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Abstract. At the present paper we show that conjugacy is preserved and reflected by the natural homomorphism defined from
a semigroup S to a group G, where G defines split extensions of some free groups. The main idea in the proofs is based on a
geometrical structure as applied in the paper [8].
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INTRODUCTION AND PRELIMINARIES

Let P̂ = [x ; r] be a semigroup presentation for a semigroup S (= S(P̂)). For each R ∈ r, the words R+1 and R−1

are distinct, non-empty and positive on x. We also let r̂ = {R+1R−1
−1 : R ∈ r}. Then we have a corresponding group

presentation P = 〈x ; r̂〉, for a group G (= G(P)). Finally, let π be the natural homomorphism from S to G defined

by [X ]
P̂
7→ [X ]P (X is a word on x). The focus of this paper is the conjugacy problem, and so conjugacy, that have

received a good deal of attention (see, for instance, [7, 8, 10, 13]), and, in here, this problem will be studied in the

meaning of the homomorphisim π . In particular it seems natural to ask the following questions for the conjugacy

problem:

• If two elements of S are conjugate in S, are their images under π conjugate in G?

• If π is injective and two elements of S have conjugate images under π in G, are they conjugate in S?

If the first question can be answered positively, then we say that π preserves conjugacy, and if the second one can be

answered positively, then we say that π reflects conjugacy. The main diffuculty associated with such questions is that

there seems to be no standard definition of conjugacy in an arbitrary semigroup or monoid. But, in [8], Goldstein and

Teymouri modified the definition given in the famous book of Lallement ([10]) to arrive at a definition of conjugacy

in semigroup S (see Definitions 4 and 5 below). In fact, by this modification, π preserves conjugacy and, in addition,

if P satisfies Adjan’s conditions, say (AC) (in which P has the property that both left and right graphs are cycle free

[1]), for S to be embeddable ([15]) in group G, then π also reflects conjugacy.

In a joint paper ([11, Proposition 3]), it was showed that the semidirect product (i.e. the split extension) Fn ⋊ϖ Z,

where ϖ is a morphism from Z to Aut(Fn), is word-hyperbolic and free-by-cyclic for some sufficiently large values.

In fact these two results on this special semidirect product imply that the conjugacy problem is solvable for it (see

[3, 4]). Thus one can asks whether solvability of the conjugacy problem can be extended for semidirect products

obtained by some other free groups. In this paper we try to find an answer for this question over some special free

groups. Therefore, by considering the paper [8], we first re-prove the conjugacy problem on the group G1 = Fn ⋊ϖ Z

(semidirect product of free group of rank n by free group of rank 1) in a different manner. We basically show that π
preserves and reflects conjugacy for this case. Additionally, again by considering [8], we prove only reflectivity of π
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on the group G2 = Fn
⋊ϖ F2 (semidirect product of free abelian group of rank n by free abelian group of rank 2) as

a main result of this paper. The reason for us keeping re-prove the well known fact about conjugacy on the group G1

is presenting the valuality of the method, used in here, on a known result. Therefore the proof on the group G2 will be

more understandable. The following theorem will be proved again by a geometric way.

Theorem 1 For the group G1, if the generator of the group Z is a unique sink (or a unique source) for the left graph
(or the right graph) of the presentation for this group, then the conjugacy is both preserved and reflected by the natural
homomorphism.

In the following, the main theorem of this paper is given and the same method with Theorem 1 will be applied on

the proof of it.

Theorem 2 For the group G2, if the S-diagram of this group has “symmetrical two squares", then the conjugacy is
reflected by the natural homomorphism.

As it seen from the statements of above theorems, the major idea in here is using S-diagrams that are effective tools

in obtaining results on groups and semigroups. We refer the reader to [12] for more details on these diagrams. But we

may only recall that “a cellular diagram (simply connected diagram) is called an S-diagram if it is two-sided and no
interior vertex is a sink or a source". In studying boundary problems (such that word problems etc.) for semigroups,

the importance of S-diagrams can be seen clearly by the following proposition which will be used later in the paper.

Proposition 3 ([14]) Let u and v be two words in the alphabet X. Then they represent the same element in S if and
only if there is an S-diagram whose boundary label is the pair (u,v).

We note that notations∼G,∼S,∼
(i)
S ,∼

(ec)
S and∼

(eic)
S will denote conjugate in G, conjugate in S, inversely conjugate

in S, elementary conjugate in S and elementary inversely conjugate in S, respectively, at the rest of this paper. Now we

can give the following conjugacy definitions which build up main body of the preserving parts of proofs.

Definition 4 ([8]) Let u and v be two elements in S. If there exists an element a in S (possibly empty word) such that

either ua = av or au = va, then u∼
(ec)
S v. Moreover if there exists an element a in S such that either uav = a or vau = a,

then u∼
(eic)
S v.

It is seen that if u ∼
(eic)
S v, then u ∼G v−1. Hence, by keeping this in mind, the following definition gives a proper

statement for any two elements in S to be conjugate to each other.

Definition 5 ([8]) Let u and v be two elements in S. We say that u ∼S v (or u ∼
(i)
S v) if there exists a finite sequence

of elements u1,u2, · · · ,un such that “u = u1 and v = un", “either uk+1 ∼
(ec)
S uk or uk+1 ∼

(eic)
S uk" and “the number of

elementary inverse conjugations is even for the case u∼
(i)
S v this number is odd".

We note that, by Definition 5, if u∼
(i)
S v then u∼G v−1.

Remark 6 Let G be a group and let u,v be both non identity elements in G. If u ∼G v, then there exists a reduced
annular diagram that boundary cycles are u and v ([12]). This fact will be directly used in the paper (without
mentioning again) to obtain the required preservation and reflectivity of π related to Fn ⋊ϖ Z and Fn

⋊ϖ F2.

CONJUGACY ON THE GROUP G1 = Fn ⋊ϖ Z

Let Fn and Z be generated by 〈x1,x2, · · · ,xn〉 and 〈t〉, respectively. By assuming each morphism satisfying the

compatibility conditions (xi)ϖt = ∏n
i, j=1 x

αi j
j , Cohen and Suciu showed in a joint paper [6, Section 1.1] that

P =
〈
x1,x2, · · · ,xn, t ; t−1xit = xαi1

1 xαi2
2 · · ·xαin

n

〉
(1)

is a presentation for the semidirect product Fn ⋊ϖ Z, where αi j (1≤ i, j ≤ n)’s are some integers.

Remark 7 It is a well known fact that, in general, P in (1) cannot be a presentation for the semidirect product of Fn

by Z since the morphism given by xi 7−→ xαi1
1 xαi2

2 · · ·xαin
n not need to define an automorphism of Fn for every elections

of the integers αi j’s. So, for each i, we should have assumed that conditions (xi)ϖt = t−1xit = ∏n
i, j=1 x

αi j
j must hold to

P in (1) be a semidirect product presentation, as done in [6].
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By [12], we can consider a diagram for the presentation of Fn ⋊ϖ Z ([9]). To obtain labels on the outer and the inner

boundaries of this diagram, let us traverse these boundaries in an anticlockwise manner starting from two different

points. Then we get labels where each of them is a word U = xαn1
1 · · ·xαnn

n x
αn−11

1 · · ·x
αn−1n
n · · ·xα21

1 · · ·xα2n
n xα11

1 · · ·xα1n
n and

V = xnxn−1 · · ·x2x1, respectively. So, by considering this diagram ([9]), we get the following result:

Lemma 8 A word W = xixi+1 · · ·xnx1x2 · · ·xi−1 (1≤ i≤ n) obtained by the generators of Fn is conjugate to

xαi1
1 · · ·xαin

n x
αi+11

1 · · ·x
αi+1n
n · · ·xα1n

1 · · ·xαnn
n xα11

1 · · ·xα1n
n · · ·x

αi−11

1 · · ·x
αi−1n
n . (2)

Proof. Using the relations in (1), Wt = tU in S; hence W ∼
(ec)
S U . �

Proof of Theorem 1:

The existence of the preservation for the natural homomorphism π is clear by Definition 5. For the reflectivity of π ,

let t (that was assumed the generator of Z) be a unique sink (or a unique source) for the left graph (or the right graph)

of presentation P in (1). Therefore P satisfies (AC) condition and so the natural homomorphism from S to Fn ⋊ϖ Z

is one-to-one.

By [8], there are following two situations for diagrams of any groups:

1. There is a positive path of interior edges which either starts at the outer boundary and ends at the outer boundary

or starts at the outer boundary ends at the inner boundary (which is suitable for our case), and also it has no

self-intersections.

2. There is a positive cycle of interior edges which is the outer boundary of a proper annular subdiagram of a

diagram.

Now if our diagram drawn for Fn ⋊ϖ Z ([9]) is convenient to second case in above, then

• the word as the label on the outer boundary of this diagram is U = xαn1
1 · · ·xαnn

n · · ·xα11
1 · · ·xα1n

n ,

• words as the label on the outer boundary of this diagram and as the label on the outer boundary of subdiagram

are same and equal to W = xn · · ·x2x1,

• the word as the label on the inner boundary of subdiagram is V = xαn1
1 · · ·xαnn

n · · ·xα11
1 · · ·xα1n

n .

These imply that U ∼S W and W ∼S V , and so U ∼S V .

After all, since this diagram is an annular, reduced and has n regions, we can separate it along some word t. Therefore

we get

xαn1
1 · · ·xαnn

n · · ·xα11
1 · · ·xα1n

n ∼S xn · · ·x2x1 or xα11
1 · · ·xα1n

n xαn1
1 · · ·xαnn

n · · ·xα21
1 · · ·xα2n

n ∼S x1xn · · ·x2 or

· · · · · · · · · or xαi1
1 · · ·xαin

n · · ·x
αi+11

1 · · ·x
αi+1n
n ∼S xixi−1 · · ·x1xnxn−1 · · ·xi+1

(Ut−1 = t−1V ), which completes the proof. �

It is known that every word is conjugate to itself. Therefore there is no necessary to draw a diagram for this situation

in the above proof.

As an application, let us consider the group F2 ⋊ϖ Z. Although distinct automorphisms of F2 yield distinct pre-

sentations for F2 ⋊ϖ Z, the diagrams related to these presentations are virtually same. Let us consider the morphism

that tends x1 to xεα
1 and x2 to xδβ

2 , where ε ,δ = ±1 and α,β ∈ Z
+. (The note in Remark 7 is still holding). In fact,

for any different positive integers α and β , the diagram can be drawn by taking ε ,δ = +1, ε ,δ = −1, ε = +1 and

δ = −1 or ε = −1 and δ = +1. Now if we take ε ,δ = +1, then we get labels of the outer and the boundaries as

x−β
2 x−α

1 x−β
2 · · ·x−α

1 and x−1
2 x−1

1 x−1
2 · · ·x−1

1 , respectively. So, by Lemma 8, these are conjugate elements.

CONJUGACY ON THE GROUP G2 = Fn
⋊ϖ F2

Let Fn and F2 be presented by
〈
x1,x2, · · · ,xn ; xix j = x jxi

〉
(1 ≤ i < j ≤ n) and 〈y1,y2 ; y1y2 = y2y1〉, respectively.

Hence, by considering the morphism ϖ : F2 → Aut(Fn), we obtain

Q =< x1,x2, · · · ,xn,y1,y2 ; xix j = x jxi (1≤ i < j ≤ n), y1y2 = y2y1,

y−1
l xiyl = xαi1

1 xαi2
2 · · ·xαin

n (1≤ i≤ n,1≤ l ≤ 2)> (3)
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as a presentation for G2 ([6]) such that αi j’s (1≤ i, j ≤ n) are integers. We note that the assumption on the morphism

ϖxi is still valid as assumed for the presentation (1). We also note that one can look at the paper [5] for the monoid

version of this presentation.

Due to commutativity of each groups Fn and F2, we should consider the diagram of the presentation Q given above

in two cases ([9]):

• Case 1 : Separate diagram case

In this case the diagram of Q consists of three separate diagrams, where the first and the second represent the

commutator relators of groups F2 and Fn, respectively, and the third one represents the relators xiy1 = y1xαi1
1 xαi2

2 · · ·xαin
n

and x jy2 = y2x
β j1

1 x
β j2

2 · · ·x
β jn
n . We should note that although the second diagram has been considered by taking n ≥ 3

and odd, it can also be figured out similarly for the all even number n grater than or equal to 2.

Since the conjugacy problem is solvable for free abelian groups, there will be no problem to obtain conjugate ele-

ments from the first and the second diagrams. Moreover to obtain conjugate elements from the third diagram, we can

traverse the outer and inner boundaries in a clockwise manner starting from two different points, and so we get labels

as the words x−α1n
n · · ·x−α11

1 x−α2n
n · · ·x−α21

1 · · ·x−αnn
n · · ·x−αn1

1 and x−β1n
n · · ·x−β11

1 x−β2n
n · · ·x−β21

1 · · ·x−βnn
n · · ·x−βn1

1 , respec-

tively. In fact, by using the relators in presentation (3), we can rewrite these words in a shorter form to determine the

conjugate elements. In other words, for the label of outer boundary, we can write y−1
1 x−1

1 y1 instead o f x−α1n
n · · ·x−α11

1

and y−1
1 x−1

2 y1 instead o f x−α2n
n · · ·x−α21

1 , etc. and, by iterating this procedure and considering the deletion opera-

tion, we finally obtain the identity y1y−1
1 . In addition, we also have y−1

1 x−1
1 x−1

2 · · ·x−1
n y1 for a shorter form of

x−α1n
n · · ·x−α11

1 x−α2n
n · · ·x−α21

1 · · ·x−αnn
n · · ·x−αn1

1 . By the same way, we can rewrite the word y−1
2 x−1

1 x−1
2 · · ·x−1

n y2 for the

label on inner bondary. At this stage, let us label the subword x−1
1 x−1

2 · · ·x−1
n by W . Also let us cut the diagram along

y−1
2 y1 (from one point to another) to obtain an S-diagram, and so to get conjugate elements (see [12]). In fact, by

Proposition 3 and Definition 5, we obtain y−1
1 Wy1 ∼S y−1

2 Wy2, and then y2y−1
1 Wy1y−1

2 ∼S W . This shows that every

word is conjugate to itself by considering the third diagram ([9]).

• Case 2 : Joint diagram case

In the following paragraph, we use some technical terms such as seed, leaves etc. and we refer again [12] for the

details.

This case has been basically constructed over a new diagram which obtained by putting three diagrams considered

above in one diagram. So to obtain this new one, we first take the second diagram (which shows commutator relators

in Fn) and call it “seed". Then by placing the thirs diagram to the side of each related generator on the boundary

of seed, we get 2n regions. Let us also call these new regions as “leaves". Since the labels join outer boundary of

the third diagram to outer boundary of the second diagram are y1 and y2, we must take the first diagram (which

represents commutator relators in F2) between two leaves symmetrically. Hence we obtain a new diagram by putting

three diagrams into one diagram ([9]).

Remark 9 On account of the number of each generators of Fn on the boundary of seed is 2, the rank of the other free
abelian group must be 2. Otherwise there would be some unneeded loops (circles) on the diagram.

Now to make sure the existence of the diagram for presentation Q in (3), we need to check the

word, as a label, on the boundary of this new diagram. To do that we let travel around the bound-

ary of this new diagram starting from one point in a clockwise manner. So the required label will be

W = y1y−1
2 x−α1n

n · · ·x−α11
1 · · ·x−α3n

n · · ·x−α31
1 y−1

1 y2xβ11
1 · · ·xβ1n

n · · ·xβ31
1 · · ·xβ3n

n . Then, by applying the same iterating pro-

cedure W as done in Case 1, we obtain W = y1y−1
2 y−1

1 x−1
1 y1y−1

1 x−1
2 y1 · · ·y

−1
1 x−1

3 y1y−1
1 y2y−1

2 x1y2y−1
2 x2y2 · · ·y

−1
2 x3y2.

After some rearragements and reductions, we get W = y−1
2 x−1

1 x−1
2 · · ·x−1

3 x1x2 · · ·x3y2, i.e. W = 1.

These above procedure give the following lemma.

Lemma 10 For G2 = Fn
⋊ϖ F2, the corresponding diagram exists.

Proof of Theorem 2:

As previously we must construct an annular diagram to determine conjugate elements. So let us take the each word,

which is the label of the outer and inner boundaries of the new diagram constructed above, as y2y−1
1 W1y1y2U1 and

W2V2, respectively, where W1, U1, W2 and V2 are words. Then the required annular diagram has “symmetrical two

squares" ([9]). But in this diagram if we cut the path y2 we get two S-diagrams. So we have two regions, namely A
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and B, and two outer and inner boundaries. Then we have

. the word as the label on the outer boundary of region A is W1 = xβ11
1 · · ·xβ1n

n xβ21
1 · · ·xβ2n

n xβ41
1 · · ·xβ4n

n · · ·xβ51
1 · · ·xβ5n

n xβ31
1 · · ·xβ3n

n .

. the word as the label on the inner boundary of the region A is W2 = x1x2x4 · · ·xn−1xn · · ·x5x3.

. the word as the label on the outer boundary of the region B is V1 = y1y−1
2 x−α1n

n · · ·x−α11
1 · · ·x−α3n

n · · ·x−α31
1︸ ︷︷ ︸

U1

y2y−1
1 .

. the word as the label on the inner boundary of the region B is V2 = x−1
1 x−1

2 x−1
4 · · ·x−1

n−1x−1
n · · ·x−1

5 x−1
3 .

It is easy to see that labels on the outer boundaries of regions A and B are equivalent to y−1
2 x1x2x4 · · ·xn−1xn · · ·x5x3y2

and y−1
2 x−1

1 x−1
2 x−1

4 · · ·x−1
n−1x−1

n · · ·x−1
5 x−1

3 y2, respectively. Now, by considering regions A and B separately, it is seen

that W1 ∼S W2 and V1 ∼S V2. But since W1V1 is equivalent to the identity, so is W2V2. Therefore W1V1 ∼S W2V2. These

yield us the proof of Theorem 2, as required. �

SOME REMARKS

This final section is based on the relationships between diagrams and conjugacy search problem, and between diagrams

and left (right) divisible problem on groups Fn ⋊ϖ Z and Fn
⋊ϖ F2.

For a group G and for the conjugate elements a and b in G, the conjugacy search (CS) problem is to find an element

c∈G such that ac = b (or, equivalently, cac−1 = b). For a semigroup S, we can convert this problem to find an element

c∈ S such that ca = bc or ac = cb (see [7]). By Theorem 1, we stated that the conjugacy is both preserved and reflected

by the natural homomorphism. To indicate that, we have just found the element t−1 (or t) which satisfies conjugacy.

This also yields us the solvability of conjugacy search problem for the group G1 = Fn⋊ϖ Z. Hence the following result

is clear by Theorems 1 and 2.

Corollary 11 The (CS) problem is solvable for the groups G1 and G2.

In addition to above search problem, for a semigroup S, a word A is said to be left (right) divisible by a word B if

there is a word X such that the relation A = BX (A = XB) holds in S. Therefore, by [2], The left divisible (LD) (or,
right divisible (RD)) problem for a given semigroup is to find an algorithm to determine if two arbitrary words A and

B whether or not A is left (right) divisible by B and, if yes, to describe a quotient X . By the proof of Theorem 1, for

the words U and V , we have t−1V︸︷︷︸
A

= U︸︷︷︸
B

t−1

︸︷︷︸
X

. This yields that t−1V is left divisible by U and Ut−1 is right divisible

by V . Similar progress can be applied on the group Fn
⋊ϖ F2 as well. Therefore we have the following result.

Corollary 12 The (LD) (or (RD)) problem is solvable for Fn ⋊ϖ Z and Fn
⋊ϖ F2.

After that we can directly say that the diagram structure used for giving these above results gave a fast probabilistic

algorithm for solving the conjugacy search and left (right) divisible problems.
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