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In this paper, a new method of tuning Proportional Integral (PI) coefficients for a permanent magnet
brushless DC (PMBLDC) motor drives is proposed. Artificial neural network is used to identify the whole
system using maximum overshoot and settling time obtained from the application circuit for different
Kp–Ki pairs. Optimal values of PI controller coefficients are obtained using genetic algorithm. Motion Con-
trol Kit (MCK243) is used to carry out digital motion control applications. The MCK243 kit includes a
power module and a three-phase brushless motor. TMS320F243 programs are used for PMBLDC motor
speed control. Experimental results are given to show the validity of this method.

� 2010 Published by Elsevier Ltd.
1. Introduction

The Proportional Integral (PI) controller is unquestionably the
most commonly used control algorithm in the process control
industry. The main reason is its relatively simple structure, which
can be easily understood and implemented in practice, and that
many sophisticated control strategies are based on it. In spite of
its wide spread use there exists no generally accepted design
method for the controller. PI controllers have traditionally been
tuned empirically, e.g. by the method described in Ziegler & Nic-
hols. This method has the great advantage of requiring very little
information about the process. There is, however, a significant dis-
advantage because the method inherently gives very poor damping
[1].

The tuning of electric drive controller is a complex problem due
to the many non-linearities of the machines, power converter and
controller. Therefore, many tuning rules have been proposed for
this type of controller. During the last three decades, one of the
main focuses of research in control engineering has been devoted
to provide automatic tuning of such controllers.

The permanent magnet synchronous motors (PMSM) have
many applications in industries due to its compact structure, high
efficiency, high power density, and high torque to inertia ratio. A
robust PID control scheme is proposed by Jan et al. for the PMSM
using a genetic searching approach. Numerical solutions of the Pro-
portional Integral Derivative (PID) parameters constrained by three
Elsevier Ltd.
different objectives and simulation results are provided to illus-
trate the design procedure and the expected performances [2]. Esp-
ina et al. have studied the unwanted windup phenomenon
reviewing and comparing different PI anti-windup strategies em-
ployed in speed control of electric drives. The tuning process of
PI controllers is usually carried out considering the system as linear
and therefore disregarding its physical limits such as maximum
current and voltage [3]. Lee has presented a closed-loop estimation
method of PMSM parameters by PI controller gain tuning. The idea
of the proposed method is to tune the controller to cancel the pole
of the motor transfer function with a controller zero and estimate
motor parameters from the tuned controller gains [4]. Cao and Fan
have investigated the uncertainties of permanent magnet synchro-
nous servo motor; inertia, torque load and viscous damping coeffi-
cient are on-line identified based on recursive least-square
estimator simultaneously. Then, a novel self-tuning PI controller
based on iteration self-learning scheme is designed [5]. Zhu et al.
have developed on-line identification methods based on model ref-
erence adaptive identification. Then a well-trained neural network
supplies the PI controller with suitable gain according to each
operating condition pair (inertia, angular velocity error, and angu-
lar velocity) detected. Self-tuning PI control technique based on
neural network was executed in this research [6]. Du and Yu have
researched in the double loop of PMSM speed adjustment systems,
the current loop adopts PI control and the speed controller adopts
compound control strategy with particle swarm optimization [7].
Wang et al. have proposed an auto-tuning algorithm for a Digital
Signal Processor (DSP)-based PMSM drive. In order to be compati-
ble with the conventional drives, PI speed control with gains indi-
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vidually designed by Bode diagram and an extension of the fre-
quency-zone method to decouple the tuning gains in a multiloop
control system is studied. The auto-tuning scheme includes two
steps, an adaptive load observer to estimate the load inertia and
adaptive two-degree-of-freedom PI tuning [8]. Pant et al. have
worked a comparative study of three popular, evolutionary algo-
rithms; genetic algorithms (GA), particle swarm optimization and
differential evolution for optimal tuning of PI speed controller in
PMSM drives [9]. Lo et al. have introduced an enhanced output pre-
dictive PI controller which overcomes the problems of large control
action and derivative kick, which may arise in some situations. The
practical problem of auto-tuning of the output predictive PI con-
troller is considered in this paper [10]. Mudi et al. have studied
an improved auto-tuning scheme for Ziegler–Nichols tuned PI con-
trollers. With a view to improving the transient response, the pro-
portional and integral gains of the proposed controller are
continuously modified based on the current process trend [11].
Jiang et al. have proposed an improved evolutionary programming
(EP) method with deterministic mutation factor for on-line PID
parameters optimization of hydro-turbine governing systems.
The mutation factors are usually generated with Gaussian or Cau-
chy random series in conventional evolutionary programming
algorithms. Considering the difficulties of on-line optimal parame-
ters settings resulting from non-linear time-variant hydro-turbine
governing systems, this paper introduces deterministic chaos
dynamics into the mutation operation of EP and provides a deter-
ministic chaotic mutation evolutionary programming method [12].

System model is necessary for tuning controller coefficients in
an appropriate manner (e.g. percent overshoot, settling time). Be-
cause of neglecting some parameters, the mathematical model
cannot represent the physical system exactly in most applications.
That’s why, controller coefficients cannot be tuned appropriately.

Many of the recent developed computer control techniques are
grouped into a research area called Intelligent Control, that result
from the integration of Artificial Intelligent techniques within
automatic control systems [13]. Artificial neural networks (ANNs)
are one of these techniques and can be used to identify the system
properly. Elmas et al. have studied a neuro-fuzzy controller for the
speed control of a PMSM. A four layer neural network (NN) is used
to adjust input and output parameters of membership functions in
a fuzzy logic controller [14].

As mentioned in above references, optimization process of PI
coefficients is generally based on mathematical model and meth-
ods. These studies include a lot of error, such as linearization,
neglecting and not estimating parameters. There are no neglecting
and estimating parameters of the system in this work. Also, there
Fig. 1. The block diagram of t
are no equations of the inverter, BLPMDC motor and DSP. There-
fore, this work will provide off-line tuning PI coefficients using real
system parameters. In this study, the whole system is modelled by
ANNs using input/output data obtained the real system consisted
of three-phase inverter, BLPMDC and DSP. Mathematical equations
are not used for modelling the system. The modelling process is
realized according to inputs controller coefficients (Kp, Ki) and out-
puts maximum overshoot and settling time. Optimization process
is performed via the ANN model using GA. In this paper, firstly
experimental setup is illustrated. Then, modelling system with
ANN and optimization of PI coefficients by using GA is explained.
Results are presented in the discussion section, and the conclusion
is in the final section.

2. Experimental setup

MCK243 kit is a complete motion structure, including a power
amplifier and a motor, thus offering the basic platform for motion
applications evaluation. This kit is evaluation kit that allows you to
experiment with and use the TMS320F243 (F243) Digital Signal
Processor (DSP) controller for digital motion control (DMC) appli-
cations. External power modules may be easily interfaced with
the DSP board through a universal motion control bus (MC-BUS).
The MCK243 kit includes such a power module and a three-phase
brushless motor. TMS320F243 programs for PMBLDC motor speed
control.

The accompanying software of the MCK243 kit (monitor, chip
evaluation applications, advanced IDE graphical analysis toll) rep-
resents a basic evaluation and development platform for motion
application engineers.

The MC-BUS connectors include the basic I/O signals required in
standard motion control applications with DC, AC or step motors.
Fig. 1 presents the block diagram of the PM-50 board.

The board contains a 1.7 A, 36 V three-phase inverter, and can
be connected via the MC-BUS connectors to the MCK243 board.
Motor phases, encoder and Hall signals are also connected to the
PM-50 board. 3-phase brushless motor coupled with 500-line
quadrature incremental encoder and three hall position sensors
[15]. The used experimental setup is shown in Fig. 2.

2.1. Basic structure of the control scheme for the PMBLDC motor
application

The PMBLDC application control scheme is presented in Fig. 3.
As one can see, the scheme is based on the measurement of two
phase currents and of the motor position. The speed estimator
he PM-50 power module.



Fig. 2. The experimental setup is shown.

Fig. 4. The Motion Setup Controller.
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block is a simple difference block. The measured phase currents, ia
and ib, are used to compute the equivalent DC current in the motor,
based on the Hall sensors position information. Remark that the
Hall sensors give a 60 electrical degrees position information.
The speed and current controllers are PI discrete controllers. Only
one current controller is needed in this case, similar to a DC motor
case. The voltage commutator block implements (by software) the
computation of the phase voltages references, Vas�, Vbs� and Vcs�,
applied to the inverter. Practically, the six full compare PWM out-
puts of the DSP controller are directly driven by the program, based
on these reference voltages. In the PMBLDC case, only four of the
inverter transistors are controlled for a given position of the motor.
The scheme will commute to a specific command configuration, for
each of the 60� position sectors, based on the information read
from the Hall sensors.

The speed reference signal is obtained using the reference gen-
erator of DSPMOT 32, included in the application. Thus, the speed
reference may be imposed at Windows level, from DSPMOT 32.

Also the controllers’ parameters are set in DSPMOT 32, at Win-
dows level, from the Motion Setup Controller menu command. The
proportional and integral control factors, as well as the sampling
periods for the current and speed control loops, are set using this
DSPMOT 32 command [15].

2.2. Motion control applications (MCK243 kit)

DSPMOT is an integrated, graphical-environment analysis toll
for DMC applications. It offers you the possibility of analysing your
DSP program variables by using on-line watches, or off-line track-
Fig. 3. PMBLDC co
ing of real-time stored data. Furthermore, a point-to-point linear
interpolation reference generator block may easily be included into
your DSP application and its parameters may be set in the win-
dows environment of the DSPMOT program. Similar facilities
may be used for standard speed/current PI controllers The control-
lers’ parameter PI is entered via the dialog box shown in Fig. 4. DSP
program is executed after entering PI coefficients to run the
PMBLDC.

The main purpose of this dialog is to allow the examination
and/or modification of the parameters of the digital controllers
implemented on the DSP board. These operations may be done be-
fore the execution of the DSP program, in order to set the initial
values of the controller’s parameters.

h: the sampling period for the selected controller, expressed in
milliseconds. Based on this value, DSPMOT will compute the re-
quired parameters in order to properly set the real-time interrupts
on the MCK243 board.

Kp–Ki: the proportional, respectively the integral constant of the
discrete PI controller. These values are converted by DSPMOT, for
the DSP program level, into sets of two parameters, the scaled val-
ues (normalised in Q15 format), and the associated scaling factors.

The motor reference is the input in the motor control block,
containing the speed controller in the case of the PMBLDC applica-
tion. This block will generate the reference of the quadrature cur-
rent (iq), which provides the motor torque. The outputs of this
control block are the PWM reference signals.

Finally, the Pulse Width Modulation (PWM) reference signals
are used the PWM generator block, to drive the power inverter. A
symmetric PWM generation technique was used for the applica-
tion [15].
3. Modelling of the PMBLDC motor using ANN

ANNs are successfully used in a lot of areas such as control,
early detection of electrical machine faults, and digital signal pro-
ntrol scheme.



Fig. 5. The flow chart of training process.

Table 1
Data used for the training of the ANN.

Data set Kp Ki Mo (rpm) Ts (ms)

1 1950 15 104 400
2 1950 50 104 139
3 1950 100 105 79
4 1950 225 105 35
5 1950 350 104 24
6 1950 500 104 23
7 1500 15 101 300
8 1500 50 103 92
9 1500 100 103 50

10 1500 225 104 25
11 1500 350 105 23
12 1500 500 105 22
13 1000 15 103 200
14 1000 50 103 61
15 1000 100 103 32
16 1000 225 104 24
17 1000 350 105 20
18 1000 500 109 23
19 500 15 102 90
20 500 50 102 23
21 500 100 105 18
22 250 15 102 34
23 250 50 102 44
24 250 100 102 62
25 100 15 102 80
26 100 50 102 123
27 50 15 102 144
28 50 50 106 23
29 10 15 105 331
30 10 1 103 240
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cessing in everyday technology. The memory of a neural network
lies in the weights and biases. The neural networks can be classi-
fied, in terms of how the weights and biases are obtained, into
three categories. ANNs have been used in non-linear systems mod-
elling and simulation. In general, ANNs are simply mathematical
techniques designed to accomplish a variety of tasks. ANNs consist
of an inter-connection of a number of neurons. There are different
network types like cascade forward back propagation, feed forward
back propagation, competitive, generalized regression and radial
basis. The back propagation algorithm is a popular algorithm that
has different variants. These are cascade forward, Elman, feed for-
ward and time delay back propagation algorithms. The structure
and operation of back propagation neural networks are not com-
plex [16].

Multi-layer perceptrons (MLPs) are the simplest and therefore
most commonly used neural network architectures. The backprop-
agation algorithm is the most commonly adopted MLP training
algorithm. This type of neural network is known as a supervised
network, because it requires a desired output in order to learn.
The goal of this type of network is to create a model that correctly
maps the input to the output using historical data, so that the mod-
el can then be used to produce the output when the desired output
is unknown.

The ANN model used is a multi-layer perceptron model, in
which there is more than one layer between input and output.
The backpropogation of the error algorithm used as the training
algorithm is used for training of generalized delta rule. The training
process of this ANN model is shown Fig. 5.

Thirty sets of input–output data taken from the application cir-
cuit are given in Table 1. The ANN structure for this system is
shown in Fig. 6, where Kp and Ki, Mo, and Ts are PI coefficients,
the maximum overshoot, the settling time, respectively. The ANN
parameters of the modelled system are presented in Table 2.

There was no criterion to select cell number at every layer of the
ANN structure; layer number and cell number were determined
Fig. 6. The ANN model structure of the system.

Table 2
The ANN parameters for the model system.

Parameter Value

Number of neurons for input layer 2
Number of neurons of the output layer 2
Layer number 2
First layer cell number 7
Second layer cell number 7
First layer activation function Sigmoid
Second layer activation function Sigmoid
Maximum iteration number 30,000
Error limit 0.0001
Training coefficient 0.7
Momentum coefficient 0.9



Fig. 7. Mean-squared error values according to iteration number.

Table 3
Fitness values of the members and GA parameters in the first generation.

Parameter Value

Population size 30
Crossover operator 0.90
Mutation size 0.80
Fitness of member 1 0.008504
Fitness of member 2 0.007954
Fitness of member 3 0.007856
Fitness of member 4 0.007854
Fitness of member 5 0.007824
Fitness of member 6 0.007821
Fitness of member 7 0.007795
Fitness of member 8 0.007776
Fitness of member 9 0.007769
Fitness of member 10 0.007763
Optimal fitness = 0.008504

Fig. 8. The flow chart of the GA.
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with experiment. In the same way, the learning and momentum
coefficients were determined by experiences at previous studies.

A part of the training data and change in the error for the train-
ing process are shown in Fig. 7. Mean-squared error reduced to
lower than 0.0016 by 15,000 iterations, but iteration was still con-
tinued to 30,000 iterations. The training process was finished when
mean-squared error reduces to 0.0001 at 30,000 iterations.
Fig. 9. The change in the settling time.

Fig. 10. The change in the maximum overshoot.

Fig. 11. The change in the maximum overshoot.
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4. Optimization of PI coefficients using GA

GAs are based on an analogy to the genetic code in our own
DNA (deoxyribonucleic acid) structure, where its coded chromo-
some is composed of many genes. GA approach involves a popula-
tion of individuals represented by strings of characters or digits.
Each string is, however, coded with a search point in the hyper
search-space. From the evolutionary theory, only the most suited
Table 4
Data used for testing of ANN output.

Actual output ANN output

Kp Ki Mo (rpm) Ts (ms) Mo (rpm) Ts (ms)

1750 15 104 350 103.0917 368.6841
1750 50 104 125 103.5981 115.9434
1750 225 104 28 104.2734 31.9541
1750 350 105 24 104.301 23.17653
1250 50 103 82 102.923 74.15874
1250 100 103 39 103.5141 39.82892
1250 225 104 23 104.2241 27.91058
1250 350 104 20 104.5569 22.89344
1250 500 104 21 106.5633 22.38476

750 100 103 28 103.0109 25.02495
750 225 103 20 104.6668 22.48236
480 21 102 62 102.6398 55.80698

Fig. 12. Rotor speed versus time for Kp = 140, Ki = 20 (Mo = 102, Ts = 52).

Fig. 13. Rotor speed versus time for Kp = 10, Ki = 50 (Mo = 130, system is unstable).
individuals in the population are likely to survive and generate
off-spring that passes their genetic material to the next generation.

The GA is a subset of evolutionary algorithms that model bio-
logical processes to optimize highly complex cost functions. A ge-
Fig. 14. Rotor speed versus time for Kp = 1750, Ki = 15 (Mo = 104, Ts = 452).

Fig. 15. Rotor speed versus time for optimum Kp = 388,868,392, Ki = 92,008,196
(Mo = 102, Ts = 31).

Fig. 16. Change in the DC equivalent current (iq) for optimum Kp = 388,868,392,
Ki = 92,008,196.
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netic algorithm allows a population composed of many individuals
to evolve under specified selection rules to a state that maximizes
the ‘‘fitness” (i.e., minimizes the cost function). Some of the advan-
tages of a genetic algorithm include that it

� optimizes with continuous or discrete parameters,
� does not require derivative information,
� simultaneously searches from a wide sampling of the cost

surface,
� deals with a large number of parameters,
� is well suited for parallel computers,
� optimizes parameters with extremely complex cost surfaces;

they can jump out of a local minimum,
(a) Speed

(b) The change in the speed 

Fig. 17. A different reference speed a
� provides a list of optimum parameters, not just a single
solution,
� may encode the parameters so that the optimization is done

with the encoded parameters, and
� works with numerically generated data, experimental data, or

analytical functions [17].

In general GAs run repeatedly by using three basic operators
such as reproduction, crossover and mutation, to find the best
parameters in the whole parameter searching space. GAs are global
numerical optimization methods, patterned after the natural pro-
cesses of genetic recombination and evolution. First, an initial pop-
ulation is produced randomly. Then, genetic operators are applied
 reference 

(c) The change in the iq

pplication for Kp = 1500, Ki = 100.
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to the population to improve their fitness gradually. The procedure
yields a new population at each iteration [18].

The GA used in this paper known as the simple genetic algo-
rithm. Different crossover and mutation rates are used for process-
ing of optimization of genetic algorithms. Ten of the fitness values
obtained, listed from the largest fitness value to the smallest, and
the fitness values of the members of the first generation are shown
in Table 3. The flow chart of the GA is shown in Fig. 8 [19].

A PI controller with the transfer function.
GcðsÞ ¼ Kp þ Ki

s is employed to control the process.
The optimum values for the Kp and Ki pairs were obtained using

a computer program written in C++ language for the GA. This pro-
cess executes with three different operators at bit level. 30 of the
Kp and Ki pairs were determined at random. Kp and Ki consisted
of 15 bits and 12 bits, respectively. These Kp and Ki pairs were en-
tered to ANN model as input. The maximum overshoot and settling
(a) The change in the speed 

(b) The change in the iq

Fig. 18. The same reference speed application in Fig. 17.
time were obtained from the ANN output. These values were then
used as the fitness function.

The one-point crossover method was used on the crossover
operator. Mutual parameters of two random members on the
crossover were divided into two parts and their positions were
changed. A random bit of a random number on the mutation pro-
cess was changed 0–1 and 1–0. For the optimization process, muta-
tion rate is increased when converge occurs in 5–10 generation.
Therefore, early converge is prevented, and in addition, members
that have high fitness values were obtained.

The range of Kp and Ki values chosen lay between (10-1950) and
(15-500) respectively. The fitness function is defined as
f ¼ 1
Mo þ Ts þ 1

In this algorithm, the genetic algorithm parameters are selected
for the training cycles were:

� Population size: 30
� Number of generations: 60
� Crossover rate:0.60
� Mutation rate:0.04
� Chromosome length: 30 bits (15 each for Kp and Ki)

5. Results and discussion

The changes in the settling time and maximum overshoot for
the actual system output and ANN output were given in Table 4.
These data are different from data in Table 1.

The obtained model was tested with data given in Table 4 that
was not in the training set after the training process, in order to
discern the appropriateness of the ANN model. The change in the
settling time with Ki and Kp for actual system and ANN model, gi-
ven in Table 4, is shown in Fig. 9.

The change in the maximum overshoot value of the speed with
Ki and Kp for the actual system and ANN model are demonstrated
in Figs. 10 and 11, respectively.

Fig. 11 shows the zoom in version of Fig. 10. The ANN model fol-
lows the system output, with a small error that arises from differ-
ences between experimental conditions and the model of the non-
linear system. It shows that the ANN model created for the system
models it successfully.

The optimum PI coefficients were found to be: Kp =
388,868,392, Ki = 92,008,196 (Generation number: 100). Optimal
fitness value was not change after generation 100. Therefore, opti-
mal Kp and Ki value are taken for generation number 100. The re-
sponses of the system for these values of Kp and Ki are shown in
Fig. 15. The settling time is shorter and the maximum overshoot
is minimized for these values. This shows that full system is a good
control system.

The change in the maximum overshoot of the speed with differ-
ent Kp and Ki values for the actual system were demonstrated in
Figs. 12–14.

Iq current is estimated from measured phase currents. As shown
in Fig. 15, the settling time is shorter and maximum overshoot is
lower than the others. Iq current for optimum Kp and Ki is shown
in Fig. 16.

Correctness of the optimum Kp and Ki pairs was tested for a dif-
ferent reference speed shown in Fig. 17a, in Appendix A. The ob-
tained results from the actual system for a different Kp

(Kp = 1500) and Ki (Ki = 100), and optimum Kp and Ki pairs are
shown in Figs. 17 and 18, respectively, in Appendix A. As shown
in Fig. 18, the maximum overshoot is minimized and the settling
time is shorter for optimum values.
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6. Conclusion

In this paper, the optimal PI coefficients design method that
achieves high performance for a PMBLDC motor using GA was pro-
posed. Actual system (motor, and inverter and DSP) was modelled
by ANN. It was also determined that the maximum overshoot and
settling time are very small if the system is controlled by control
parameters obtained from the optimization process which uses GA.

The results presented show that ANN method has improved dy-
namic performance. It was found that GA is suitable for optimiza-
tion of controller coefficients by the performance criteria
considered. This process can be also applied for non-linear systems
controlled by PD and PID controller. The PI optimization method
given in this paper can be adopted by the industry. This method
is very useful for non-linear and complex systems.

Appendix A

A.1. PMBLDC motor parameters

P: 50 watt
Phase resistance: 7.5 ohm
Phase inductance: 480 mH
Back-EMF constant: 2.1 V/1000 rpm
Torque constant: 20 mNm/A
Rated voltage: 10 V
Max. Voltage: 36 V.
Rotor inertia: 4.6 � 10�7 kgm2

Mechanical time constant: 8.6 ms
A.2. Some of the obtained results using GA were given as below

Generation number: 1.

Member=1 ����� Fitness value=0.008504 ����
Member=2 ����� Fitness value=0.007954 ����
Member=3 ����� Fitness value=0.007856 ����
Member=4 ����� Fitness value=0.007854 ����
Member=5 ����� Fitness value=0.007824 ����
Member=6 ����� Fitness value=0.007821 ����
Member=7 ����� Fitness value=0.007795 ����
Member=8 ����� Fitness value=0.007776 ����
Member=9 ����� Fitness value=0.007769 ����
Member=10����� Fitness value=0.007763 ����
Optimal fitness = 0.008504
Kp = 404.182047, Ki = 130.737707

Generation number: 15.

Member=1 ����� Fitness value=0.008567 ����
Member=2 ����� Fitness value=0.008527 ����
Member=3 ����� Fitness value=0.007828 ����
Member=4 ����� Fitness value=0.007828 ����
Member=5 ����� Fitness value=0.007828 ����
Member=6 ����� Fitness value=0.007828 ����
Member=7 ����� Fitness value=0.007828 ����
Member=8 ����� Fitness value=0.007828 ����
Member=9 ����� Fitness value=0.007828 ����
Member=10 ����� Fitness value=0.007828 ����
Optimal fitness value = 0.008567
Kp = 406.150073, Ki = 105.942622
Generation number: 30.
Member = 1 ����� Fitness value = 0.008567 ����
Member = 2 ����� Fitness value = 0.008191 ����
Member = 3 ����� Fitness value = 0.008191 ����
Member = 4 ����� Fitness value = 0.008188 ����
Member = 5 ����� Fitness value = 0.008188 ����
Member = 6 ����� Fitness value = 0.008188 ����
Member = 7 ����� Fitness value = 0.008188 ����
Member = 8 ����� Fitness value = 0.008188 ����
Member = 9 ����� Fitness value = 0.008188 ����
Member = 10 ����� Fitness value = 0.008188 ����
Optimal fitness value = 0.008567
Kp = 406.150073, Ki = 105.942622

Generation number: 71.

Member = 1 ����� Fitness value = 0.008580 ����
Member = 2 ����� Fitness value = 0.008579 ����
Member = 3 ����� Fitness value = 0.008579 ����
Member = 4 ����� Fitness value = 0.008459 ����
Member = 5 ����� Fitness value = 0.008456 ����
Member = 6 ����� Fitness value = 0.008253 ����
Member = 7 ����� Fitness value = 0.007659 ����
Member = 8 ����� Fitness value = 0.007659 ����
Member = 9 ����� Fitness value = 0.007659 ����
Member = 10 ����� Fitness value = 0.007659 ����
Optimal fitness value = 0.008580
Kp = 392.189413, Ki = 88.319674

Generation number: 100.

Member = 1 ����� Fitness value = 0.008583 ����
Member = 2 ����� Fitness value = 0.008564 ����
Member = 3 ����� Fitness value = 0.008564 ����
Member = 4 ����� Fitness value = 0.008564 ����
Member = 5 ����� Fitness value = 0.008562 ����
Member = 6 ����� Fitness value = 0.008562 ����
Member = 7 ����� Fitness value = 0.008562 ����
Member = 8 ����� Fitness value = 0.008562 ����
Member = 9 ����� Fitness value = 0.008562 ����
Member = 10 ����� Fitness value = 0.008562 ����
Optimal fitness value = 0.008583
Kp = 388.868392, Ki = 92.008196
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