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COMMUTATOR SUBGROUPS OF THE EXTENDED

HECKE GROUPS H(λq)

����� � � � �
, Balikesir, 	 � 
������� and � � � ��� � � � � � , Bursa

(Received July 9, 2001)

Abstract. Hecke groups H(λq) are the discrete subgroups of PSL(2, � ) generated by
S(z) = −(z + λq)−1 and T (z) = −1/z. The commutator subgroup of H(λq), denoted by
H ′(λq), is studied in [2]. It was shown that H ′(λq) is a free group of rank q − 1.
Here the extended Hecke groups H(λq), obtained by adjoining R1(z) = 1/z to the

generators of H(λq), are considered. The commutator subgroup of H(λq) is shown to be
a free product of two finite cyclic groups. Also it is interesting to note that while in the
H(λq) case, the index of H ′(λq) is changed by q, in the case of H(λq), this number is either
4 for q odd or 8 for q even.

Keywords: Hecke group, extended Hecke group, commutator subgroup

MSC 2000 : 11F06, 20H05, 20H10

1. Introduction

In [4], Erich Hecke introduced the groups H(λ) generated by two linear fractional

transformations

T (z) = −1

z
and U(z) = z + λ,

where λ is a fixed positive real number. T and U have matrix representations

(

0 −1

1 0

)

and

(

1 λ

0 1

)

,

respectively. (In this work we identify each matrix A with −A, so that they each

represent the same transformation). Let S = T.U , i.e.

S(z) = − 1

z + λ
.
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E. Hecke showed that H(λ) is Fuchsian if and only if λ = λq = 2 cos �q , where q is
an integer q > 3 or λ > 2 is real. In these two cases H(λ) is called a Hecke group.

We consider the former case. Then the Hecke group H(λ) is the discrete subgroup

of PSL(2, � ) generated by S and U , where

U(z) = z + λq

and it has a presentation H(λ) =
〈

T, S | T 2 = Sq = I
〉

.

The most important and studied Hecke group is the modular group H(λ3). In

this case λ3 = 2 cos �
3

= 1, i.e. all coefficients of the elements of H(λ3) are rational

integers. In the literature, the symbols Γ and Γ(1) are used to denote the modular

group. In this paper we shall use H(λ3) for this purpose. The next two most

important Hecke groups are those for q = 4 and q = 6, in which cases λq =
√

2 and√
3, respectively.

The extended modular group H(λ3) has a presentation

H(λ3) =
〈

R1, R2, R3 | R2

1
= R2

2
= R2

3
=(R1R2)

3 = (R3R1)
2 = I

〉

where

R1(z) =
1

z
, R2(z) =

−1

z + 1
, R3(z) = −z.

The modular group is a subgroup of index 2 in H(λ3) (see [3]). It has a presentation

H(λ3) =
〈

T, S | T 2 = S3 = I
〉 ∼= C2 ∗ C3,

where

T = R3R1 = R1R3, S = R1R2.

Putting R = R1, we have

H(λ3) =
〈

T, S, R | T 2 = S3 = R2 = I, RT = TR, RS = S−1R
〉

.

Similarly the extended Hecke group H(λq) has a presentation

H(λq) =
〈

T, S, R | T 2 = Sq = R2 = I, RT = TR, RS = S−1R
〉

and Hecke group H(λq) is a subgroup of index 2 in H(λq).

The commutator subgroup of G is denoted by G′ and defined by

〈[g, h] | g, h ∈ G〉

where [g, h] = ghg−1h−1. Since G′ is a normal subgroup of G, we can form the

factor-group G/G′ which is the largest abelian quotient group of G.

In this work we obtain some results concerning commutator subgroups of the

extended Hecke group H(λq).
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2. Commutator subgroups of the extended Hecke group H(λq)

The commutator subgroup of the Hecke group H(λq) is denoted by H ′(λq). We

have

T 2 = Sq = I, TS = ST

in H(λq)/H ′(λq). So one can find

H(λq)/H ′(λq) ∼= C2 × Cq

and hence it is isomorphic to C2q if q is odd. Therefore

|H(λq) : H ′(λq)| = 2q.

If q is even, (TS)q = 1 while if q is odd, (TS)2q = 1. In particular, H ′(λq) is a free

group of rank q − 1 (see [1]).

By [5], the Reidemeister-Schreier method gives the generators of H ′(λq) as

a1 = TSTSq−1, a2 = TS2TSq−2, . . . , aq−1 = TSq−1TS.

Similarly for the extended Hecke group H(λq) we have

T 2 = Sq = R2 = I, RT = TR, RS = S−1R, RS = SR, TS = ST

in H(λq)/H ′(λq).

Theorem 1. Let q be odd, then

(i) H(λq)/H ′(λq) ∼= V4
∼= C2 × C2

(ii) H ′(λq) = 〈S, TST | Sq = (TST )q = I〉 ∼= Cq ∗Cq .

�������� 
. (i) Since the extended Hecke group H(λq) has a presentation

H(λq) =
〈

T, S, R | T 2 = Sq = R2 = I, RT = TR, RS = S−1R
〉

and

H(λq)/H ′(λq) =
〈

T, S, R | T 2 = Sq = R2 = I, RT = TR, RS = S−1R,

RS = SR, TS = ST 〉

one has RS = S−1R and RS = SR, and thus

Sq−2 = Sq = S2 = I.
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This shows that S = I , as q is odd. Thus

H(λq)/H ′(λq) =
〈

T, R | T 2 = R2 = (TR)2 = I
〉

and finally

H(λq)/H ′(λq) ∼= V4
∼= C2 × C2.

(ii) Now we determine the set of generators for H ′(λq). We choose a Schreier

transversal for H ′(λq) as

I, T, R, TR.

According to the Reidemeister-Schreier method, we can form all possible products

I · T · (T )−1 = I, I · S · (I)−1 = S, I · R · (R)−1 = I,

T · T · (I)−1 = I, T · S · (T )−1 = TST, T · R · (TR)−1 = I,

R · T · (TR)−1 = RTRT, R · S · (R)−1 = RSR, R · R · (I)−1 = I,

TR · T · (R)−1 = TRTR, TR · S · (TR)−1 = TRSRT, TR · R · (T )−1 = I.

Since

RTRT = I,

TRTR = I,

RSR = S−1,

TRSRT = TS−1T = (TST )−1,

the generators are S and TST . Thus H ′(λq) has a presentation

H ′(λq) = 〈S, TST | Sq = (TST )q = I〉 ∼= Cq ∗ Cq .

�

Theorem 2. Let q be even, then

(i) H(λq)/H ′(λq) ∼= C2 × C2 × C2

(ii) H ′(λq) =
〈

S2, TS2T, TSTSq−1 | (S2)q/2 = (TS2T )q/2 = (TSTSq−1)∞ = I
〉

.

�������� 
. (i) If the representations of H(λq) and H(λq)/H ′(λq) are considered,

we obtain S2 = I as RS = S−1R and RS = SR, Sq−2 = Sq = S2 = I as q is odd.

Therefore

H(λq)/H ′(λq) =
〈

T, S, R | T 2 = S2 = R2 = (RT )2 = (RS)2 = (TS)2 = I
〉
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and so

H(λq)/H ′(λq) ∼= C2 × C2 × C2.

(ii) Again we choose a Schreier transversal for H ′(λq) as

I, T, R, S, TR, SR, TS, TSR.

Hence, all possible products are

I · T · (T )−1 = I, TR · T · (R)−1 = TRTR,

T · T · (I)−1 = I, SR · T · (TSR)−1 = SRTRS−1T,

R · T · (TR)−1 = RTRT, TS · T · (S)−1 = TSTS−1,

S · T · (TS)−1 = STS−1T, TSR · T · (SR)−1 = TSRTRS−1,

I · S · (S)−1 = I, TR · S · (TSR)−1 = TRSRS−1T,

T · S · (TS)−1 = I, SR · S · (R)−1 = SRSR,

R · S · (SR)−1 = RSRS−1, TS · S · (T )−1 = TS2T,

S · S · (I)−1 = S2, TSR · S · (TR)−1 = TSRSRT,

I · R · (R)−1 = I, TR · R · (T )−1 = I,

T · R · (TR)−1 = I, SR · R · (S)−1 = I,

R · R · (I)−1 = I, TS · R · (TSR)−1 = I,

S · R · (SR)−1 = I, TSR · R · (TS)−1 = I.

Since (STS−1T )−1 = TSTS−1, (TRTR)−1 = RTRT = I , (RSRS−1) = (S2)−1,

SRSR = I , SRTRS−1T )−1 = TSRTRS−1 = TSTS−1, TRSRS−1T = (TS2T )−1,

TSRSRT = I , the generators of H ′(λq) are S2, TS2T , TSTSq−1. Thus H ′(λq) has

a presentation

H ′(λq) =
〈

S2
〉

∗
〈

TS2T
〉

∗
〈

TSTSq−1
〉

.

Example 1. Let q = 3. Then H(λ3) is the extended modular group. In this case

H(λ3)/H ′(λ3) =
〈

T, R | T 2 = R2 = (TR)2 = I
〉

and a Schreier transversal is

I, T, R, TR.

Hence,

I · T · (T )−1 = I, I · S · (I)−1 = S, I · R · (R)−1 = I,

T · T · (I)−1 = I, T · S · (T )−1 = TST, T · R · (TR)−1 = I,

R · T · (TR)−1 = RTRT, R · S · (R)−1 = RSR, R · R · (I)−1 = I,

TR · T · (R)−1 = TRTR, TR · S · (TR)−1 = TRSRT, TR · R · (T )−1 = I
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and since RTRT = I , TRTR = I , RSR = S−1, TRSRT = TS−1T = (TST )−1, the

generators of H(λ3) are S and TST . Thus H ′(λ3) has a presentation

H ′(λ3) =
〈

S, TST | S3 = (TST )3 = I
〉 ∼= C3 ∗ C3.

Notice that this result coincides with the ones given in [5] for the extended modular

group.

Example 2. Let q = 6. Then H(λ6) and H(λ6)/H ′(λ6) have presentations

H(λ6) =
〈

T, S, R | T 2 = S6 = R2 = I, TR = RT, RS = S−1R
〉

and

H(λ6)/H ′(λ6) =
〈

T, S, R | T 2 = S6 = R2 = I, RT = TR, RS = S−1R,

RS = SR, TS = ST 〉 .

Since RS = S−1R and RS = SR, S−1 = S5 and so S4 = S6 = I , S2 = I . Hence

H(λ6)/H ′(λ6) =
〈

T, S, R | T 2 = S2 = R2 = (RT )2 = (RS)2 = (TS)2 = I
〉

.

We can choose a Schreier transversal as

I, T, R, S, TR, SR, TS, TSR.

In this case all the possibilities are

I · T · (T )−1 = I, TR · T · (R)−1 = TRTR,

T · T · (I)−1 = I, SR · T · (TSR)−1 = SRTRS5T,

R · T · (TR)−1 = RTRT, TS · T · (S)−1 = TSTS5,

S · T · (TS)−1 = STS5T, TSR · T · (SR)−1 = TSRTRS5,

I · S · (S)−1 = I, TR · S · (TSR)−1 = TRSRS5T,

T · S · (TS)−1 = I, SR · S · (R)−1 = SRSR,

R · S · (SR)−1 = RSRS5, TS · S · (T )−1 = TS2T,

S · S · (I)−1 = S2, TSR · S · (TR)−1 = TSRSRT,

I · R · (R)−1 = I, TR · R · (T )−1 = I,

T · R · (TR)−1 = I, SR · R · (S)−1 = I,

R · R · (I)−1 = I, TS · R · (TSR)−1 = I,

S · R · (SR)−1 = I, TSR · R · (TS)−1 = I.

258



Since (STS5T )−1 = TSTS5, (TRTR)−1 = RTRT = I , (RSRS5) = (S2)−1,

SRSR = I , (SRTRS5T )−1 = TSRTRS5 = TSTS5, TRSRS5T = (TS2T )−1,

TSRSRT = I , the generators of H ′(λq) are S2, TS2T , TSTS5. Thus H ′(λ6) has a

presentation

H ′(λ6) =
〈

S2
〉

∗
〈

TS2T
〉

∗
〈

TSTS5
〉

.
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