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JACKSON-STECHKIN TYPE INEQUALITY
IN WEIGHTED LORENTZ SPACES

RAMAZAN AKGUN AND YUNUS EMRE YILDIRIR

(Communicated by J. Pecaric)

Abstract. In the present work we consider the modulus of smoothness, defined by means of the
Steklov operator in weighted Lorentz spaces and prove the Jackson-Stechkin type direct theo-
rem of trigonometric approximation. In the particular case we obtain a result on the constructive
characterization of the generalized Lipschitz classes defined in these spaces. Simultaneous ap-
proximation of functions is also considered.

1. Introduction and the main results

Jackson—Stechkin type inequalities in the normed space under consideration esti-
mate the order of decrease of the best approximation of a function by a finite dimen-
sional subspace in terms of some characteristic of its smoothness.

The starting point here is the classical theorem of Jackson ([8]) on the best uniform
approximation of a periodic function f by trigonometric polynomials of degree < n:

For any 21 -periodic continuous function f, the following inequality holds

E,(f) <Cw (fﬁ)

In this inequality, E,(f) denotes the best approximation of the function f by
trigonometric polynomials of degree < n, i.e.,

Ey(f) = Tig%xgﬁf‘?ﬂ f(x) = Tu(x)]

where .7}, is the class of trigonometric polynomials of degree < n, and

o(f,8) := sup max [f(x+h)—f(x)|

|h|<8 *€[0.27]

denotes the modulus of continuity of f.
In [15], Stechkin proved an analog of Jackson’s inequality for the Lebesgue spaces
L? 1 < p < oo. The elegant representation of the corresponding results in the Lebesgue
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spaces LP, 1 < p < oo, can be found in [3, 16, 17]. In weighted Lebesgue spaces with
weights satisfying the Muckenhoupt’s condition A, 1 < p < oo, the direct theorem of
trigonometric approximation in the following form was proved in [7].

r

1
E(f)p < o (f,—> ‘= sup H(I—Gh,-)f , reN,
njn o<hi<i/nl|i=1 0
where [ is the identity operator on T : = [—7, ) and
x+h

onf(x) Zh/f )du, xe€T.

The shift operator ¢, and the modulus of smoothness @; (f,-) (» are defined in
this way, because the weighted Lebesgue space L is not, in general, invariant under
the usual shift f(-) — f(-+h).

Some interesting results concerning to the best polynomial approximation in weigh-
ted Lebesgue spaces were also proved in [4, 5, 11, 19]. In weighted Lorentz spaces
some converse theorems were obtained in [10, 18]. The detailed information on the
weighted polynomial approximation can be found in the books [6, 12].

A measurable function w : T — [0,0] is called a weight function if the preimage
w1 ({0,0}) has Lebesgue measure zero. Let w be a weight function and £ (¢) be a
decreasing rearrangement of f : T — R with respect to the Borel measure

ie.,
fo@)=inf{t=0:wxeT:|f(x)] >1)<t}.
Let 1 < p,g < oo and let LL(T) be a weighted Lorentz space, i.e., the set of all
measurable functions for which

1/q
e = | [yt ) <
T

where

= %/f:)(u)du
0

If p=gq, LL(T) is turn into the weighted Lebesgue space Li(T).
The weights w used in the paper are those which belong to the Muckenhoupt’s
([13]) class A,(T), i.e., they satisfy the condition
p—1

1 1 /
supm/w(x)dx m/wlf” (x)dx =Cy, <oo, p = L
1 1
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where the supremum is taken with respect to all the intervals / with length < 27 and
|I| denotes the length of /. The constant C,, is called the Muckenhoupt constant of w.
The modulus of smoothness of a function f € L}(T) is given by

r

H(I_ Ghi)f

i=1

Q(f,8)ps = sup

0<hi<8,i=1,....r

, reN.

D
Ly

Whenever w € Ay(T), 1 < p,q < oo, the Hardy-Littlewood maximal function of
f € LEY(T) belongs to LY (T) ([2, Theorem 3]). Therefore the average oy,f belongs
to Li'(T). Thus Q,(f,8),r« makes sense for every w € A,(T).

By E,(f)ps we denote the best approximation of f € LLY(T) by trigonometric
polynomials of degree < n, i.e.,

Ex(gs = ind If = Tilge.

Since LY (T) C L' (T) when w € A,(T), 1 < p,q < o (see [10, the proof of Prop.
3.3]), we can define the Fourier series of f € LL/(T)

ao

[~

éf) -|-i(ak(f)coskx—i—bk(f)sinkx) (1.1)
k=1

and the conjugate Fourier series
F(x) Y (ar (f) sinkx — by (f) coskr) .
k=1

Here ag (f),ar (f),br(f), k=1,..., are Fourier coefficients of f.

The relation < is defined as “A < B < there exists a positive constant C, inde-
pendent of essential parameters, such that A < CB.”

In this work we prove the direct and simultaneous theorems of approximation
theory in the weighted Lorentz spaces using the modulus of smoothness Q, (f,-) -

Our new results are the following.

THEOREM 1. Let w € Ap(T), 1 < p,q < oo, r € N. Then for every f € Wigws
the inequality

1
(n+1)"

1F = Sa(H)lpps S £ =8, neN

pq’
Ly

holds with a positive constant depending only on r,p,q and the Muckenhoupt constant
Ca, of w, where S, (f) denotes the n.th partial sum of the Fourier series (1.1) of f.

We define Wy, ,, := { gelh? g e Lﬁq} . Theorem 1 gives the following corol-

lary.
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COROLLARY 1. Let we Ap(T), 1 < p,q<oo, r,n € N. Then for every FEW

the inequalities
1

- QAN
ey e

E, (f )L{;‘i S

and

< o

hold with some positive constants depending only on r, p,q and the Muckenhoupt con-
stant Ca, of w.

q
Ly

THEOREM 2. Let f € Li(T), w € A,(T), 1 < p,q < oo. Then we have the fol-
lowing estimate

1
E, (f)LM <Q, <f, —> , reN, (1.2)
and |
1= 8: gy < (7.3 (13)
nJ i

for n € N, with some constants depending only on r,p,q and the Muckenhoupt constant
Ca, of w.

We note that the sharp inverse inequality to the Jackson-Stechkin type inequality
was proved in [10]. In the sequel we use a weak version of inverse estimate:
Let f € LI(T), w€e A,(T), 1 < p,q < oo. Then

1 1 & _
Q, (f,—> STZ(/C-l-l)zr lEk(f)L{;q, reN (1.4)
N Zi Ly )
holds for n € N, with some constant depending only on r,p,q and the Muckenhoupt
constant Cy, of w.
From Theorem 2 and (1.4), we obtain the following Marchaud type inequality.

COROLLARY 2. Let f € L(T), we A,(T), 1 < p,q < 0. Then we have

LGy (fv”)Lﬁ," @

5 , 0<do<l,
r u

0, (£,8) 56 |

u

for re N.

From Theorem 2 and (1.4), we also obtain the following estimate.

THEOREM 3. Let f € LL(T), w € Ap(T), 1 < p,q <oo. If
E,,(f)Laq < n % neN
for some o > 0, then, for a given r € N, we have the estimations

o ,r>a/2;
Q (f,8) 0 =4 8"logg ,r=a/2;
8% ,r<o/2.
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If we define the generalized Lipschitz class Lip (et,LiY) for ot > 0 and k :=
[o/2]+ 1, [x] :=max{n €Z:n<x} as

Lip (o, LP7) := {f € L Q(f,8) 00 S 8%, 8> o},

then by virtue of Theorems 3 and 2 we obtain the following result which gives a con-
structive characterization of the Lipschitz classes Lip (o, L}7) .

COROLLARY 3. Let f € LY(T), we Ay(T), 1< p,q <o and o> 0. The fol-
lowing assertions are equivalent.

(i) f €Lip(o,LiY)  (id) En(f)ppe S %, neN.

Jackson’s second type inequality is given in the following theorem.

THEOREM 4. Let w € Ap(T), 1 < p,q < oo and r,k € N. Then for every f €
Wyq.w» the inequality

1 1
Eo(f)ye < ———o (10,1
(f)L{VqN (n+1)r k(f ,n>L§ﬂ, HEN

holds with a positive constant depending only on r,p,q and the Muckenhoupt constant
Ca, of w.
[7

Simultaneous approximation estimates are given in the next two theorems.

THEOREM 5. Let w € Ay(T), 1 < p,q < e and r,k,l € N. Then for every f €

Wygw and 0 < k < r the inequality

1

) _ k) < b n 1
Hf SV! (f) L{z}qwnr,kgl f 7n Laﬂ7 neN

holds with a positive constant depending only on r,p,q and the Muckenhoupt constant
Cy, of w.
17

THEOREM 6. Let w € Ap(T), 1< p,q < oo and r,k,n € N. Then for every f €
Wiy w and 0 <k < r the inequality

1
L (r
Lre S b (f )Lgyf

holds with a positive constant depending only on r,p,q and the Muckenhoupt constant
CAp Of w.

|79 =5 s)
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2. Proofs of the main results

To prove Theorem 2 we need the following lemma. If A < B and B < A, simulta-
neously, we will write A ~ B.
Foran f € L}Y(T) and r € N the Peetre’s K -functional is defined as

Ly }

LEMMA 1. Let f € LY(T), re N, w€ Ay(T), 1 < p,q < oo and t,k > 0. Then
we have

K(fit; L5 Wy,) o= (ot {If 8llppa +1" Hg

Pg.w

for t > 0.

Q (f,1) 0 ~ K (f,1: L5, W25 ) @D
and
Q (f,kt) pa S (14 (k) Q@ (1) 0

with some constant depending only on p,q and the Muckenhoupt constant Ca, of w.

Proof. If h€ W2 (T), then from subadditivity of Q, (f,) e and Q (1) pa S

Pg.w
h2r)

12 L (see Lemma 4.1 of [10])

Q (f,t)pa S| f = hllppa 1+ 27 {|p@n)

pq
L

Taking infimum on h we get Q. (f.1);p¢ SK (f.: L0, szqrw)
We define

u t

(Lsf) (x) := 353/6/./f(x+s)dsdtdu, xeT.
0 0 —t¢

From [1, p.15]
d2r

Because of estimates

u

)

S 3

L lr S 25 [ [ 2000l dodu S £ g
00

the operator Ly is bounded in L.
Defining A := 1 — (I — L)" we obtain
i %]

N 82r (f7 )qu

er
ﬁ

d> 1
—aAsS =5 I~ 05)" || pa

L%f
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and hence A5 f € Wor' | (T). Since Lg is bounded in L}}? and I —L§ = (I— L) ;;%) L}
we have

u

1)
1= L5)ell g0 S 10~ Lo)elopr S 87 [ [2107 = 0)gll g ded
00

S sup [[(I—01)gllpe
0<1<6

forany g € L{.
Applying this inequality r times in H =A%

V' H Lps We obtain

1f =457 g = sup

’(1—0}1)(1 L) f’

<<8 L
-2
s sw ||U=o)-ay)(1-15)"r] ,,
0<1,5,<8 Ly
.
<...< sup H(I—G,i)f(x) =Q(f,8) 0.
0<1;<0 ||i=1 14
i=12,...,r w
Using the equivalence (2.1) we have
0, (i < it {lr =l -+ G 520, |
v gEWR v L

@ ()

S+ e {17 gl

8€ Pg.w

La"}
S U+ Q (1) 30

and the lemma is proved. [
Proof of Theorem 1. We know that (see [9, Theorem 6.6.2], [10])

||Sn(f)HL§ﬂ 5 ||f||L§,‘/’ HJ;HL@KI 5 ||fHL{L"7

1 = Sulllige S En (F)ygr and Su (1,57) =S (1,).

Then (see inequality 6.15 of [14])

fx)=Su(x,f) = i krln/(fm (t) = Sn (t,f(’)))cos(k(x—t)—%)dt.
T

k=n+1
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When r =21
F@=8u0) = (0 E s (79—, (1) ) cos (k) +
=n-+
b (£ =5, (£0) ) sim ()]

' ¥ -
k=n+1
=0 (-GS, (.00 =5, (1))

Hence

When r=2/+1 we have cos (k(x—1)— Z) =sin (k(X—t)(_l)l) and

oo

F@ =S = (0" F o [ (77— (7)) sin (k) -

k=n+1

b ( 1 s, ( f<r>)) cos (kx)}

-1 ¥ -
k=n+1
=V L (=) ) Sk (x50 =5, (1))

Hence

1= Sals ||Lw<2( = (k+ )7 |36 (70 =5, (£7))
% (e [0 -5 ()
S uf 5 (7)
n(f(’))

Pq
Ly,

D
Ly

Pq
Ly,

~

.
Ly
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and Theorem 1 is proved. [

Proof of Theorem 2. Let n € N and f € LY be fixed. We will use the operator
Al /n f. From Corollary 1 and Lemma 1

En(f)L{"f = En(f - A1/nf +A1/nf)L5V‘1 < En(f—AI/,,f)Lgle +En(A1/nf)L€V‘1
2r
S T

d
1
5 Qr<fa;) pq.
LD

Hence ”f_Sn(f)”L{’V‘I s En(f)Lé’V‘I SQ, (f7 %)Lgfl O

4
Ly

Proof of Theorem 3. Let f € L' and
En(f)L{;q <n % neN

for some o > 0. We suppose that 6 > 0 and n:= [1/8]. From (1.4) we get

n

1 r—
Qr(fvS)L{;‘i < Q <f72> e ™ Z j+1) 2 'E (f)qu
Ly,

55”( f)ppa Z E( LM>

/S 52r (EO(f)L{;‘f + Zj2r1a> )

=1

If 2r > a, then we get Q. (f,6),p¢ < 6% If 2r = a, then
n
Z ol Z] "< 1+1log(1/8)

n
and hence Q, (f,8),0¢ < 8% log(1/8). If 2r < a, then the series Y, j21~% is con-
vergent and

n
Q, (f, 5)L{i,‘1 S 8 <E0(f)L,’A’,‘1 + Zj2r1a> N 8
j=1
holds. [

Proof of Theorem 4. Using Corollary 1 and (1.2) we find
1 1
E g < E, | £ =
”(f)La,I ~ (n+1)r n (f 7n)Lag

1 1
< _— o2 . O
~ (n+1) k<f ’n>L{;ﬂ
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Proof of Theorem 5. For f € W
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we have f®) € W~k Using Corollary 1,

I’qW pq;w-*

SO (F) =S, ( 70 ) and (1.3) we find

H F®

[0 =50

Lh Hf f(k ) ‘ L

(1) g O
n'- LP‘I

A

Proof of Theorem 6. Let g,t;; € ., and E, (f(k) pq—Hf(k q’qu n(f)L{;q:
lf=12; Hqu Then using (S, (f,- )) =S, (f( ). )
V| o < [0 =50 (#9055 (51 - (r;><k>] »
< Hf(k)—q‘ pq+Hq—Sn(f<") ) M+H ) —)® L

S (1) o+ 50 (a=5427) +”k”5"(f")—f§||u;‘f
S En (1Y) ot 180 ) =S - ) g

’S nkirEn (f( )) p4 +n E (f)L{’V‘I ,S nkirEn (f(r))

4
Ly

D
!

and the proof of Theorem is completed. [J
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