on the magnesite subtract have been
determined. All that may point to the fact that the manganese deposits may be formed according to
a Poisson distribution. The results found and the conclusion reached in this study may be used to

compare various natural deposits in geophysics.

Key words: Structure of Minerals; Numerical Methods; Critical Exponents.
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1. Introduction

The pattern formation of natural or artificial de-
posits on surfaces is subject to a considerable inter-
est in many diverse areas of the literature such as
geophysical sciences [1, 2]. The results found may be
applied in several areas. One such important natural
pattern is known as manganese deposits (MnDs) [3].
These amazing patterns of MnDs, also called macros
crystalline, may be fractal in appearance [4]. They
may be found on the surface and/or fractures of
the natural magnesite ore (MO) deposits [5], some
agates [5, 6], lime stones [7], and vein quartz [8]. De-
pending on their location of origin, they may grow in
the form of several morphological phases such as den-
drites, needles, dense branching, string-like, and com-
pacts [2—8].

The questions of how MnDs’ have been formed
and what kind of scaling properties they reveal are

still hotly discussed in the geophysical science [3 —8].
So far several studies have been concluded in order
to clarify the growth mechanisms of MnDs some of
which employed simulations, numerical computations,
and experiments. Of those simulations some has been
done on two-dimensional (2D) surfaces such as dif-
fusion limited aggregation (DLA) proposed by Wit-
ten and Sander [9] and diffusion-reaction aggregation
(DRA) presented Chopard et al. [5]. Studies determin-
ing the fractal dimensions and the shape parameters
of MnDs (patterns on the MO surface and vein quartz
surface [4—8]) have been done by Bayirli [7] and Ng
and Teh [8], respectively, using numerical methods.
Meanwhile, experimental studies observing the tree-
like MnDs patterns have been performed by Garcia-
Ruiz et al. [6] and Xu et al. [3]. A reservoir was filled
with a colloidal suspension of MnOOH and FeOOH
oxide particles by Garcia-Ruiz et al. [6]. Then three
glass disks were piled and the surfaces between them
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coated with tooth paste (colloidal soda). The pile was
immersed in the manganese solution and then a set of
fractures was provoked by impacting a hammer on the
glass pile. After a while tree-like patterns were ob-
served on the silica thin layers [6]. Xu et al. charac-
terised tree-like MnDs on three different subtract rocks
(rhyolite, clayey siltstone, and limestone) via high-
resolution electron microscopy and found that the tree-
like MnDs are mainly composed of nanometres scale
manganese-(hydr) oxides, iron-(oxy) hydroxide, sul-
phate, and clay minerals. Each of these samples re-
vealed different main manganese phases. Chain-width
disorder and chain termination occurred in some sam-
ples such as todorikite. Todorikite crystals showed
trilling inter growths. The chain termination rule for
the tree-like MnDs was explained by the geometry of
octahedral chains and octahedral wall layer. It was also
suggested that the formation mechanism of todorike
might have been transferred from birnessite [3].

In many cases, the MnDs grow under non-
equilibrium conditions and reveal self-similarity pat-
terns. Yet only a limited number of works may be
found in the literature studying the characteristics of
MnDs’ emerging on natural MOs using numerical ap-
proaches such as scaling analysis and statistical com-
putations. Even though MnDs patterns are considered
and tented by geologists as rather meaningless struc-
tures due to the indefiniteness of their geneses, deter-
mining their genesis may still be of great practical im-
portance especially in figuring out of the growth mech-
anism of the geological environments.

Scaling and self-affinity are important notions in
geophysics [1, 2, 10]. They are generally described
with simple power laws which consists of exponentia-
tion (defined as scaling exponent). Determining a sim-
ple power law is usually done without consideration to
the details of experiments and nature such as growth
conditions and specific experimental systems [9].

For example, Meakin has reported a scaling expo-
nent for the patterns obtained by a DLA model in 2D
using Monte Carlo method [11]. Meanwhile, a tree-
like pattern obtained by means of electro deposition
method from the zinc metal is presented by Matsushita
et al. [12]. As patterns of MnDs are of natural growth
(in natural conditions) as well as their morphological
structure may show evidence of the scaling and self-
affine properties, unrelated to formation details, scal-
ing treatments have been chosen as a method of analy-
ses in this study [1, 2, 10].
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With respect to that, the scaling properties and clus-
ter statistics of MnDs patterns on the surface of MOs
are estimated by means of various numerical origins.
For that, the root-mean square (rms) thickness (also
called as expected value in systems), the number of
particles, clusters and cluster sizes are computed by
means of the scaling method, thus determined the rela-
tionship between the number of particles and the clus-
ter sizes. All that may reveal the contribution of the
geological environments for the growth of MnDs. They
may also be useful for comparing similar experimental
results such as nickel, and the nickel-phosphate film
(electro deposited under galvanic static conductions).

2. Scaling Method

Surfaces of MO deposits with different distribution
properties of MnDs have been scanned with an Epson
Stylus DX485 scanner and the images obtained have
been fed into a personal computer. A typical image of
a MO surface is shown in Figure 1. A dfference be-
tween the brightness of MnDs and other regions may
be observed due to the diversity of the surface of the
MO deposits. The high contrast in the MO images can
be clearly differentiated both within the magnesite and
manganese deposits, varying from bright to dark. The
MnDs are distributed randomly on the surface and/or
fractures of the MO. Then these images are fed into
the computer software for processing. In an attempt
to differentiate the samples, they are flittered by the
Gaussian blur method as ¢ = 2. Finally, MnDs im-
ages in the BMP format are converted into 8 bits so

= :
10 pixels
Fig. 1. Typical magnesite ore surface with MnDs. The MnDs

patterns are distributed as random structure on the MO sur-
face.
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that the MnDs and the number of the particles may be
counted.

3. Results and Discussion

Numerical computations for determining the cluster
statistics and scaling properties of MO surfaces of the
MO have been carried out on a finite square lattice.
Four different square areas have been selected from
two dissimilar MO images according to the distribu-
tion of the MnDs patterns and their complexity. The
linear dimension of finite-size square lattices has been
taken as L = 256 pixel. MO image samples have been
transformed into binary images, labelled as MnDs-A,
MnDs-B, MnDs-C, and MnDs-D and finally scaled
linearly by means of the software used. The MnDs
patterns have been observed as a dark colour in each
pixel on the surfaces of the MO. The bright colours
have been characterized for the magnesite. In the fi-
nal, MnDs structures have been observed in various
morphological characteristics such as DLA-like, den-
drite, needle, dense branching, compact, and string-
like structures as seen on the surface of some electrode-
posits. In previous studies the shape parameters (i.e.
fractal dimensions and divergent ratios) had been com-
puted and presented [4 — 8]. Therefore, in this study, the
cluster statistics and scaling properties of MnDs (found
on the surface with various geometrical structures, dif-
ferent cluster sizes, and cluster distribution) have been
determined.

The MO surfaces can be determined as a value of
two occupied fractions [1, 2]. First; the occupied frac-
tion of MnDs’ particles on the MO surface 4 is given
as

L L
h(L,h) =LY Y xi), (1)
j=li=1

where N = Zle >E | x; j is the total cumulative site of
the MO surface according to the BMP format in binary
scale. The value of / is computed as varying from 0.13
to 0.16.

Secondly, the cluster density 7 is related to the num-
ber of the MnDs n(s;) and their geometrical struc-
tures [1, 2, 4]. The cluster density can be determined
as

i=n"? i n(s,), (2)

J=1
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where n and n(s;) stands for the total number of cumu-
lative clusters and the number of clusters in cluster size
si, respectively. The cluster density is defined by the ra-
tio of cluster numbers to the number of total pixels on
the surface. The number of total pixels on the sample
images is computed from the finite size square of the
MO. Their value varies from 27 200 to 352 965. While
the cluster size increases the cluster density decreases.
This is an expected result [1, 2]. However, as the parti-
cle density increases, the number of clusters is reduced
on the MO surfaces.

The root-main-square (rms) thickness is an impor-
tant concept for the statistical computations. Therefore,
the rms thickness 7'(h) is computed according to the
number N of particles on the MnDs. The rms thickness
is also characterized as the square root of the mean
value for the squares of the distance points from the
image mean value. This is identified as the statistical
expected value in the system [1, 2, 4, 10]. A distinct
approximation of T'(h) on the pattern of the surfaces is
defined by

1/2

Y@i-n . 0

i=1j=1

M=

T(L,h) = [(Ld)

where L, d, and x; ; is the linear dimension, the Euclid-
ian dimension, and the height value at each data points
in the MO image, respectively. The height value for the
particle density in each pixel on the image of the MO
surface array p(x; ;) is defined as
o) = { 1 if dark pixel exits x; @
0 if bright pixel exits x; ; .

The rms thicknesses according to occupied fractions
h and the total number of particles N are computed and
then both averaged over various MnDs’ samples by se-
lecting an approximately equivalent size for each sam-
ple. The results indicate that, when the total number
of cumulative cluster is increased in the MO surface
(in the limit n — oo), the value of T'(N) is affected to
both to the occupied fraction and the number of MnDs
particles N. This relationship is defined as power law,

T(N) o< N?, 5)

where € is the critical exponent for the samples. The
critical exponent is computed as € = 1.743 £0.327.
Figure 2 shows the dependence of log T to log N such
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as in the DLA model. Having employed the Monte
Carlo method, Meakin reported € as 1.36 and 1.55
for the clusters obtained with the DLA model in 2D
by using two different numerical approaches [11]. The
critical exponent value € of the MnDs is greater than
those that are obtained via the DLA Model. DLA clus-
ters are generally part of the surface which is subject
to investigation. However, the MnDs on the surface of
the MO are distributed randomly. The MnDs may vary
in size according to the surface location. Meanwhile
the critical exponent is reported by Matsushita et al. as
€ = 0.72 for the three-like patterns of the zinc metal
produced by the electro deposition method [12]. The
value of € was reported by Saitou and Okudaira as 0.9
for the Ni-P films deposited under galvono static con-
ditions [10]. As for the MnDs (shown in Fig. 2), the

Fig. 3. Dark-bright images of a typical MO surface in BMP format. Their linear dimension are taken as L = 256 pixels.
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value of € is about 1.743, a number which is compara-
tively much bigger than the DLA and the tree-like zinc
deposits. This finding indicates that the density of the
MnDs’ deposits increases during the deposition pro-
cess.

Furthermore, the critical exponent € is related to the
effective fractal dimension (EFD) D. for the MnDs.
The relationships in geometric scaling between the rms
thickness T and the numbers of particles N (first pro-
posed by Meakin to estimate the EFD) are defined as
characteristic of fractals and may be used to estimate
an EFD D; for the DLA deposits. The theoretical value
of Dy is about 5/3 2 1.666 [11] in 2D. This scaling
relationship between T and N is also defined as power
law. It is described as

T ~ N(si)l/(]7d+l)x) , (6)

where D, stands for the EFD and d for the space
dimension. MnDs are deposited on the consuetudi-
nary flat surface of the natural magnesite ore (d =
2). This argument is also supported with the re-
sults obtained in this study (see Fig. 3). If (6) is
used to estimate the EFD (if D, = Dy and Dg =
d—1+¢& ") for the MnDs on the magnesite ore,
the EFD is computed as about 1.5737235. The EFD
value is smaller than DLA in the present study.
Because clusters of DLA may be represented as
part of the manganese deposits on the MO sur-
face. The obtained results more or less agree with
both this theoretical values and the results obtained
from a large-scale computer simulation performed by
Meakin [11].

The other property of cluster formation is that: when
manganese and iron ions in mineral solutions arrive at
the magnesite and between the surface layers, they at-
tach themselves to the surface or layers as a result of
natural conditions and local effects such as the surface
tension and surface defects. Since the ions on the sur-
face are deposited and percolated, the critical exponent
of MnDs is bigger than the DLLA deposits [11].

The average value of cluster size is computed in
the current scale. The size of the clusters growing on
the MO surface may vary in value as they are pro-
duced from a stochastic process. The cluster size of
the MnDs is related to width, thickness of the gap,
and the roughness of the MO surfaces. The pressure
formed by the sediment fluid and the viscosity of the
pushed fluid may determine the parameters controlling
both the scale and shape of the cluster sizes (such as
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dentritic, non dentritic, compact, and needle-like pat-
terns) [10, 12]. The correlation between the shape of
MnDs and the natural conditions may also be observed
in various systemic experiments [6, 12, 13]. It has been
recognized that a wide variety of cluster patterns is
controlled by the strength of a gradient which is found
on a surface and interface field. The size of the cluster
growth is dependent on the gradient of implied volt-
age in electro-chemical deposition, the pressure gradi-
ent in viscous fingering, and the temperature gradient
in solidification [12, 13]. The cluster of MnDs is pro-
portional to the concentration of the diffusing particles
in the aggregation process of MnDs [6]. The average
cluster size may generally be defined as

s=n""! Y n(si)(xi), @)
i=1

where n is the number of the clusters on the MO.
Their values are computed as varying from 27 299 to
352 965 pixels. s is associated with the manganese for-
mation in the surface location and the surface fractures.

For each sample, the size of the patterns of the
MnDs on the MO surface and the number of the pat-
terns n(s;) have been computed independently in order
to clarify the relationship between them. The data ob-
tained for the samples is found to be in great fluctua-
tion.

The relationship between the number of MnD pat-
terns and the pattern size of s > 1 pixels on finite size
square lattice exhibits the scaling behaviour and may
be defined as

n(s;) ~s 7, (3

where 7 is the critical exponent according to the scal-
ing theory [1, 2, 12]. This relationship exhibits the
scaling behaviour about s < 30 in the initial region of
the available value for the cluster size s. The values of
the critical exponent for each sample are computed as
1.054,1.099, 1.252, and 1.321 for the MnDs-A, MnDs-
B, MnDs-C, and MnDs-D, respectively. Employing the
Monte Carlo method, Meakin reported the critical ex-
ponent T as 1.55 for the clusters obtained with the
DLA model in 2D [11]. Meanwhile, Matsushita et al.
reported the critical exponent value of 7 as 1.54 for the
three-like patterns of the zinc metal obtained by elec-
tro deposition method [12]. In this study, the scaling
behaviour disappears as a result of the irregular cluster
size growth and the finite-size effect. The deviation of
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Table 1. Values for the occupied fraction, the pattern number, the average size, the critical exponents, and the linear regression

coefficients for the MnDs on the MO surface.

Samples h % Cluster numbers n(s) Average size (3) Critical exponents (7) Regression coefficients (12)
MnDs-A 13.080 314 27.299 1.054 £0.084 0.92136
MnDs-B 12.769 269 31.108 1.099 £ 0,091 0.86947
MnDs-C 16.467 115 93.783 1.252£0.129 0.87359
MnDs-D 16.542 27 352.965 1.321£0.111 0.90881

the scaling behaviour for the small values in the pat-
tern size comes from the difficulty in counting small
patterns. The results are shown in Figure 4 and sum-
marised in Table 1.

Also, Racz and Vicsek proposed that the value of
the critical exponent 7 is related to the EFD D, and the
Euclidian dimension d-space [14]. This relationship is
defined as

d—1

T=1+—.

B ©)

Assuming that d = D, and Ds; =2 1.71 (obtained from
the simulation via the DLA model in two dimensions
and from recent theoretical studies) [9], the predicted
value of 7 is about 1.5847953. Alternatively, the EFD
D. may be computed by using the value of 7 as well as
from the following equation D, = (d —1)/(7—1) from
(9). Even though this technique is useful to calculate
the fractal dimension of the DLA clusters, it may not
be so to obtain accurate results in calculating the frac-
tal dimension of MnDs. Because the cluster-size distri-
bution and results of previous studies are indicated in
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Fig. 4. Size of clusters observed on the MO surface as a func-
tion of the number of clusters. The fitting result is to the sec-

ond order of the exponential decay using the nonlinear re-
gression method.

DLA contain only a small patch of the whole informa-
tion concerning the aggregate structures.

The relationship between the number of pattern
n(s;) and the cluster size s; is related to the cluster-size
distribution (CSD). The CSDs for the particle groups
and the islands are proposed by Racz and Vicsek as
two exponents scaling form according to the computer
simulations of two-dimensional DLA for an analogy
with the equilibrium percolation problem [15]. They
are defined as

n(s) ~s Tf(s°N7), (10)
where 7, ¢ are the scaling exponents. f(x = s°N~!)
is defined as cutoff function. The value of the cutoff
function is about f(x) =~ 1 for x < 1 and f(x) < 1
for x > 1 [15]. The cutoff function may also be ar-
gued to determine the numerical relationship between
the number of clusters n(s) and cluster-size value s; as
a mathematical model. n(s;) may be accepted as an ap-
proach for estimating the initial parameter function as
the second order of the exponential distribution by us-
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Fig.5. A typical result of the cumulative number n(s), the
total number of the MnD patterns consisting of more than
s; > 1 pixels. It is a function of the size of s but the scaling
behaviour has disappeared as about s > 30 pixels.
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Table 2. Mathematical model parameters for the pattern-size distribution for the MnDs on the MO surface.

Samples no A 1 Ay t 2

MnDs-A 0.029 +0.007 243.691 +2.534 1.162+0.013 23.5324+0.461 14.736 £0.288 0.97213
MnDs-B 0.0287 +0.008 341.898 +1.678 1.516 £ 0.009 13.460 +0.343 22.546 £0.610 0.98999
MnDs-C 0.0246 £+ 0.008 8.401 +0.309 30.695 +1.203 174.552 +1.121 2.144 +£0.019 0.97432
MnDs-D 0.014 £0.001 20.009 £0.765 15.206 +0.475 168.661 +1.124 2.145+0.027 0.97407

ing nonlinear regression method in the following form

n(s):no—kale_% —l—ale_é, (11)
where ng, ai, t, ap, and f, are the nonlinear regres-
sion parameters, respectively. The model parameters
are computed for the samples and the obtained results
are presented in Table 2. The values of the regression
coefficients 72 are computed. The results showed that
their values varied from 0.97407 to 0.98999.
The cluster mass m on the surface may be deter-
mined as
m o< n(s;)x; . (12)
This equation implies that the distribution of each ac-
cumulated pixel is determined only by multiplying
n(s;) according to the stochastic process [15]. The
mean values § and standard deviation ¢ are defined as

n
§= Zh,PZ

i=1

13)

and

n
o’ =Y (xji—h)Pi,
i=1

(14)

where F; j is a probability density function. Neverthe-
less, the values of mean and standard deviation of the
accumulated pixels in the MnDs may be written in the
format

§oc hand 62 o< (h)? (15)

as expected results. These expected values are associ-

[1] A.L. Barbarasi and H. E. Stanley, Fractal Concepts in
Surface Growth, Cambridge University Press, Cam-
bridge 1995.

[2] T. Vicsek, Fractal Growth Phenomena, Word Scientific,
Singapore 1992.

ated with A. They are obtained only when P, ; is a form
of the following power distribution:

Pj=h"exp(h 'x;;). (16)
The power distribution implies that the MnD pattern

are independent of each other and may be distributed
according to the Poisson distribution.

4. Conclusion

The primary objective of this study was to deter-
mine the cluster statistics and scaling properties of
MnDs found on the surface of MO by means of numer-
ical computations. With that objective the rms thick-
ness, the number of particles, the occupied fraction
of the particles, the cluster density, and the cluster
size of MnDs have been computed via scaling method.
The relationship between the rms thickness and the
particle numbers show a scaling behaviour. The crit-
ical exponent in that scaling behaviour for the MnDs
found on the surface of MO is computed as about
1.743. The relationship between the number of clus-
ters and the cluster sizes also reveal a scaling be-
haviour. It is computed that, according to size of clus-
ters and the particle density, the critical exponent may
vary from 1.054 to 1.321. The cluster-size distribu-
tion may be determined according to the second or-
der of the exponential distribution using nonlinear re-
gression method. The MnDs’ growth may occur ac-
cording to the Poisson distribution. This argument
is supported with stochastic theory and percolation
process. The MnDs formation and solidification pro-
cess may be investigated in great detail by a future
study.
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