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ABSTRACT 

It is very important to make both reservoir inflow 
modeling and operation studies on water resource engi-
neering. In this paper, a comprehensive comparison on the 
application of two different artificial neural network algo-
rithms in the monthly inflows of Kemer Dam, which is 
located in the Buyuk Menderes Basin/Turkey, was pre-
sented. Two types of neural networks, namely, feed-
forward neural networks (FFNN) and generalized regres-
sion neural networks (GRNN), were examined. The best 
model combinations which require monthly areal precipi-
tation, temperature and one-two months ahead areal pre-
cipitation values as the input data, was trained by using 
the monthly data depending on the records that spread to a 
time frame of 156 months, made between January 1980 - 
December 1992, and then tested by the 156 months of 
reservoir inflows, recorded between January 1993 -
December 2005. When the long-term performances of the 
training and testing periods are compared, it was shown 
that GRNN approach has a better performance in the train-
ing period; on the other hand, FFNN proves itself to be 
more successful in the testing period. Seasonal compari-
sons were also examined by box-plot graphs and Mann 
Whitney U (M-W) non-parametric test statistics. In the 
results of seasonal comparing, it was shown that FFNN has 
the best performance in summer and autumn but GRNN in 
winter and spring. Besides, there were different drawbacks 
and advantages of these two approaches, which were also 
proven with this study. FFNN and GRNN algorithms are 
the successful black box techniques which are capable of 
reservoir inflow modeling without detailing the physical 
process. 
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1. INTRODUCTION 

There are numerous classifications that have been used 
in literature to describe the studies on river flow modeling 
which include system definitions, area-time scales and 
solution techniques [1, 2]. In general, there are three main 
approaches to represent a river basin system: white-box 
model (physically based distributed models), gray-box 
model (conceptual models) and the black-box model [3]. 
The white and gray-box models aim to simulate the physi-
cal mechanisms underlying each component in the trans-
formation of precipitation into runoff, such as surface, 
subsurface and groundwater flow, infiltration, percolation, 
and evapotranspiration. The parameters relevant to these 
components for a certain river basin can be determined by 
different optimization techniques. Yet, due to their data 
requirements, uncertainties and complexities, these mod-
els may not be readily used in all applications.  

A river basin can also be represented by black-box 
models which associate basin inputs and desired outputs 
without detailed considerations on the physical phenome-
na. In this context, conventional statistical models, such 
as regression analyses, curve fitting approaches and sto-
chastic autoregressive models are commonly used. Re-
cently, artificial neural networks (ANN), which are math-
ematical modeling tools inspired by the properties of the 
biological neural system and structured between basin in-
puts (precipitation, temperature, evaporation etc.) and 
flow data, have been used in the modeling studies.  

There has been a number of ANN studies published 
in literature. In these studies, the rainfall-runoff relation-
ship was modeled successfully by using ANN [4-11]. 
Moreover, ANN models were developed for river flow 
prediction [12, 13], and the performances of ANN models 
were compared to the other statistical methods (auto-
regressive modeling, regression analysis). The studies 
demonstrated that the results of the ANN were more 
precise than that of the convectional statistical methods. 
Furthermore, an autoregressive model was used for generat-
ing synthetic monthly flows and used as the training set of 
ANNs to forecast the Goksu River monthly mean flows in 
the East Mediterranean part of Turkey [14]. As well as 
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modeling of river flows, reservoir inflows were also mod-
eled by ANNs [15-18]. Other hydrological studies using 
ANN algorithms covered prediction of suspended sedi-
ment [19-23], regional flood frequency analysis [24, 25], 
short-term flow forecasting [26, 27], precipitation forecast-
ing [28-30], temperature forecasting [31, 32], evaporation-
evapotranspiration modeling [33-36], prediction of sani-
tary flows [37], groundwater applications [38-40], infiltra-
tion applications [41] and prediction of missing stream-
flow data [42- 44]. 

ANN applications in hydrologic modeling studies gen-
erally include the feed forward neural networks. Since the 
feed forward neural network (FFNN) algorithms have some 
disadvantages relating to the presence of local minimums 
and the precision of assigned initial weights, generalized 
regression neural networks and radial basis neural net-
works, which are alternative techniques to FFNN, were im-
proved and used successfully in modeling studies in order 
to overcome the shortcomings of FFNN algorithms [6, 11, 
45-47]. 

In this study, a comprehensive study is presented on 
the application of two artificial neural network algorithms 
to model the monthly reservoir inflows of Kemer Dam’s 
reservoir which is located in the Buyuk Menderes Ba-

sin/Turkey. Two types of neural networks, namely, feed-
forward and generalized neural network, were examined. 

 
 
2. MATERIALS AND METHODS 

The study area covers the drainage basin of Kemer 
Dam, which is located in the Aegean region of Turkey 
(Fig. 1). The basin is fed by four rivers and stream-flow 
values are observed by four stream-flow gauging stations 
(Calikoy/EIE-730, Yemisendere/EIE-731, Degirmenalani/ 
EIE-732, and Goktepe/EIE-733) located at the upstream of 
the dam (Fig. 1). These data were collected from the rec-
ords of two institutes of Turkey: XXI. Regional Direc-
torate of State Hydraulic Works, and Operational Direc-
torate of Kemer Dam Power Plant which is a part of the 
Electrical Works Authority. Thus, the collected reservoir 
inflow data were prepared for the period between January 
1980 and December 2005. In addition to inflow data, the 
monthly data of precipitation and temperature at Denizli 
and Mugla meteorological stations were obtained from the 
State Meteorological Organization of Turkey. Next, 
Thiessen weighted precipitation values and arithmetical 
mean temperature values were prepared for monthly time-
scale, using records available at both stations. 

 
 
 
 

 
 
 
 
 
 
 

 
 

FIGURE 1 - Kemer Dam and the stream-flow gauging-meteorological stations within the study area. 
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2.1. Feed-forward Neural Networks (FFNN) 

Artificial neural networks (ANN) are mathematical 
tools inspired by the properties of the biological neural 
system [48, 49]. The historical development of ANN in-
volves the development of many different models and 
algorithms, but generally, the feed forward neural network 
(FFNN) models are used in applications. The basic con-
cept of FFNN is that they are typically made up of single 
neurons which are organized in the form of layers (Fig. 2). 

The first and last layers of FFNN are called the input 
and the output layers, respectively. The input layer does 
not perform any computations, but only serves to feed the 
input data to the hidden layer which is between the input 
and output layers. In general, there can be any number of 
hidden layers in the FFNN structures; however, only one 
or two hidden layers are used in applications. The number 
of hidden layers and also that of neurons of hidden layers 
can be determined by trial and error approaches [48, 49]. 

There are also three important components of a FFNN 
structure: weights, summing function and activation func-
tion. The importance and the functionality of the inputs on 
network are obtained with weights (W), so the success of 
the model depends on the precise and correct determina-
tion of these weights. The summing function (net) acts to 
add all outputs; that is, each neuron input is multiplied by 
the weights and then summed. After computing the sum 
of weighted inputs for all neurons, the activation function 
f (.) serves to limit the amplitude of these values [49]. 
Various types of the activation function are possible but 
sigmoid function is preferred in this application.  

(.)

1(.)
1

f
e−

≅
+

 (1) 

In addition to the structure and the components of 
FFNN, the running procedure of network is also im-
portant, which involves typically two phases; forward 
computing and backward computing.  

In forward computing, each layer uses a weight ma-
trix associated with all the connections made from the 
previous layer to the next layer (Fig. 1). The hidden layer 
has the weight matrix Wij and activation function f (1); the 
output layer has the weight matrix Wjm and activation 
function f (2). Given the network input vector 1nxx R∈ , 
the output of the output layer, which is the response (out-
put) of the network 1mxy R∈ , can be written as follows: 

(2) (1)
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(2) 

After the phase of forward computing, backward com-
puting, which depends on the algorithms to adjust weights, 
is used in FFNN. The process of adjusting these weights 
to minimize the differences between the actual and the de-
sired output values is called training or learning of net-
work. If these differences (errors) are higher than the de-
sired values, the errors are passed backwards through the 
weights of the network. In ANN terminology, this phase 
is also called the back propagation algorithm. Once the 
comparison error is reduced to an acceptable level for the 
whole training set, the training period ends, and the net-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 - FFNN structure 
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work is also tested for another known input and output 
data set in order to evaluate the generalization capability 
of the network [49]. 

Depending on the techniques to train FFNN models, 
different back propagation algorithms have been devel-
oped. In this study, the Levenberg-Marquardt back propa-
gation algorithm was used for training of the FFNN. The 
Levenberg-Marquardt back propagation algorithm is a 
second-order nonlinear optimization technique that is 
usually faster and more reliable than any other back prop-
agation techniques [21, 50]. 

The Levenberg-Marquardt optimization algorithm 
represents a simplified version of Newton’s method [51] 
applied to the training of FFNN [52, 53]. The training 
process can be viewed as finding a set of weights that 
minimize the error (ep) for all samples in the training set 
(Q). The performance function is a sum of squares of the 
errors as follows: 

2 2

1 1

1 1( ) ( ) ( ) ,
2 2

P P

p p p
p p

E W d y e P mT
= =

= − = =∑ ∑     (3) 

where, T is the total number of training samples, m is 
the number of output layer neurons, W represents the 
vector containing all the weights in the network, yp  is the 
actual network output, and dp   is the desired output. 

When training with the Levenberg-Marquardt algo-
rithm, the changing of weights ΔW can be computed as 
follows: 

1 [ ]T T
k k k k k kW J J I J eµ −Δ = − +          (4) 

Then, the update of the weights can be adjusted as 
follows: 

( 1)k k kW W W+ = + Δ   (5) 

where, J is the Jacobian matrix, I is the identify ma-
trix, µ is the Marquardt parameter which is to be updated 
using the decay rate β depending on the outcome. In par-
ticular, µ is multiplied by the decay rate β (0<β<1) when-
ever E(W) decreases, while µ is divided by β whenever 
E(W) increases in a new step (k). 

 
2.2. Generalized Regression Neural Networks (GRNN) 

The GRNN is a special four-layered neural network 
that imitates the regression process, and is used in the 
prediction of continuous variables [54]. This approach has 
been preferred in applications instead of the FFNN for the 
reason that the problem of local minimums was not faced 
in the GRNN so that it does not require an iterative pro-
cedure. 

The GRNN, which is related to the normalized radial 
basis function, and is based on kernel regression, consists 
of four layers: input layer, pattern layer, summation layer 
and output layer. The typical structure of GRNN is shown 
in Fig. 3.  

In the first layer, which does not perform any pro-
cessing, an input vector is presented to the network. The 
number of neurons contained in this layer is equal to the 
number of elements, n, in the input vector. The input data 
are then passed onto the second layer, the pattern layer, 
where each training vector is represented [45, 54].  

Thus, there are N pattern neurons running in parallel 
if the training data set consists of a total of i = 1, 2, . . . , N 
samples. Each neuron i generates an output θi based on 
the input provided by the input layer: 

2exp[ ( ) ( ) / 2 ]T
i i ix u x uθ σ= − − −     (6) 

where, x is the input vector, σ is the smoothing pa-
rameter, and ui is the input portion of the ith training vec-
tor represented by the ith neuron in the pattern layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 - GRNN structure 
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Then, every neuron in the pattern layer is connected 
to the summation layer which contains two groups of 
neurons, namely, numerator and denominator neurons. 
The group of numerator summation neurons is used for 
computing the weighted sum of the outputs from the pat-
tern neurons. The transformation applied in the numerator 
neurons can be written as follows: 

1

N

j ij i
i

S W θ
=

=∑    (7) 

where, Sj is the output from the jth numerator neuron, 
θi is the output from the ith neuron in the pattern layer, 
and Wij is the weight between the pattern layer and the 
summation layer. 

The denominator group in the summation layer has 
only one neuron, which is computed by using the sum of 
the output from the pattern layer neurons, and can be 
defined as follows: 

1

N

d i
i

S θ
=

=∑    (8) 

where, Sd  is the output from the denominator neuron, 
and θi is the output from the ith neuron in the pattern 
layer. 

The numbers of neurons in the output layer are equal 
to the number of numerator neurons. The outputs (yj) of 
GRNN can be computed as follows: 

j j dy S S=    (9) 

In application of the methodology, two MATLAB 
codes were written for Levenberg-Marquardt algorithm 
based FFNN and GRNN models. The application of the 
models to time series data consisted of two periods. 26 
years (January 1980-December 2005) input-output data 
were used and divided into training and testing periods by 
proportions of 1/2 (January 1980-December 1992) and 
1/2 (January 1993-December 2005), respectively.  

Before presenting the input-output data to models, all 
data sets were scaled to the range 0-1 so that the different 
input signals had the same numerical range. The training 
and the testing subsets were scaled to the range of 0-1 
using the equation zt = (xt-xmin)/(xmax-xmin), where xi is the 
unscaled data, zt is scaled data, and xmax and xmin are the 
maximum and minimum values of the unscaled data, 
respectively. Then, the actual output values of the net-
works, which were in the range of 0–1, were converted to 
real-scaled values using the equation xt = zt (xmax - xmin) + 
xmin.  

In training, the number of the neurons in the hidden 
layer, the initial Marquardt parameter of Levenberg-
Marquardt based FFNN model and the smoothing param-
eter of GRNN model were determined by trial-error. This 
network structure provided the best training result in 
terms of the minimum root mean square errors, RMSE 
(Eq. 10), and the maximum determination coefficients, R2 
(Eq. 11) were also employed for the testing periods. 
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where, T is the number of training or testing samples, 
yt  is the actual network output, dt  is the observed (desired) 
data in the tth time period, and dmean is the mean over the 
observed periods. 

 
 
3. RESULTS 

In this study, different neuron combinations of input 
and hidden layers for the FFNN approach have been tried. 
For the first combination, monthly precipitation and tem-  
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FIGURE 4 - Determination of number of neurons in hidden layer for the testing period of FFNN (4, 19, 1). 
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perature data were used as an input. With these concurrent 
monthly input data, R2 values of training and testing peri-
od are obtained as 0.726 and 0.616; RMSE values are 
12.611 and 11.188 m3/sn, respectively. In order to increase 
the performance of the FFNN model, delaying process 
that rainfall transforms into runoff, was considered and 
previous monthly precipitation values were included in 
model. For each combination, the numbers of neurons in 

the hidden layer were determined by the trial-error. All 
these trials are presented in Table 2. 

At the end of the trials performed, FFNN (4, 19, 1) 
model with µ=10-3 ; β=0.1 values, and 25 iterations has 
the lowest RMSE and the highest R2 values, thus having 
the best performance. The scatter plot and hydrograph 
graphics of this model which has the best results of test-
ing period are shown in Figs. 5a and 5b. 
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FIGURE 5 - Reservoir inflow estimations by FFNN (4, 19, 1) for the testing period. 
 
 

TABLE 2 - FFNN performances for the training and testing periods. 

Inputs 
FFNN 

Structure 
R2 RMSE (m3/s) 

Training Testing Training Testing n j m 
Pt , Tt 2 3 1 0.726 0.616 12.611 11.188 
Pt , Tt , Pt-1  3 2 1 0.841 0.680 9.631 9.746 
Pt , Tt , Pt-1, Pt-2 4 19 1 0.940 0.833 6.193 7.946 
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FIGURE 6 - Determination of smooth parameter for the testing period of GRNN model with 4 inputs. 
 
 

TABLE 3 - GRNN performances for the training and testing periods. 

Inputs 
Smooth 

Parameter 

R2 

 RMSE (m3/s) 

Training Testing Training Testing σ 
Pt , Tt 0.05 0.798 0.564 10.855 11.394 
Pt , Tt , Pt-1  0.10 0.891 0.669 8.067 10.056 
Pt , Tt , Pt-1, Pt-2 0.10 0.966 0.756 4.448 8.743 
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FIGURE 7 - Reservoir inflow estimations by GRNN model with 4 inputs for the testing period. 
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FIGURE 8 - Box-plots of the observed and the model estimations of seasonal mean inflows. 

 
 
Similar combinations were also examined with GRNN 

model (Table 3), and in the training and testing period, 
with four inputs and a smoothing parameter having the 
value σ = 0.10 (Fig. 6), the R2 values 0.966 and 0.756, 

and RMSE values 4.448 m3/s and 8.743 m3/s were ob-
tained, respectively, thus reaching the most efficient 
GRNN structure.  

 
 

TABLE 4 - M-W statistics of (a) FFNN and (b) GRNN for testing periods. 

(a)  
FFNN M-W Test Statistics  Winter Spring Summer Autumn 
Mann-Whitney U 60 62 81 73 
z 1.26 1.15 0.18 0.59 
Asymptotic. Sig. (2-tailed) 0.21 0.25 0.86 0.56 
     (b)  
GRNN M-W Test Statistics  Winter Spring Summer Autumn 
Mann-Whitney U 68 64 70 51 
z 0.85 1.05 0.74 1.72 
Asymptotic. Sig. (2-tailed) 0.40 0.29 0.46 0.09 
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In addition to long-term statistics of FFNN-GRNN 
models, seasonal box-plot presentations and homogenei-
ties were examined. 

Seasonal mean, minimum, maximum and, median 
statistics of the models and the observed data are shown 
in Fig. 8. 

In the study, seasonal homogeneities were tested with 
Mann-Whitney U (M-W) test, a non-parametric statistical 
test used to analyze two comparison groups to identify 
whether they have the same distribution or not [55]. This 
test is based on bringing together and arranging of two 
groups. When the lining up of these group members is 
done, for each member, a line number is assigned. The 
membership status of these members (to which group they 
belong) is ignored. Then, all these line numbers are summed 
up. The sum of the members of the first group is R1 and 
sum of the members of the second group is R2. Then, we 
can calculate the U values: 

1 2
( 1) , ( 1, 2)
2

i i
i i

N NU N N R i+
= + − =   (12) 

After the calculation for i=1 and i=2, we get U1 and 
U2, and the bigger is chosen (U*) to determine the test 
statistics. 

* 1 2

1 2 1 2

2
( 1)
12

N NU
z

N N N N

−
=

+ +
      (13) 

Here, N1 and N2 are the numbers of data for the 
groups compared. 

The z value is compared with 0.05 significance level 
(zcr = 1.96).  If we get z <1.96, it means that there is no 
significant difference between the observed data and 
model estimations. We can also use the asymptotic signif-
icance of z test statistics when making a comparison (Ta-
ble 4). 

 
 
4. CONCLUSIONS 

A comprehensive study was presented on the applica-
tion of different artificial neural networks to model the 
monthly reservoir inflows. Two types of neural networks, 
FFNN and GRNN, were applied. 

When the performances of the training and testing pe-
riods are compared, it is observed that GRNN approach 
has a better performance in the training period; on the other 
hand, FFNN proves itself to be more successful in the 
testing period. 

When the testing period scatter graphs of the models 
are examined, it is observed that the standard deviations 
around the y=x line are far less in the FFNN models. In 
other words, when y=ax+b fitted lines in graphs are ex-
amined, it is observed that, in FFNN model, “a” gets 
closer to the value 1, and “b” gets closer to the value 0, 
compared to the GRNN model. 

Seasonal comparisons are shown by box-plot graph 
and Mann Whitney U (M-W) non-parametric test. When 
the box-plot graph is examined, we see that summer and 
winter statistics are successful in both models. But when 
the median statistics are compared, FFNN model proves 
itself better than GRNN model for all seasons. When the 
extreme values of the seasons are examined, we see that 
both models are competent in predicting winter values. 

When we examine M-W statistics, we see that both 
FFNN and GRNN predictions have homogeneities for all 
seasons. When z statistics are taken as a basis, FFNN has 
the best performance in summer and autumn. Moreover, 
GRNN has the best performance in winter and spring. 

In addition to the input data used in the study, to in-
crease the performance of the model, previous flow series 
(Qt-1, Qt-2,…Qt-p) can be included into the models, consid-
ering the inner dependency effect, a concept that explains 
the interrelation between precipitation and flow values. 
But predicting the result with the fewest number of inputs 
(lex parsimoniae), although the data were relevant to our 
purpose, we have chosen not to include them. The data 
used in the study are regarded to be sufficient for the tools 
to enable them to function properly. 
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ABSTRACT 

In order to utilize phosphorus sludge comprehensively, 
phosphine (PH3) in the off-gas of sodium hypophosphite 
production from phosphorus sludge was adsorbed with a 
molecular sieve 5A. Effects of adsorbent preparation and 
operating conditions were analyzed. The results showed 
that 5A molecular sieve could significantly enhance the 
adsorption ability after NaCl impregnation. The adsorbent 
modified by 0.3 M NaCl was applied in the adsorption of 
PH3, and the best adsorption efficiency was obtained under 
the following conditions: calcination temperature (300 °C), 
drying temperature (110 °C), adsorption temperature (20 °C) 
and carrier gas flow-rate (10 ml/min). SEM and XPS analy-
sis showed that adsorption of PH3 on modified 5A molecu-
lar sieve was mainly physisorption. In conclusion, modified 
5A molecular sieve can be used in the adsorption of PH3 
on phosphoric sludge utilization. 
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1. INTRODUCTION 

Exposed phosphoric sludge would generate P2O5, 
which poses a great threat to the environment and human 
health. For example, 120 t phosphorus sludge stored in the 
local pond caused catastrophic water pollution at the drink-
ing water sources of Penshuidong Cave in Yunnan, China 
[1]. There is a necessity for processing the accumulated 
waste to create waste-free productions [2]. Within the lim-
its of the previous technology, a process of phosphoric 
sludge to the sodium hypophosphite has been developed [3]; 
however, the process inevitably generates 20% (v/v) PH3 
leaving from the reactor. 

PH3 is highly toxic by inhalation route, which can af-
fect respiratory, neurological, and gastrointestinal system [4]. 
The hydride gas of PH3 is commonly used in the fabricat-
ing processes of the semiconductor and optoelectronic in- 
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dustries [5], and the field of flame retardants for cotton 
fabrics. Many traditional methods have been developed, 
such as combustion, dry adsorption, gas-solid catalytic oxi-
dation reaction and gas-liquid oxidation reaction [6]. Most 
of the studies concerned with the removal of PH3 in syn-
thesis gas, for instance, copper (Cu) loaded on the sol-gel-
derived gamma-alumina (Al2O3) adsorbents were tested to 
investigate the possibility of PH3 removal [7]; PH3 toxic 
gas was absorbed by metal (Cu, Zn, or Mn) loaded ZSM-5 
and Y zeolite [8]. Although a wide variety of adsorbents 
have been utilized to remove contaminants from process 
gas streams, there has been little research on the off-gas 
of sodium hypophosphite production from phosphorus 
sludge. Researchers concerned PH3 removal by chemical 
adsorption [7, 9-11], and obtained fruitful achievements. 
However, there has been less study aimed at physisorp-
tion of PH3. 

Based on the phosphoric sludge utilization to develop 
an environmentally friendly, resource-saving industrial 
process technology, the obtained pure PH3 is considered-
for producing high value products.  

 
 
2. MATERIALS AND METHODS 

2.1. Experimental materials  

5A molecular sieve, 13X molecular sieve, activated 
alumina and granular activated carbon were used as adsor-
bents in this study. 5A molecular sieve (Sinopharm Chemi-
cal Reagent Co. Ltd) is a commercial product with a par-
ticle size of 3.0~5.0 mm. 13X molecular sieve (Shanghai 
BOJ Molecular Sieve Co., Shanghai, China), activated 
alumina (Shanghai Jiuzhou Chemicals Co., Ltd., Shang-
hai, China) and granular activated carbon (Nankai Uni-
versity catalyst Co., Ltd., Tianjin, China) were used in the 
experiments. Details of these materials are given in Table 1. 
Phosphoric sludge was from Yunnan Kunyang Phosphate 
Fertilizer Factory producing yellow phosphorus with elec-
tric furnace process. N2 used in the study was supplied by 
Kunming Messer Gas Products Co., Ltd. 

Adsorbent preparation was as follows: A total of 30 g 
of each type of adsorbent was washed 3 times with 150 ml 
of distilled water to remove soluble impurities. Then, ab-
sorbents were dried for 3 h at 110 °C, to further remove im- 


