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ABSTRACT. The Hyers-Ulam-Rassias stability of the k-th partial ternary quadratic deriva-
tions is investigated in non-Archimedean Banach ternary algebras and non-Archimedean
C*—ternary algebras by using the fixed point theorem.

1. Introduction and Preliminaries

The stability of functional equations was started in 1940 with a problem raised
by S. M. Ulam [24], concerning group homomorphisms:

Let (G4, *) be a group and let (Ga, 0, d) be a metric group with the metric d(., .).
Given € > 0, does there exist a §(e) > 0 such that if a function f : Gy — G satisfies
the inequality

d(f(z=*y), f(x)o fly)) <0

for all z,y € Gp, then there exists a homomorphism h : G; — G5 with
d(f(z),h(z)) < eforall z € G1?

In other words, we are looking for situations when the homomorphisms are
stable, i.e., if a mapping is almost a homomorphism, then there exists a true homo-
morphism near it.

In 1941, Hyers [8] gave a first affirmative answer to the question of Ulam for
the case of approximate additive mappings under the assumption that G; and Gs
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are Banach spaces. In 1978, Th. M. Rassias [21] extended the theorem of Hyers by
considering the stability problem with unbounded Cauchy difference inequality

1f(z+y) = fl@) = FWIl < e(llz]|” + [[y]]*) (€20,p€l0,1)).

Namely, he has proved the following;:

Theorem 1.1.([21)) Let Ey, E> be Banach spaces. If f : E1 — Es satisfies the
inequality

1f (@ +y) = flz) = FI < elll=]” + llyl”)

for all x,y € E1, where € and p are constants with ¢ > 0 and 0 < p < 1, then there
exists a unique additive mapping A : E1 — Ey such that

2€

/() - A@ < 5=

[E4

for all x € Ey. If, moreover, the function t — f(tx) from R into Es is continuous
for each fized x € E7, then the mapping A is R-linear.

This result provided a remarkable generalization of the Hyers’ theorem. So this
kind of stability that was introduced by Th. M. Rassias [21] is called the Hyers-
Ulam-Rassias stability of functional equations. In 1994, Gavruta [7] obtained a
generalization of Rassias’ theorem by replacing the bound e(||z]|? + ||y||?) by a
general control function p(z,y).

The Hyers-Ulam-Rassias stability problems of various functional equations and
mappings with more general domains and ranges have been investigated by several
mathematicians (see [13]-[17]). We also refer the readers to the books [4],]9] and
[22].

The stability result concerning derivations between operator algebras was first
obtained by Semrl in [23]. Park and et al. proved the stability of homomorphisms
and derivations in Banach algebras, Banach ternary algebras, C*-algebras, Lie C*-
algebras and C*-ternary algebras ([3],[18],[19],[20]).

We recall some basic facts concerning Banach ternary algebras and some pre-
liminary results.

Let A be a linear space over a complex field equipped with a mapping, the
so-called ternary product, []: A x A x A — A with (x,y, z) — [zyz] that is linear
in variables x,y, z and satisfies the associative identity, i.e. [[zyz]uv] = [z[yzu]v] =
[zyzuwv]] for all z,y,z,u,v € A. The pair (4,[]) is called a ternary algebra. The
ternary algebra (A4,[]) is called unital if it has an identity element, i.e. an element
e € A such that [zee] = [eex] = z for every © € A. A x-ternary algebra is a ternary
algebra together with a mapping x — x* from A into A which satisfies

(i) (z7)" =z,
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(i) (\z)* = Aa*,
(iii) (z4+y)* =a* +y*,
* 0k *]

(iv) [eyz]" = 27y

for all z,y,z € A and all A € C. In the case that A is unital and e is its unit, we
assume that e* = e.

A is a normed ternary algebra if A is a ternary algebra and there exists a norm
Il on A which satisfies ||[zyz]|| < ||z||||y|l||z]] for all z,y,z € A. If A is a unital
ternary algebra with unit element e, then |le|| = 1. By a Banach ternary algebra
we mean a normed ternary algebra with a complete norm ||.||. If A is a ternary
algebra, x € A is called central if [zyz] = [zay] = [yzz] for all y,z € A. The set of
all central elements of A is called the center of A which is denoted by Z(A).

If A is x-normed ternary algebra and Z(A) = 0, then we have ||z*|| = ||z||. A
C*-ternary algebra is a Banach #-ternary algebra if ||[z*yz]|| = ||z|?|y| for all z in
Aand yin Z(A) .

In 2010, Eshaghi and et al. [6] introduced the concept of a partial ternary
derivation and proved the Hyers-Ulam-Rassias stability of partial ternary deriva-
tions in Banach ternary algebras. Recently, Javadian and et al. [10] established the
Hyers-Ulam-Rassias stability of the partial ternary quadratic derivations in Banach
ternary algebras by using the direct method.

Let Ay,..., A, be normed ternary algebras over the complex field C and let B
be a Banach ternary algebra over C. As in [10], a mapping 0y : A1 X ... x A, = B
is called a k-th partial ternary quadratic derivation if

5k(x1,...,ak+bk,...,xn)+5k(z1,...,ak 7bk,...,:17n)
= 20k(T1,. Ak, Tpn) + 20k (21, .y bk, e, Ty)
and there exists a mapping g : Ax — B such that
5k(1'1; ey [akbkck], e ,:Cn) = [gk(ak)gk(bk)ék(:cl, ey Clyonn ,$n)]
+gw(ar)dk(z1, .- bk ooy 2n)gi(cr)] + [0k (@1, - - o ak, - oo, 2n) gk (bk) g (ck)]
for all ay,bg,cr € A, and all z; € A; (i # k).
If, &5 satisfies the additional condition
0k(X1y oy y) = (Op(x1, ..oy apy ..o xp))”

for all a, € A, z; € A; (i # k), then ¢ is called a k-th partial ternary quadratic
x-derivation.

Let K denote a field and |.| be a function (valuation absolute) from K into
[0,00). By a non-Archimedean valuation we mean a function |.| that satisfies the
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conditions |r| = 0 if and only if » = 0, |rs| = |r||s| and the strong triangle inequality,
namely,
|r+ | <max{[r[,|s|} < |r|+|s|

for all r,s € K. The associated field K is referred to as a non-Archimedean field.
Clearly, |[1| = | —1] =1 and |n| < 1 for all n € N. By the trivial valuation we mean
the mapping |.| taking everything except 0 into 1 and |0| = 0.

Let X be a vector space over a field K with a non-Archimedean nontrivial
valuation |.|. A function [.]| : X — R is called a non-Archimedean norm if it
satisfies the following conditions:

(i) |||l = 0 if and only if x = 0;
(ii) ||rz| = |r|||z|| for all r € K, x € X;
(ili) ||z + y|| < max{||z],|ly||} for all z,y € X (strong triangle inequality).
Then, (X, |.||) is called a non-Archimedean normed space.

From the fact that
[2n — 2pll < max{||zj11 — 2| :m<j<n—-1} (n>m)

holds, a sequence {z,}nen is a Cauchy sequence if and only if {11 — Zn}nen
converges to zero in a non-Archimedean normed space. By a complete non-
Archimedean normed space, we mean one in which every Cauchy sequence is con-
vergent.

Suppose that p is a prime number. For any nonzero rational number x, there
exists a unique integer n, € Z such that = (a/b)p™=, where a and b are integers
not divisible by p. Define the p-adic absolute value |x|, := p~™=. Then |.| is a
non-Archimedean norm on Q with the p-adic absolute value |.|,. The completion
of Q with respect to |.| is denoted by Q, , which is called the p-adic number field.

By a non-Archimedean Banach ternary algebra we mean a complete non-
Archimedean vector space A equipped with a ternary product (z,y,z) — [zyz]
of A? into A which is K-linear in each variables and associative in the sense that

[zy[zwo]] = [zlyzw]v] = [[zyz]wy]

and satisfies the following
[lzy2]ll < [l lllyll]l=]

for all x,y,z,w,v € A. A non-Archimedean C*-ternary algebra is a mnon-
Archimedean Banach #-ternary algebra A if ||[z*yz]|| = ||z||?|ly|| for all x € A
and y € Z(A).

We now recall a fundamental result in fixed point theory. Let X be a nonempty
set. A function d: X x X — [0, 00] is called a non-Archimedean generalized metric
on X if and only if d satisfies
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(i) d(z,y) =0 if and only if = y,
(i) d(z,y) = d(y, ),
(iii) d(z,z) < max{d(z,y),d(y, 2)}

for all z,y,z € X. Then (X,d) is called a non-Archimedean generalized metric
space.

Now, we need the following fixed point theorem (see [5]):

Theorem 1.2.(Non-Archimedean Alternative Contraction Principle) Let (X, d) be
a non-Archimedean generalized complete metric space and A : X — X is a strictly
contractive mapping, that is,

d(Az,Ay) < Ld(z,y) (z,y € X)

with the Lipschitz constant L < 1. If there exists a nonnegative integer ng such that
d(AmoFlp Amox) < oo for some x € X, then the following statements are true:

(i) The sequence {A™x} converges to a fized point x* of A;

(ii) z* is a unique fixved point of A in

X*={ye X |dA™z,y) < oo};

(iii) If y € X*, then
d(y,z*) < d(Ay,y).

In this paper, using the fixed point method, we prove the Hyers-Ulam-
Rassias stability and superstability of partial ternary quadratic derivations in non-
Archimedean Banach ternary algebras and non-Archimedean C*-ternary algebras.

2. Stability of Partial Ternary Quadratic Derivations in Non-Archimedean
Banach Ternary Algebras

Throughout this section, we assume that Aj,..., A, are non-Archimedean
ternary normed algebras over a non-Archimedean field K, and B is a non-
Archimedean Banach ternary algebra over K. We denote that 0f,0p are zero
elements of Ay, B, respectively.

Theorem 2.1. Let F}, : Ay X ... x A, — B be a mapping with
Fi(x1,...,0k,...,2,) = 0. Assume that there exist a function py, : Ai — [0, 00)
and a quadratic mapping g : A — B such that

(21) ||Fk(1'1, R ) T ,l’n) +Fk(x1,. coyap —bg, ... ,In)
—2Fk($1,. "aaka"'7xn) - 2Fk($1,...,bk,...,xn)” < gﬁk(ak,bk,Ok)
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and

|Fr(x1,. .., laxbrck]s - xn) — [gk(ak) gk (bk) Fr (21, oy Cly o o oy Z0)]
(2.2) —[ge(ar)Fu(@r, - bk, @)g(cr)] — [Fr(@, ooy an, - 20) g (0k) g (ci)] |
< ¢r(ak, by, ck)

for all ag, bk, cr € Ak, x; € A; (i # k). Suppose that there exist a natural number
teK and L € (0,1) such that

(2.3) ou(t™ ag, t by, t ™ er) < |t Lok (ak, by, cx)

for all ax,by,cx, € Ag. Then there exists a unique k-th partial ternary quadratic
derivation 0y : Ay X --- X A,, — B such that

(2.4) | Fr(z1,. . 20) = 021, .oy m0)|| < |t 2Lab ()

forallz; € A; (i=1,2,...,n), where

(2.5) Y(zg) = max{ek(0k, Ok, 0k), or(Tk, Tk, Ok), 0k (22K, Tk, Ok ),
o ok ((k = D)y, o1, 0p) }

Proof. By (2.3), one can show that

(2.6) lim |t|2m@k(timak,timbk,timck) =0
m—00

for all ay, by, cr € Ag. One can use induction on m to show that

(2.7) | Fr(21,. . Mz, 2n) — mPFe(zy, .. 2, .., x)]|
< max{gpk(()k, 0k70k)7 @k(xkaajk; Ok)a ¢k(2$kaxk70k>a
s r((m = D), 2k, 0k) }
for all x; € A; (i = 1,2,...,n) and all non-negative integers m. Indeed, putting
ar = b, = xp, in (2.1), we get
(2.8) 1 Fk(x1y ..y 2Tk, oy @) — AF (21, ooy They ooy )|
< max{wg(0k, 0k, 0r), r (2K, T1, Ox) }
for all z; € A;, i=1,2,...,n. This proves (2.7) hold for m = 2. Let (2.7) holds
form=1,2,...,j. Replacing ag, by with jxy, zx, respectively, in (2.1), we obtain
(@1, oy G+ Dk @) + Frln, s (= Dans- o, 20)
—2Fi (21, JTgy o ) — 2F (@1, o They o )|
(2.9) < max{pk(0k, Ok, Ok ), Pr (jTk, Tk, Ok ) }-
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Since

Fp(z1,...,(J+ Dk, ..o yxn) + Fr(xr, ..., (5 — Dag, ..., x0)
—2Fk (21, jThy e Xy) — 2Fk (21, .o gy - ey )
=Fp(xr,. s (G +Dag, .. xn) — G+ 12 Fr(1, ..o Tpy e T)
+ (21,0, (5= Dagy ey xn) — (5 — )2 Fr(y, ..y 2p, ., )

(2.10) —2[Fi (1, Ty ooy ) — G2 FR (21, Ty e, )]
for all x; € A; (i =1,2,...,n), it follows from induction hypothesis and (2.9) that
forall z; € A; (1 =1,2,...,n),

(211) ||Fi(z1, ... (G + Vg, oy zn) — (G + D2 Fr(@1, .y Ty - x)||
< max{||Fr(x1,..., [+ Dxpy...vxn) + Fr(zr, ..., (G — Dxgy .o, 20)
—2F (21, JThy ey ) — 2F% (21, oy Ty oy ) ||
NEk (21, (5= Dags ooy zn) — (5 — D2 Fe(z1, .2, .., x0)]
121172 Fr(@1s - Ty o e oy ) — Fr(1, ooy j2p, -y )|}
< max{k(0k, 0, 0x), or (K, Tk, Ok ), 0k (22, T, Ok )y - -+, Ok (i, g, O ) T

This proves (2.7) for all m > 2. In particular, for all z; € 4; (i =1,2,...,n)
(2.12) | (21 tpy oy @) — B FR(21, o Ty ey ) || < O(20).
Replacing xy by t 1y, in (2.12), we get

(2.13) I Fk (21, Ty ey ) — PR (21, gy x| < ()

forallz; € A; (i=1,2,...,n).
Let us define a set X of all functions Hy: A; X ... X A, = B by

X:{Hk:Alx...xAn—>B, Hk(xl,...,Ok,...7xn):OB,
x, €A;, i=1,2,...,n}

and introduce p on X as follows:

(2.14) p(Fy, Hy,) := inf{C € (0,00) : || Fp(x1, -y Thy .-, Tp,)
—Hp(z1,. . Thy oy Tp) || S CP(ay), Vo, € A,y 1=1,2,...,n)}.

It is easy to see that p defines a generalized non-Archimedean complete metric on
X (see [1],[2] and [12]). Now we consider the function J : X — X defined by



900 Berna Arslan, Hiilya Inceboz and Ali Giiven

JH) (x1, .2,y xp) = P Hy (2, g, 2)

for all z; € A; (i =1,2,...,n) and Hy € X. Then J is strictly contractive on X,
in fact if for all x; € A; (i =1,2,...,n),

(2.15) |1 Fe(z1, . @y ) — He(@1, oo Xy -y ) || < Co(ak)
then by (2.3),

(2.16) NT(Fe) (@1, Ty ooy @) — J(He) (@1, oy Ty e oy )|
= |t|2||Fk(x17 s atilxka v axn) - Hk(mla v 7t71wka v 7xn)||
< ClPp(t ay) < CLy () (z € Ag).

So it follows that

(2.17) p(J(Fi), J(Hy)) < Lp(Fl, Hy) (F, Hy € X).

Hence, J is a strictly contractive mapping with Lipschitz constant L. Also we obtain
by (2.13) that

(2.18) NT(Fe) (@1, Ty ooy @) — Fe(@1, .o Ty e ooy )|
= Ht2Fk(m1,...,tilxk,...,xn) — Fr(x1, .o &g,y Tp)]|
< Wt ag) < |2l ()

for all z; € A; (i =1,2,...,n). This means that p(J(Fy), Fx) < [t|72L < co. Now,
from Theorem 1.2, it follows that J has a unique fixed point §; : A1 x...x A, — B
in the set

U, = {Hk e X: p(Hk7J(Fk)) < OO}

and for each z; € A; (i =1,2,...,n),

(2.19) Op(x1, ... xpy) = mli_r}noojm(Fk(xl,...,mk,...,xn))
= lim #"(Fp(21,...,t ", ..., 2)).
m— o0

Then we obtain from (2.1) and (2.6) that

||5k(a:1,...,ak+bk7...,xn)+(5k(x1,...,ak—bk,...,xn)
—25k(x1,...,ak7...,xn) —26k(x1,...,bk7...,xn)|\

= mlgnoo |t|2m||Fk(:r1, . ,tim(ak + bk), - ,’In) + Fk(:zzl, - ,tfm(ak — bk), .. .,l?n)

—2Fk(x1,.. ot Mg, o ) — 2F (21,0 T gy )|
lim |t|2m max{gpk(Ok, Ok,Ok), (pk(timak,timbk,ok)} =0

m—r0o0

IN
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for each ay,by € Ak, x; € A; (i # k). This shows that J; is partial quadratic. It
follows from Theorem 1.2 that

p(Flﬁ 516) < p(J(Fk), Fk)’
that is, dy is a partial quadratic mapping which satisfies (2.4).
Now, replacing ay, b, ¢, with t~™ag, t~™bg, t"™cy, respectively, in (2.2), we
obtain
||Fk(1'1, ey [(t_gm)akbkck], . ,xn)
— [t gk (ar)t 2" gk (b) Fi (@1, ot ks )]
—[tingk(ak)Fk(l‘l, e, Ty, ,xn)t%mgk(ck)]

—[Fi(@, ot a oz )t g (br)E " g ()]
< Pk (t_mak, t_mbk, t_mck).

Then we have

1t5™ By (21, ..., t 2 [agbrer], - - -, 2n)
— 5 [t gy (ap )t 2" g (b)) Fro (21, .o oty - ooy )]
—t5m [t m gy (ag) F (w1, .ot ™ bgy oo T )t 2 gr ()]
—t5M [ Fr(zy, .ot g, 20 )t 2 g (D)2 gk (k)] |
< ot ag, tT " bk, t )

for all ag,bg,cr € Ak, x; € A; (i # k). Taking the limit as m — oo in above
inequality, we obtain from (2.6) that

I n}gnoo M Ey (21, .. 3 agbrer], - 2n)
—lgk(ar)gr(br) "}i_IPOO M (21, Ty )]
—lgx(ak) mlgnoo (21, t g, ) gr (k)]
—[ lim P F(@1, ot g, ) gk (bk) g (ci)] |

< lim |5 eR(t " ag, t b, t k) = 0
m—o0
for all ax, by, cx, € Ak, x; € A; (i # k). Since gy is a quadratic mapping, we have

Op(x1, ..., [arbrer], ..., xn) = [gr(ar)gr (br) Ok (21, -y Chy -, T0)]
+[gk(ak)5k(xla ey bk7 ey xn)gk(ck)} + [516(1'1) sy Ay e e >xn)gk(bk)gk(ck)]

for all ay,bg,cp € Ag and all z; € A; (i # k). Thus 6 : Ay x---x A, = Bis a
k-th partial ternary quadratic derivation, satisfying (2.4), as desired. O
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In the following corollaries, Q, is the p-adic number field, where p > 2 is a
prime number.

By Theorem 2.1, we show the following Hyers-Ulam-Rassias stability of partial
ternary quadratic derivations on non-Archimedean Banach ternary algebras.

Corollary 2.2. Let Aq,..., A, be non-Archimedean ternary normed algebras over
Qp with norm ||.|| and (B, ||.||B) be a non-Archimedean Banach ternary algebra over
Qp. Suppose that Fj, : Ay X --- x A, = B is a mapping and g, : Ay, — B is a
quadratic mapping such that for all ap, by, cp € Ay, x; € A; (1 #£ k),

(220) ||Fk(:r17...,ak +bk,...,.’bn) —|—Fk(x1,...,ak —bk,...,l'n)
72Fk(:171, ey Ay e ,l’n) — 2Fk(:€1,. . .,bk, . ,xn)HB S H(HakHr + ||bk||r)

and

(221) ||Fk((E1, ey [akbkaL e ,.’L’n> — [gk(ak)gk(bk)Fk(xl, ooy Cly ot ,l’n)]
—lgr(ar) Fr(z1, ..o bk, oy 2n)ge(cr)] = [Fr(ze, - - - ak, - o 2n) gk (br) gk (ci)]l| B
< O(llarll” + N1okl" + llexll™)

for some 8 > 0 and r > 0 with v < 2. Then there exists a unique k-th partial
ternary quadratic derivation &y : Ay X --- X A, — B such that

k(21 ..y 2n) — 0k(z1, ..., 20)||B < 20p7 |2k ||”

holds for all x; € A; (i=1,2,...,n).
Proof. By (2.20), we have Fy(x1,...,0k,...,2,) = 0g. Let

(2.22) P (ak, biy i) := O(llarl|” + [[bx )" + [lex]"),

1

for all ay,by,cr € Ag. Then by replacing ay, by, cx with p~lag, p~'bg, p 'k,

respectively, in (2.22), we have

ep(p™

ap,p~ g, er) = Ol an ]l [lp T bkl + T el
= 0 "axl” + 1710l + 12~ llewl")
= Op"(lawll" + 0&]" + llexll")
= p"pr(ak, bi, cx)
for all ag, by, cx € Ay, since |p~1| =
Also,

p by the definition of the p-adic absolute value.

Y(x) = max{er(Ok, Ok, 0k), v (Tk, Tk, 0x), i (22, Tk, Ok),
o ok((p = Dk, 71, ) } = 20|z ||

for all 3, € Ayg.
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In Theorem 2.1, by putting L := p"~2 < 1, we obtain the conclusion of the
theorem. a

Similarly, we can obtain the following theorem. So, we will omit the proof.

Theorem 2.3. Let Fy, : Ay X ... x A, — B be a mapping with
Fy(z1,...,0k,...,2,) = 0. Assume that there exist a function py, : Ai — [0, 00)
and a quadratic mapping g : A — B such that

(2.23)||Fk(1‘1, T ) TR ,l’n) + Fk($1, ce,ap — by, .. .,:ZZn)

—2Fk (21, k) — 2Fk (1, o by o ) || < pr(ak, by, Og)
and
(224) HFk(xl, ceey [akbkck], . ,:cn) — [gk(ak)gk(bk)Fk(xl, ey Clyonn ,xn)]

—lgr(ar)Fe(z1, - by ooy )9k (c)] — [Fe(@1, ..oy aky -« oy ) 9k (bk) g1 ()] ]
< wr(ak, b, ck)

for all ag, by, ck, € Ay, z; € A; (i # k). If there exist a natural number t € K and
0 < L <1 such that
(2.25) o (tar, thy, tey) < [t* Ly (ak, bi, cx)

for all ax,bg,cx € Ay, then there exists a unique k-th partial ternary quadratic
derivation 0y : A1 X -+ x A,, — B such that

(2.26) (s @n) = 0k (@1, ooy )| < |2L00(2R)
forallz; € A; (i=1,2,...,n), where
(2.27)  (xr) = max{yk(0k, 0k, Ok), or(@k, Tk, Ok), or (22k, Tk, O ),

cey @k((k - 1)xk,xk, Ok)}

The following corollary is similar to Corollary 2.2 for the case where r > 2.

Corollary 2.4. Let Aq,..., A, be non-Archimedean ternary normed algebras over
Qp with norm ||.|| and (B, ||.||B) be a non-Archimedean Banach ternary algebra over
Qp. Suppose that Fi, : Ay X --- x A, = B is a mapping and g, : A — B is a
quadratic mapping such that for all a, by, cr € Ay, x; € A; (i £ k),
(228) ||Fk(x1,...,ak +bk,...7l'n) —I—Fk(xl,...,ak — bk,...,xn)

72Fk(1’1, ey Ay .. ,:En) — 2Fk(I1, ey bk, NN 7an)”B S 9(||ak||r + ||bk||r)

and
(229) ||Fk(x1, ey [akbkck], ey (En) - [gk(ak)gk(bk)Fk(xh ey Cly et ,xn)]

7[gk(ak)Fk(Ila BERE) bk7 BRI zn)gk(ck)] - [Fk(xh sy Ay e e ,In)gk(bk)gk(Ck)]HB
< O(llawll” + 1okl + llex ")
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for some 8 > 0 and r > 0 with r > 2. Then there exists a unique k-th partial
ternary quadratic derivation 6y : A; X --- X A, = B such that

[k (1, -y 2n) = Ok(21, o )| B < 20p7" ||z ]|”

holds for all x; € A; (i=1,2,...,n).

Proof. From (2.28), we have Fj(21,...,0k,...,z,) = 0p. By putting ¢ (ag, b, cx) :
O(|lagl|” + [|bk]” + |lex]|”) and L := p?>~" < 1 in Theorem 2.3, we get the desired
result. O

Moreover, we have the following result for the superstability of k-th partial
ternary quadratic derivations.

Corollary 2.5. Let r,s,t and 0 be real numbers such that r + s+t < —2 and
0 € (0,00). Let As,..., A, be non-Archimedean ternary normed algebras over Q,
with norm ||.|| and (B, |.||5) be a non-Archimedean Banach ternary algebra over
Qp. Assume that Fy, : Ay X -+ X A, = B is a mapping and g, : Ay, — B is a
quadratic mapping such that

HFk(Zl,...,CLk +bk,...,:cn)+Fk(x1,...,ak 7bk,...,l‘n)
—2F (21, k) — 2Fk (21, o bk, o ) lB < O(|lak]|” + 1|0& ),

and

||Fk(l‘1, ceey [akbkck], Ceey xn) - [gk(ak)gk(bk)Fk(ﬂfh sy Chy e axn)}
—lgk(ar) Fe(z1, .. by ooy ) g (ek)] — [Fr(@1, .oy ks oo 20) 9k (Dk) gk (ck)] || B
< Ollar]"1bx " lexl*)

for all ay, by, ci, € Ak, x; € A; (i £ k). Then Fy, is a k-th partial ternary quadratic
derivation.

Proof. Tt follows from Theorem 2.1, by putting
n(ar, bi, cr) = O([laxl|"|bx]|*[lex ")
for all ay, by, cr € Ag. O
We can prove a same result with condition r + s 4+t > —2 by using of Theorem
2.3.
3. Stability of Partial Ternary Quadratic x-Derivations in Non-Archimedean
C*-Ternary Algebras

In this section, assume that Aq,..., A, are non-Archimedean *-normed ternary
algebras over C, and B is a non-Archimedean C*-ternary algebra.



Nearly k-th Partial Ternary Quadratic *-Derivations 905

Theorem 3.1. Let Fy, : Ay X --- X A, — B be a mapping with
Fy(z1,...,0k,...,2,) = 0. Suppose that there exist a function @y : Ai — [0, 00)
and a quadratic mapping gy : Ax — B such that (2.1) and (2.2) hold and

(3.1) 1Ek(z1,. o saf, s xn) — (Fr(x1, ..oy agy .oy z0) || < @k (ag, Ok, Of)

for all ag, bk, ck € Ay, x; € A; (i # k). If there exist a natural number t € K and
0 <L <1 and (2.3) holds, then there exists a unique k-th partial ternary quadratic
x-derivation 0 : Ap X -+- X Ap — B such that (2.4) holds.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
k-th partial ternary quadratic derivation dy : A1 X -+ x A, — B satisfying (2.4),
given by

(3.2) Sp(1,.. . xn) i= lim 2™ (Fy(xy,... .t "xp,...,1,))
m—0o0
for all z; € A; (i =1,2,...,n). Now, we have to show that J; is *-preserving. So

it follows from (3.2) that

10k (21, s ay oy xn) — (k@1 .oy @y ey zn)) |

= lim |t|2m||Fk(ac1, e tTMak o mn) — (B, .ot Mag, o, 20)) Y|
m— 00

= lim [t*"||Fr(z1,..., ¢ ar)", ..., xn) — (Fe(@r, ..ot ™ag, ..., 20))"||
m— 00

< lim [¢)*™ max{k(0k, Ok, Ox), pr(t ™ ax, Ok, 0)} = 0

- m—oo

for each ay € Ak, x; € A; (1 # k).
Thus dy : Ay X -+ x A, — B is a k-th partial ternary quadratic *-derivation

satisfying (2.4), as desired. o

Now, we prove the following Hyers-Ulam-Rassias stability problem for k-th par-
tial ternary quadratic *-derivations on non-Archimedean C*-ternary algebras.

Corollary 3.2. Let Ai,..., A, be non-Archimedean x-normed ternary algebras
over Q, with norm |.|| and (B,|.||g) be a non-Archimedean C*-ternary algebra
over Qp. Suppose that Fy, : Ay x -+ x A, — B is a mapping and gy, : Ay — B is a
quadratic mapping such that for all ap, by, cr € Ay, v; € A; (i # k),

(33) ||F;€(x1,...,ak —i—bk,...,xn) —I—Fk((I}l,...,CLk - bk,...,xn)
—2Fk(1‘17. ey Ay e vt ,xn) — 2Fk($1, . .,bk,. . .,(En)”B S Q(HCLkHT + ||bk||r)7

(34) HF]@(.’El, ey [akbkck], e ,xn) - [gk(ak)gk(bk)Fk(xl, ey Clyoen 7€En)]
7[gk(ak)Fk('Tla vy bk7 e 7:En)gk(ck)] - [Fk(xh sy Ay e ,$n)gk(bk)gk(ck)]||3
< Ollarll” + 1ok lI" + llexll™)
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and

(35) |Fr(x1y..yafy..yxn) — (Fr(x1, ..oy aky . 20)* |5 < O|ak||”

for some 0 > 0 and r > 0 with r < 2. Then there exists a unique k-th partial
ternary quadratic *-derivation 0y : A1 X --- X A, — B such that

k(1. 2n) — 0k(z1, ..., 20)||B < 20p7 |2k ||”

holds for all x; € A; (i=1,2,...,n).

Proof. The proof follows from Theorem 3.1, by taking ¢y (ak, bk, cx) == 0(||lax||” +

Ib&l|” + |lck ") for all ax, by, cx € Ay, and L = p"~2, we get the desired result. O
Moreover, we can prove a same result with condition r > 2.
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