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4D-QSAR studies were performed on a series of 87 penicillin analogues using the electron conforma-
tional–genetic algorithm (EC–GA) method. In this EC-based method, each conformation of the molecular
system is described by a matrix (ECMC) with both electron structural parameters and interatomic dis-
tances as matrix elements. Multiple comparisons of these matrices within given tolerances for high active
and low active penicillin compounds allow one to separate a smaller number of matrix elements (ECSA)
which represent the pharmacophore groups. The effect of conformations was investigated building model
1 and 2 based on ensemble of conformers and single conformer, respectively. GA was used to select the
most important descriptors and to predict the theoretical activity of the training (74 compounds) and test
(13 compounds, commercial penicillins) sets. The model 1 for training and test sets obtained by optimum
12 parameters gave more satisfactory results (R2

training = 0.861, SEtraining = 0.044, R2
test = 0.892, SEtest = 0.099,

q2 = 0.702, q2
ext1 = 0.777 and q2

ext2 = 0.733) than model 2 (R2
training = 0.774, SEtraining = 0.056, R2

test = 0.840,
SEtest = 0.121, q2 = 0.514, q2

ext1 = 0.641 and q2
ext2 = 0.570). To estimate the individual influence of each of

the molecular descriptors on biological activity, the E statistics technique was applied to the derived
EC–GA model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

b-Lactam antibiotics, known as penicillin-class antibiotics, are
the most varied and widely used of all the different groups of
antimicrobials, and about 100 different b-lactam antibiotics are
used clinically in the antibacterial treatment of humans and
animals.1–3 Penicillins produce their bactericidal effects by inhibit-
ing the synthesis of the peptidoglycan layer of bacterial cell walls.
The basic structure of penicillin consists of a thiazolidine ring con-
nected to a b-lactam ring, (the penicillin nucleus) and to which is
attached a side chain (R). The penicillin nucleus is the chief struc-
tural requirement for biological activity and requires the presence
of an acid residue on the thiazolidine ring for binding to the peni-
cillin binding proteins.4

A QSAR study on b-lactam antibiotic derivatives has been
reported using principal component and hierarchical cluster
(PCA–HCA) analysis for 16 b-lactams.5 In addition, the binding
of 87 penicillins to human serum proteins was modeled with
topological descriptors of molecular structure by Hall et al. using
MDL-QSAR software.6 The models indicated a combination of
general and specific structure features that are important for
ll rights reserved.

: +90 352 437493.
.

estimating protein binding in this class of antibiotics. The predic-
tive ability of the QSAR model was assessed using a test set of 13
commercial penicillin compounds.6

Rational drug design tries to establish a mathematical connec-
tion between the biological activity of a compound and some key
molecular properties. The actual mathematical connection relies
on statistics and relates biological activity to so-called molecular
descriptors. The structural properties of the molecules are usually
represented by a set of variables (descriptors), with the assumption
that the molecule’s activity is in some way related to the values of
these variables.7,8 All the descriptors generated for a specific mol-
ecule are not significant in modeling. The use of all available
descriptors in model development causes dimensionality problems
and diminishes the performance of a QSAR model, especially when
non-linear algorithms are used in model development. Different
methods for reduction are available in the literature. The genetic
algorithms (GAs) have recently received much attention because
of their ability to solve difficult problems in optimization.9

3D-QSAR methods are based on the detailed description of the
local properties of each molecular structure. They are affected by
the particular conformation adopted by a molecule, as well as to
its orientation with respect to the other molecules. In 3D-QSAR
studies, molecular alignment and ‘active’ conformation determina-
tion are so important that they affect the success of a model. One of

http://dx.doi.org/10.1016/j.bmc.2011.02.035
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the key steps in 3D-QSAR methodology is the selection of the
active conformer for each compound in the series. For flexible
molecules, this problem is the most difficult one and construction
of the method with appropriate chemometric tools has been re-
quired.10 Usually, a bioactive conformation of the ligand can be ob-
tained from a structural determination of the ligand receptor
complex by X-ray crystallography.11

The 4D-QSAR paradigm, which was proposed by Hopfinger et al.
is a molecular modeling method that has proved both useful and
reliable in the construction of quantitative 3D pharmacophore
models for a set of ligand analogues when the geometry of the
corresponding receptor is not known.12 Basically, 4D-QSAR
examines the conformational space of the molecular objects. These
models are similar to 3D models, but as compared to them, the
structural information is considered for a set of conformers
(conditionally, the fourth dimension), instead of one fixed
conformation.13,14

The electron conformational (EC) method presented by Bersu-
ker et al. as one of the QSAR methods is aimed at searching rules
for different activities prediction, based on the pharmacophores
found previously by specific EC calculations.15 For this purpose, a
non-linear mathematical model which defines the relationship be-
tween bioactivity and the parameters was presented for bioactivity
prediction using one conformer for compounds. This EC method
has been recently applied to a variety of problems such as screen-
ing rice blast activity inhibitors, angiotensin converting enzyme
inhibitors, group I metabotropic glutamate receptor agonists,
inhibitors of human breast carcinoma, guanidino- and aminogua-
nidinopropionic acid analogues. A detailed description of the EC
method has been adequately described in Bersuker’s studies.
Therefore, only the points relevant to this work are described
here.16–22

Genetic algorithm (GA) is a heuristic search method used for
identifying optimal solutions to a problem where the possible solu-
tion space is too large to be exhaustively enumerated.23 GA has
been widely used for feature optimization in QSAR models. This
approach is able to elucidate structure–activity relationships by
taking into account non-linear character of these relationships.
The purpose of variable selection is to select the variables signifi-
cantly contributing to prediction and to discard other variables
by a fitness function.24–26

Combining different methods in a hybrid method, it is possible
to minimize the errors and take advantage of the good features of
each method. In this work, a hybrid 4D-QSAR approach (EC–GA)
that combines the electron conformational (EC) and genetic algo-
rithm optimization (GA) methods was applied in order to explain
the pharmacophore (Pha) and to predict antibacterial activity by
studying 87 compounds in the class of b-lactam antibiotics (known
as penicillin) derivatives. This method is based on the generation of
a conformational ensemble profile for each compound instead of
only one conformation, followed by the calculation of descriptors
for a set of compounds. The fourth dimension refers to the possibil-
ity of representing each ligand molecule as an ensemble of confor-
mations and orientations, thereby reducing the tendency in
identifying the bioactive conformation and orientation (4D-QSAR).
In our previous studies, this method was successfully performed as
a 4D-QSAR procedure to identify the pharmacophore for benzotri-
azines and triaminotriazine derivatives, and quantitative predic-
tion of activity.27,28

2. Materials and methods

The EC method is aimed at establishing rules for the prediction
of different activities, based on the pharmacophores found previ-
ously by specific EC calculations.15,21 The method uses data ob-
tained from quantum-chemical calculations and arranged in the
form of electron-conformational matrices of conjunction (ECMC),
which combine geometric and electronic features.18 Bersuker and
Dimoglo presented the so-called electron conformational (EC)
method of Pha identification and quantitative bioactivity predic-
tion in drug design, which is basically different from ETM.29 This
method analyzes molecules represented by matrices known as
electronic-topological matrices of congruity for only one con-
former of the molecule.30–33

The geometries and electronic structure for penicillin deriva-
tives were optimized with the parametric model number 3 (PM3)
method using analytical gradients. The purpose of conformational
analysis is to obtain a description of the three-dimensional struc-
ture of molecules. Such knowledge is required in order to under-
stand the interactions between molecules. If the energies of
different conformers are known it should be possible to calculate
their relative abundances by Boltzmann weighting. Heavily popu-
lated conformations mean those with energies <1.5 kcal/mol above
the ground state conformation. Since conformers of low energy
have a larger population than other conformers according to Boltz-
mann distribution, these conformers are more responsible than
others.15 Then we calculate the electronic structure of each of these
conformations and arrange the corresponding electronic and geo-
metrical parameters in a matrix n � n (n is the number of atoms),
called the ECMC (Fig. 1). The ECMC, which is specific ECM language
for compound structure description, is a square matrix that is sym-
metric with respect to the diagonal elements. Hence, only the
upper part of each ECMC is kept in the memory of the computer
and processed by EMRE software which was written by our re-
search group based on the DELPHI program34 and accepts various
standard structure formats as input: spartan.txt or gaussian.out
file. The diagonal elements aii in the ECMC, where i represents
the ith atom in the molecule, are one of the electronic atomic char-
acteristics (local atomic characteristics) such as atomic charges and
valence activities. The off-diagonal elements aij are of two kinds,
one of which is for chemical bonds and the other is for chemically
non-bonded atoms. If i and j label chemically bonded atoms, then
aij is one of the electronic parameters of the i–j bond such as bond
order. As a bond property, bond order is often chosen because it re-
flects bond strength and, together with atomic charges and 3D dis-
tances (in Å), it gives valuable information on the electron density
distribution in the 3D space of a molecule.29 If i and j label non-
bonded atoms, then aij is the interatomic distance between the
ith and jth atoms (Rij). Under fixed atomic and bond parameters
that are deemed most important for activity demonstration, the
ECMC of each conformer under consideration is formed.31,32 The
compounds under study (87 molecules) are shown in Table 1.
The ECMC of the lowest energy conformer of the most active com-
pound (compound 73) in the penicillin series is shown in Figure 1.

The pharmacophore is commonly defined as an arrangement of
molecular features or fragments forming a necessary but not suffi-
cient condition for biological activity.35,36 A three-dimensional
pharmacophore is defined by a critical geometric arrangement of
such features or fragments.37 To begin the identification of phar-
macophore groups, the compounds with percentage fraction
bound (PFB) P 80.00 were classified as high activity compounds
(46 compounds) and molecules with PFB <80.00 were considered
to be low activity compounds (41 compounds). To find pharmaco-
phores, a template active compound and the rest of the compound
set are compared as weighted graphs. For each compound (high ac-
tive or low active) taken as a template, its ECMC was compared
with the ECMCs of the rest of the compounds in both classes of
the series under study within tolerances.32 Flexibility limits are
quite important for the realization of the Pha. For example, further
growth of the upper limit of any elements of the submatrix causes
weakly active compounds to include the feature responsible
for high activity.15,38 The comparison resulted in a few common



Figure 1. ECMC of the lowest energy conformer of compound 73 consisting of 29-atoms without hydrogen (due to its symmetry, only upper triangle is shown). Electronic and
geometric values of carbon-hydrogen bond are not taken since in each molecule it has an equivalent effect.
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structural fragments for high and low activity compounds. The
fragments were found as sub-matrices of the ECMCs corresponding
to templates (they will be referred to as electron conformational
sub-matrices of activity, or ECSAs).

A criterion that is commonly used in structural methods for
evaluating the probability of an activity fragment Pha occurrence
in a series under study is given by the following formulas:30

Pa ¼ ðn1 þ 1Þ=ðn1 þ n3 þ 2Þ;
aa ¼ ðn1 � n4 � n2 � n3Þ=ðm1 �m2 �m3 �m4Þ1=2

where n1 and n2 are the numbers of molecules possessing and not
possessing, respectively, the feature of activity (predicted by the
ECM) in the class of compounds; n3 and n4 have analogous meaning
in the weak active compounds; and m1 and m2 are the numbers of
molecules in the class of active and weak active compounds
m3 = n1 + n3; m4 = n2 + n4. In this way, Pa evaluates the deposit of
only active molecules, while aa reflects the deposit of both active
and low active compounds in the feature of the activity found.39

Then, without setting any constraints on tolerance values, maxi-
mum tolerance values are calculated for all conformers of all
compounds.

The strategy of QSAR modeling is to condense the relationship
between the structure of molecules and their properties into a
mathematical expression. During the development of the 4D-QSAR
approach one important task is to find the best activity prediction
function. The contributions of different conformations of the same
compound are taken into account by means of Boltzmann distribu-
tion. For the purpose of averaging descriptors, we assigned weights
to each of the conformers based on their probability of existence
per the Boltzmann distribution. The following general formula of
activity of the n-th compound results from the work done by
Bersuker et al.:15

An ¼ Al

Pml
i¼1e

�Eli
RT

Pmn
i¼1e

�Eni
RT

Pmn
i¼1dni½Pha�e�Sni e

�Eni
RT

Pml
i¼1dli½Pha�e�Sli e

�Eli
RT

ð1Þ
where d is the Kronecker delta. This is a function of two variables
which is 1 if the pharmacophore is present and 0 if not. An and Al

are the activities of the nth compound and the reference molecule,
and mn is the number of conformations of the nth molecule. Eli is the
relative energy of the ith conformation of the reference compound,
Eni is the relative energy of the ith conformation of the nth com-
pound (in kcal mol�1), R (kcal mol�1 K�1) is the gas constant, and
T is the temperature in Kelvin. In all of the molecular systems under
consideration that have a Pha, there exist anti-pharmacophore
shielding (APS) and auxiliary groups (AG) that affect their activity
one way or another. This is the reason why, among the compounds
that contain a pharmacophore, some are more active than others.
Both the AG and the APS can then be described by means of molec-
ular parameters. The effect of these parameters is determined by
introducing the function S to be the sum of all these effects as
follows:

Sni ¼
XN

j¼1

jja
ðjÞ
ni ð2Þ

where aðjÞni are the parameters that describe the jth kind of influence
in the ith conformation of the nth molecule, and N is the number of
chosen parameters. The activity depends exponentially on S (A� e�S);
in this way S is deemed to take into account the specific features
of the drug–receptor interaction that determine the activity
quantitatively. Using the function S, and taking into account the
Boltzmann population of each conformation as a function of its
energy and temperature jj, the variational (adjustable) constants
are calculated. The lsqnonlin function within the statistics toolbox
in MATLAB40 was used to obtain jj values of the corresponding
model parameters by solving numerically the system of differential
equations for the best subset of variables.

The main problem in the quantitative estimate of the activity
after identification of the Pha is to choose the N parameters (vari-
ables) aðjÞni in Eq. 2 and to determine their weights, namely the jj

constants. To this end, the estimated values of the parameters for
the active conformation of the compounds in the training set were



Table 1
Molecular structures, conformer numbers, experimental and predicted activity values of penicillin series for 12 parameters. Model 1 and 2 based on ensemble of conformers and
single conformer, respectively

 

N

S

O

H
NR

O

OH

O

CH3

CH3

IDa R Cn
b PFBexp

c PFBpred
d IDa R Cn

b PFBexp
c PFBpred

d

Model 1 Model 2 Model 1 Model 2

1

H3C O

14 7.200 13.976 14.536 45
O CH3

Cl

Cl

12 84.000 88.719 84.508

2
H2N

NH2 13 12.000 15.839 14.843 46
O

F H3C
14 84.000 85.726 84.496

3

H3C

8 15.000 12.116 12.848 47 O

F

H3C

26 86.000 85.289 81.187

4

HO
NH2 20 16.800 20.584 20.884 48 9 86.000 78.787 61.333

5 R all values = 0 7 18.000 11.208 10.904 49
O

H3C
13 86.100 76.053 68.050

6

H3C

OH3C
13 20.000 19.631 20.825 50 8 87.000 66.091 50.969

7

H3C O
15 25.000 22.472 24.147 51

Br
O

H3C
9 88.000 98.080 94.185

8
H2N

F 22 26.000 18.928 19.248 52
O

CH3
8 89.300 91.148 79.952

9

H3C O
9 28.000 15.760 17.650 53

H3C
S OBr 11 89.700 103.736 93.863

10 S NH2 12 32.000 22.806 21.471 54 9 91.000 97.516 101.115

11

H3C

H2N
11 33.000 14.959 15.690 55 O

F
10 91.500 104.171 88.240

12
O

H3C NH2 18 38.000 21.064 25.766 56 O
H3C

Cl

Cl
10 92.000 103.188 99.505

13 S
O

HNO

O
H2N 18 42.000 49.931 55.249 57

H3C

13 92.400 91.534 83.098

14

H3C

H3C
O 15 47.000 51.131 51.453 58

O

H3C

CH3
12 92.500 103.867 102.740

15 OH 10 53.200 62.286 58.569 59

H3C

H3C

H3C 15 93.300 113.108 123.777
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Table 1 (continued)

IDa R Cn
b PFBexp

c PFBpred
d IDa R Cn

b PFBexp
c PFBpred

d

Model 1 Model 2 Model 1 Model 2

16
Cl

NH2 14 55.000 48.351 45.921 60

H3C

H3C
H3C 20 93.600 85.512 93.056

17

N

O
CH3 24 57.000 52.031 58.251 61 Cl

Cl
24 94.000 99.412 110.434

18 S 25 58.000 35.940 34.456 62
Cl

Cl 19 94.000 101.361 107.806

19

H3C

O 19 58.800 43.766 38.683 63

O

CH3 9 94.700 83.411 69.622

20 S O
H3C

16 59.000 43.572 43.460 64
OCl

H3C
8 94.800 76.341 78.278

21
H3C

NH2 11 60.000 48.663 38.610 65
O

Cl

CH3Cl

12 95.200 96.056 89.622

22
N
O

O
O

H3C
17 60.000 60.351 56.591 66 13 95.600 96.300 79.976

23

N

O CH3
CH3

31 61.700 44.572 41.741 67
O

CH3

Cl

11 96.000 85.054 69.116

24 O
H3C

8 62.000 35.615 37.135 68
O

CH3

Cl

Cl
12 96.000 92.335 73.518

25
NH

O N 14 63.000 57.302 54.341 69
O

Cl

H3C

Cl

Cl

14 96.500 105.463 111.317

26

OH3C

F
13 65.000 53.953 60.073 70 Cl

Cl

Cl
21 97.000 84.679 77.822

27

H3C

H2N
9 66.200 54.331 55.481 71 O

Cl

Cl

H3C

13 97.000 112.220 96.920

28 CH3 17 68.000 75.042 87.817 72
O

9 97.200 80.086 85.481

29

N

O

CH3
21 69.700 69.074 80.442 73

OCl

H3CCl
15 97.400 97.400 97.400

30

H3C

H3C
O

17 74.000 62.615 72.121 74
O

CH3
8 97.400 84.436 67.699

31

N

O

CH3CH3

14 74.500 91.548 90.003 75⁄
HO

NH2
14 18.000 41.752 32.896

32

OH3C

O
CH3

13 77.000 60.485 70.574 76⁄
NH2

15 18.000 35.063 25.814

33
Cl

10 78.000 65.667 70.117 77⁄

H2N

HN

O

N

O

S CH3
CH3

O

O

O

CH3 O

H3C

8 20.000 32.147 39.031

(continued on next page)

E. Yanmaz et al. / Bioorg. Med. Chem. 19 (2011) 2199–2210 2203



Table 1 (continued)

IDa R Cn
b PFBexp

c PFBpred
d IDa R Cn

b PFBexp
c PFBpred

d

Model 1 Model 2 Model 1 Model 2

34

F O

H3C
10 80.000 94.607 85.251 78⁄ N N

O

HN

OO

H3C
14 30.000 40.857 39.655

35
O

CH3
26 80.000 81.474 84.710 79⁄ OH3C

O CH3 18 39.000 42.896 35.406

36
F O

16 81.500 69.729 59.368 80⁄
O

OH 3 50.000 42.895 49.039

37
O

H3C
13 81.500 75.053 75.642 81⁄ 13 60.000 60.919 52.278

38 CH3 11 82.100 94.490 88.083 82⁄ S
O

OH 18 65.000 59.107 50.545

39 NH2
Cl

Cl
17 82.200 62.418 56.271 83⁄

O
11 80.000 57.600 49.049

40 Br 11 82.500 80.847 78.331 84⁄ O CH3 4 89.000 80.849 72.463

41 O
H3C

Cl 25 83.000 87.675 67.853 85⁄

N O

CH3
9 92.000 68.756 56.154

42 O
Cl

F H3C
32 83.000 77.486 89.589 86⁄

N O

CH3

Cl

15 95.000 73.853 68.109

43

O

F 24 83.500 66.842 64.630 87⁄
N O

CH3

Cl

Cl

12 96.000 80.302 71.450

44 S
O

Cl

H3C
12 83.600 69.442 66.140

a ID: Number of compounds. The test set compounds are labeled with an ‘⁄’ symbol.
b Cn: Conformer number of compounds within 1.5 kcal.mol�1 of their respective lowest conformations.
c PFBexp: experimental percentage fraction bound activity.
d PFBpred: predicted percentage fraction bound activity. Model 1and 2 refer to the ensemble of conformers and single conformer, respectively.

2204 E. Yanmaz et al. / Bioorg. Med. Chem. 19 (2011) 2199–2210
used to perform a least-square minimization of the expressionP
njA

exp
n � Apredj2

n as a function of the unknown constants jj with
Apred

n from Eq. 1 and Aexp
n from the experimental data. This proce-

dure was carried out using Matlab software in conjunction with
the optimization function lsqnonlin, which is a general non-linear
least squares fitting algorithm, to fit the data. The numbers ‘jj’,
j = 1, 2,. . .,N, obtained in this way characterize the weights of each
kind of the aðjÞni parameters in the overall APS/AG influence.15 In the
case of large numbers of (experimental or theoretical) molecular
descriptors, the correct selection of relevant descriptors for the
QSAR models becomes important.

In this study, two different models were generated by using
multiple conformers in model 1 and only one conformation of each
compound in model 2. So that not only the lowest energy confor-
mation, but also all the reasonable conformers given in Table 1, en-
ter the final activity formula (Eq. 1) in order to predict the activity.
To reduce the large amount of computation time associated with
number of conformers, parallel GA, which is a very effective meth-
od to handle computationally-expensive problems, was used to
solve this problem and to find the best solution. The genetic algo-
rithm (GA) has been widely used for feature optimization in QSAR
models.24 The purpose of variable selection is to select the vari-
ables significantly contributing to prediction and discard other
variables by a fitness function. To examine the correlation between
the fitness values and various subsets in the different number of
variables (an), it is essential to run the GA procedure many times
with some values (in this work an values = 1–13). In our study,
the values of empirical parameters necessary for the GA computa-
tion are as follows: The number of population, generation and iter-
ation were set at 400, 400 and 500, respectively. The probability of
crossover and mutation were set at 0.85 and 0.015, respectively.
These values were determined to be optimal after several GA com-
putations with changing the values of empirical parameters.

The fitness function has a great effect on the convergence speed
of a GA process. We used the predictive residual sum of squares
(PRESS) as a fitness function (Eq. 3). In this study, the fitness value
for each chromosome was calculated by leave-one-out cross-vali-
dation (LOO-CV). The PRESS is a standard index to measure the
accuracy of a modeling method based on the LOO cross-validation
technique for a number of available examples n. PRESS is defined as
the sum of the squared difference between predicted (pred) and
experimental (exp) values and can be written as:
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PRESSN ¼
XN

n¼1

Aexp
n � Apred

n

���
���

2
ð3Þ

where Aexp
n are the experimental activities and Apred

n are the pre-
dicted activities in the LOO cross-validation model, with N parame-
ters being used (in this case N = 12). The LOO technique is a good
way to quantitatively evaluate the predictive ability and robustness
of a model by predicting each compound’s activity using a QSAR
model built based on information of the remaining compounds,
which avoids the effect of a compound on its own activity predic-
tion. A cross-validated correlation coefficient (q2) was used to mea-
sure the predictability of the model and the conventional
correlation coefficient (R2) was used to measure the quality of the
model. The cross-validated correlation coefficient q2, as a measure
of the prediction performance of the model can then be written
as:41

q2 ¼ 1�

PN

n¼1
Aexp

n � Apred
n

���
���
2

PN

n¼1
Aexp

n � Aexp
n

���
���

2
� 1� PRESS

SSY
ð4Þ

where N is the total number of training compounds in the entire
data set; SSY is the sum of the squares of deviations of the experi-
mental values (Aexp

n ) from their mean; and Aexp
n and Aexp

n , respec-
tively, are the measured and averaged (over the entire training
set) values of the dependent variable. The smaller the PRESS is,
the better the predictability of the model. When its value is than
SSY this shows that the model predicts better than chance and
can be considered statistically significant. SSY is the sum of squares
associated with the corresponding sources of variation. External
validation refers to a validation exercise in which the chemical
structures selected for inclusion in the test set are different from
those included in the training set, but which should be representa-
tive of the same chemical domain. The QSAR model developed by
using the training set chemicals was then applied to the test set
chemicals in order to verify the predictive ability of the model.
External validation is the only way to determine the true predictive
power of a QSAR model.42 Two different expressions for the
calculation of q2 from an external evaluation set were discussed
by Schuurmann et al.41,43

These expressions are:

q2
ext1 ¼ 1�

PN
n¼1 Aexp

ntest
� Apred

ntest

���
���

2

PN
n¼1 Aexp

ntest
� Aexp

training

���
���
2 ð5Þ

q2
ext2 ¼ 1�

PN
n¼1 Aexp

ntest
� Apred

ntest

���
���

2

PN
n¼1 Aexp

ntest
� Aexp

ntest

���
���

2 ð6Þ

where N = number of tested molecules, Aexp
n = experimental activity,

Apred
n = predicted activity without using the left-out compound in

the model building and Aexp
n = average of experimental activities.
3. Results and discussion

4D-QSAR analysis was applied to a series of 87 (a training set of
74 and a test set of 13, commercial penicillins) penicillin inhibitors
of human serum protein, with a PFB ranging from 7.2 to 97.4. The
chemical structures and experimental activities were obtained
from the literature.6

EC–GA is a sophisticated hybrid approach that combines the EC
method of pharmacophore identification and bioactivity prediction
with GA as a powerful optimization. The compounds under study,
along with their common structural skeletons and conformer num-
ber of compounds for both the training and test compounds, and
experimental (PFBexp) and predicted activity (PFBpred) values,
which were obtained by using the ensemble of conformers (model
1) and single conformer (model 2), are shown in Table 1.

Semi-empirical quantum chemical calculation at PM3 level was
used to find the optimum 3D conformers’ geometry of the studied
molecules. ECMCs were constructed from conformational analysis
data and the electronic structure calculation of each of the mole-
cules in the compound series by the EMRE programme. The elec-
tronic and geometric values of the carbon–hydrogen bond were
not taken since in each molecule it has an equivalent effect
(Fig. 1). We chose the ECMC of the lowest energy conformer of
compound with the highest activity as a template (compound
73) and compared it with the ECMCs of conformers with the lowest
energy of other compounds within tolerances.15 By gradually
changing the limits of tolerance for diagonal elements (charges)
and non diagonal elements (bond orders or interatomic distances),
we finally obtained the tolerance limits indicated in the ECSA in
Table 2, which give the best separation of the active compounds
from the similar inactive or low active ones. The first submatrix
in Table 2 shows the ECSA of the reference compound; the second
submatrix corresponds to the tolerance values for compounds with
high activity; and the third submatrix shows tolerance values for
compounds with low activity. Then, without setting any constraints
on the tolerance values of the pharmacophore group, the maximum
tolerance values were calculated for all conformers of all com-
pounds. The last submatrix shows the tolerance values for the con-
formers (1212) of all compounds (87). After screening the 46 active
compounds within the initial ECSA tolerances not exceeding 0.25
for diagonal and 1.30 for off-diagonal elements, we found that
the ECMC submatrix that is common for all of the active molecules
contains seven atoms corresponding to N1, C6, C3, O1, H1, O3 and
O4 in all of the compounds. N1, C6, C3, O1, H1 and O3 atoms be-
long to the 6-aminopenicillanic acid (6-APA) group.

We found that out of the seven pharmacophore atoms four neg-
atively charged, while three of them are positively charged. The C6,
N1 and O3 form a rigid plane, while the positions of C3, O1, H1 and
O4 atoms are fairly flexible. The account of this flexibility within
the Pha geometry and its influence on the value of activity is a spe-
cial feature of the EC method. We see that the tolerance matrix for
less active compounds does not fit to the tolerance matrix for high-
er active compounds (Table 2). Tolerance values existing in com-
pounds of high activity values are usually lower than those
existing in low activity compounds (Table 2). For example, toler-
ance values of distance between the O4 and H1 atoms for higher
and less active compounds are ±0.777 and ±2.732, respectively.
n1, n2, n3 and n4 values are found to be 46, 0, 5 and 36, respectively.
In this way, the parameters expressing the probability of feature
realization are high enough Pa = 0.887, aa = 0.890.

For compounds with a Pha we predict bioactivity values using
Eq (2). Eighty-seven molecules were divided into a training set of
74 and a test set of 13 commercial penicillin compounds, which
were used to validate the QSAR models. The test compounds were
not included in model generation. The most active molecule 73
was used as a template molecule for alignment.

In the QSAR approach, molecules can be represented by a wide
variety of (theoretical) molecular descriptors, which are used as
independent variables in the model. A total of 400 molecular
descriptors, belonging to different descriptor families, were calcu-
lated for 1212 conformers of the 87 compounds, using EMRE soft-
ware; this program has an effective descriptor generation based on
the information given by the SPARTAN 0644 output file for molecular
structures.

The EMRE program can extract and calculate about 1000
molecular descriptors, including geometrical, quantum-chemical,



Table 2
(a) ECSA of reference compound (73) for penicillin derivatives b) Tolerance matrix of ECSA values for 46 compounds with high activity, (c) Tolerance values for 41 compounds
with low activity, (d) Tolerance values for 1212 conformations of 87 compounds

N1 C6 C3 O1 H1 O3 O4 Pha atoms

(a) ECSA (Pha) of reference compound
�0.110 0.935 2.430 2.934 4.215 2.425 4.968 N1

0.274 3.767 4.372 5.404 1.953 4.152 C6
0.384 1.833 1.906 4.322 7.319 C3

�0.362 2.226 5.075 7.523 O1
0.230 5.693 9.166 H1

�0.247 4.784 O3
�0.351 O4

(b) Tolerance values for 46 compounds with high activity
±0.061 ±0.035 ±0.025 ±0.580 ±0.498 ±0.006 ±0.578 N1

±0.036 ±0.038 ±0.298 ±0.284 ±0.031 ±0.617 C6
±0.002 ±0.025 ±0.016 ±0.040 ±0.435 C3

±0.027 ±0.034 ±0.128 ±1.275 O1
±0.003 ±0.087 ±0.777 H1

±0.016 ±0.983 O3
±0.036 O4

(c) Tolerance values for 41 compounds with low activity compounds
±0.037 ±0.020 ±0.046 ±0.660 ±1.796 ±0.003 ±0.562 N1

±0.022 ±0.146 ±0.319 ±1.756 ±0.018 ±0.617 C6
±0.022 ±0.051 ±0.524 ±0.347 ±0.421 C3

±0.063 ±1.190 ±0.361 ±1.262 O1
±0.027 ±1.486 ±2.732 H1

±0.015 ±1.040 O3
±0.023 O4

(d) Tolerance values for 1212 conformations of 87 compounds
±0.064 ±0.041 ±0.050 ±0.671 ±1.811 ±0.009 ±0.578 N1

±0.042 ±0.166 ±0.353 ±1.805 ±0.046 ±0.624 C6
±0.024 ±0.051 ±0.534 ±0.384 ±0.459 C3

±0.063 ±1.192 ±0.396 ±1.311 O1
±0.027 ±1.582 ±2.732 H1

±0.027 ±1.040 O3
±0.041 O4
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electrostatic and thermodynamic descriptors. Several hundreds,
even thousands, of descriptors can be generated in QSAR studies.
To avoid the danger of over-fitting and to make a stable model,
only a subset of available independent variables should be selected
in QSAR analysis. For this reason, we applied the genetic algorithm
(GA) procedure to select the variables. The genetic algorithm codes
in this study were written in Matlab and were run on parallel (mul-
ti-core and multi-processor) computers. The variational constant,
jj, in Eq. 2 was mathematically optimized using the Matlab toolbox
function lsqnonlin.40

Various 4D-QSAR models were generated for the study and the
best was selected on the basis of the statistically significant param-
eters obtained. The predictive power of the 4D-QSAR models, de-
rived using the training set, was assessed by predicting the
biological activity of the test set molecules. Since the optimum
number of variables is not known in advance, several runs were
needed to examine the relationship between the predictive power
of a model (q2) and the number of descriptors selected. The plot of
squared correlation coefficients versus parameter numbers is
shown in Figure 2. The amount of descriptors was in the range of
1–13 for the training and test sets. According to the q2 values, re-
sults indicated that between 5 and 13 parameters can acceptable.
Statistical results of the model 1 and 2 generated by the EC–GA
method for penicillin derivatives are tabulated in Table 3. The opti-
mum 12 molecular parameters, selected with GA and jj values
used in activity calculation for penicillin derivatives, were shown
for both models in Table 4. jj values were different in both models
because of reoptimization for model 2.

In Table 4, a(1) is softness related to high polarizability and low
electronegativity. The softness used for the intermolecular reactiv-
ity trend, S, is simply the inverse of the hardness, S = 1/g(2/eLU-

MO � eHOMO).45 a(2) is the electronegativity of a functional group
related to both its hydrophobic property and its ability to form
hydrogen bonds with surrounding (bioreceptor) molecules, and it
is usually considered a very important factor for describing biolog-
ical system properties.46 Electronegativity = 1/2(eLUMO + eHOMO).
a(3) is the nucleophilicity index. Parr et al. introduced the global
electrophilicity index (x).47 The electrophilicity index measures
energy stabilization when the energy of a ligand is reduced due
to optimal electron flow between donor and acceptor. On the basis
of the assumption that electrophilicity and nucleophilicity are
inversely related to each other, Chattaraj et al.48 suggested a



Figure 2. Dependence of regression coefficients in calibration (R2) and cross-validation correlation coefficients (q2) on number of semi-empirical chemical descriptors used in
model 1.

Table 3
Statistical results of model 1 and 2 generated by EC–GA method for penicillin derivatives

aðjÞ R2
training R2

test
q2 q2

ext1 q2
ext2

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

1 0.550 0.104 0.223 0.040 0.005 �2.001 0.196 �1.840 0.037 �2.402
2 0.602 0.601 0.159 0.170 0.189 0.167 0.161 0.167 0.050 0.002
3 0.684 0.675 0.338 0.334 0.339 0.278 0.391 0.357 0.271 0.229
4 0.668 0.660 0.504 0.362 0.400 0.346 0.545 0.424 0.456 0.310
5 0.784 0.642 0.574 0.237 0.612 0.292 0.513 0.234 0.417 0.083
6 0.786 0.643 0.600 0.225 0.611 0.275 0.536 0.222 0.444 0.068
7 0.800 0.752 0.712 0.625 0.627 0.556 0.511 0.428 0.414 0.314
8 0.832 0.771 0.694 0.754 0.678 0.578 0.511 0.543 0.415 0.453
9 0.832 0.766 0.754 0.742 0.650 0.543 0.640 0.595 0.568 0.515

10 0.849 0.781 0.750 0.808 0.676 0.570 0.759 0.592 0.711 0.512
11 0.849 0.762 0.847 0.766 0.683 0.507 0.698 0.605 0.638 0.526
12 0.861 0.774 0.892 0.840 0.702 0.514 0.777 0.641 0.733 0.570
13 0.851 0.776 0.914 0.838 0.681 0.500 0.814 0.638 0.777 0.567

R2, regression coefficient for training and test set; q2, internal and external cross-validated correlation coefficients and aðjÞ , parameter number. Model 1and 2 refer to the
ensemble of conformers and single conformer, respectively.

Table 4
12 jj values and molecular parameters used in activity calculation for model 1 and 2

aðjÞni
Molecular parameters jj values

Model 1 Model 2

a(1) Softness (eV�1) 15.726 4.917
a(2) Electronegativity (eV) 1.886 0.534
a(3) Nucleophilicity index (eV�1) 13.530 3.755
a(4) Rotational entropy of molecule (kcal/mol) �0.285 �0.346
a(5) Log P (Partition coefficient) �0.130 �0.168
a(6) The angle (radian) between line of C2–C8 atoms and C3–O1–O2 plane 7.636 3.118
a(7) Fukui atomic nucleophilic reactivity index of S1 atom �0.394 �0.266
a(8) Fukui atomic electrophilic reactivity index of N2 atom �24.825 �18.935
a(9) Fukui atomic electrophilic reactivity index of C6 atom �40.744 �54.586
a(10) C6–D* distance (Å) �0.258 �0.066
a(11) O3–D* distance (Å) 0.268 0.102
a(12) CFD (positive ionizable site) basic site number of positive ionizable centers 0.175 0.240

Model 1and 2 refer to the ensemble of conformers and single conformer, respectively.
* The symbol ‘‘D’’ represents the farthest atom in R group, excluding hydrogen as a farthest atom. For example D refers to the atom Cl1 for the
reference compound (73).
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multiplicative inverse of the electrophilicity index (1/x), as well as
an additive inverse (1 �x).49 One important descriptor found in
our model (Table 4) is the rotational entropy (a(4)) calculated at
a constant temperature of 298.15 K, which is a measure of the
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rotational degree of freedom of the molecule and can be related to
its size, mass distribution and flexibility. Thus, this descriptor’s
value is mainly influenced by the presence of different substituent
groups. When a molecule binds to a protein, it loses a significant
amount of rotational entropy. Estimates of the associated energy
barrier vary widely in the literature yet accurate estimates are
important in the interpretation of results from fragment-based
drug discovery techniques.50 a(5) is log P, defined as the logarithm
of the partition coefficient between n-octanol and water, is an
important parameter to judge a molecule’s drug likeness. Log P
has been widely used as a measure of lipophilicity, and it is critical
for both the pharmacokinetic and pharmacodynamic behavior of a
molecule. It is an important parameter used in QSAR studies of
biological activity prediction. a(6) is the angle between line and
plane (Fig. 3). a(7) is the Fukui atomic nucleophilic reactivity index.
a(8) � a(9) are the Fukui atomic electrophilic reactivity index.
Within Fukui’s Frontier Molecular Orbital (FMO) theory,51,52 the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) play fundamental roles in
the interpretation of chemical reactivity, particularly toward
nucleophiles or electrophiles.53 Local quantities such as the Fukui
function and local softness define the reactivity/selectivity of a
specific site in a molecule. The Fukui atomic nucleophilic and
electrophilic reactivity index that varies from point to point in an
atom may be defined by the following formulas: NA ¼

P
i 2 Ac2

iHOMO,
ciHOMO = Highest occupied molecular orbital coefficients and NA ¼P

i 2 Ac2
iLUMO, ciLUMO = Lowest unoccupied molecular orbital coeffi-

cients, respectively.54 Fukui functions were used to identify the
most reactive sites for the nucleophilic and electrophilic attack of
penicillin derivatives. Both the N2 and the C6 atomic centers were
found to be suitable electrophilic reactive sites. The S atom of
the thiazolidine group was a more reactive nucleophilic centre.
a(10) � a(11) are just corresponding interatomic distances employed
to take into account the influence of their limited flexibility on the
activity (Fig. 3). a(12) is a positive ionizable site. Chemical Function
Descriptors (CFD’s) are descriptors given to a molecule in order to
characterize or anticipate its chemical behavior or to identify
commonality among molecules with different structures.55 A
positive ionizable function, which represents any group that is either
positively charged or can become positively charged (through
protonation at physiological pH), can thus interact with a negatively
charged bioreceptor. The positive ionizable feature in penicillin
derivatives corresponds to the amide nitrogen atom (N2).
Figure 3. Van der Waals surface of the reference compound. In the figure, a(6) is the angle
Activity depends exponentially on S (A � e�S).17 If the product of
the parameter and jj values is positive then it shows the APS
group, otherwise (if the product is negative) it shows AG. a(1),
a(2), a(3), a(6), a(11) and a(12) are APS groups, while a(4), a(5), a(7),
a(8), a(9) and a(10) are AG groups. The multiplication of the coeffi-
cient jj with parameter (a(j)) should be dimensionless.15 The re-
ported fitting and validation parameters had very high values for
twelve descriptors expressed above to describe the inhibition
activity of b-lactams binding against human serum proteins.

In the EC method, it is presented in the previous papers15 only
the lowest conformation that has pharmacophore enters the for-
mula (Eq. 1) which is thus much simplified. However, it cannot
be assumed that the lowest energy conformer determines the bio-
logical activity of a compound. Although small molecules may have
only a single lowest energy conformation but large and flexible
molecules do exists in multiple conformations. There are a number
of conformations that satisfy the geometric and electronic
structure requirements for the active conformation, therefore in
4D-QSAR approach12 it becomes necessary to include various con-
formations of the molecules taking into account the Boltzmann
populations and dynamics to understand the effects of the all ener-
getically stable conformers on the biological activity.56 Efficient
methods for predicting biological activity should consider the
entire range of probable molecular conformations and determine
the activity of each conformer. All the conformers interact inde-
pendently with a bioreceptor. In this study, not only the lowest
energy conformation but also all energetically reasonable conform-
ers given enter the final activity formula (Eq. (2)) in order to pre-
dict the bioactivity. The calculation results were given and
discussed below. Furthermore, all calculation and optimization
procedures to predict the biological activity for penicillins were
repreformed by taking into account only one conformer of the
compound. Although using the lowest energy conformers provides
the shortening time of computation, it does not assure to give bet-
ter results.

The model 1 had a very good descriptive and predictive perfor-
mance. The quality of R2 and q2, and the small standard error (SE)
values confirmed the high predictivity of this model. In order to
gain a better understanding of the behavior of the fitted data to
the model, the descriptors of the model (Table 5) were inspected
in detail. The model 1 gave statistically significant results with
R2

training, q2 and SEtraining values of 0.861, 0.702 and 0.044, respec-
tively. The predictive abilities of this model were also evaluated
between line of C2–C8 atoms and C3–O1–O2 plane. a(11) indicates O3–Cl1 distance.



Table 5
E, R2

training; R2
test, q2, q2

ext1 and q2
ext2 values showing the contribution of each descriptor to

performance of model 1 for PFB activity of penicillin derivatives. q2
ext1 and q2

ext2 are
external validations in the leave-one-out cross-validation for twelve parameters. E
statistics allowed us to identify the relative weight each parameter held in the
accurate prediction of activities

Eliminated parameters E R2
training R2

test
q2 q2

ext1 q2
ext2

a(1) 0.976 0.862 0.776 0.694 0.712 0.656
a(2) 0.859 0.842 0.704 0.653 0.738 0.686
a(3) 0.904 0.853 0.746 0.670 0.746 0.696
a(4) 0.679 0.820 0.678 0.561 0.586 0.504
a(5) 0.533 0.831 0.839 0.440 0.741 0.689
a(6) 0.733 0.835 0.784 0.593 0.709 0.651
a(7) 0.496 0.736 0.715 0.399 0.275 0.131
a(8) 0.885 0.857 0.830 0.663 0.627 0.554
a(9) 0.940 0.849 0.847 0.683 0.698 0.638
a(10) 0.582 0.839 0.847 0.488 0.760 0.712
a(11) 0.449 0.826 0.804 0.336 0.643 0.572
a(12) 0.893 0.850 0.793 0.666 0.707 0.648

E. Yanmaz et al. / Bioorg. Med. Chem. 19 (2011) 2199–2210 2209
using test compounds which gave R2
test and SEtest values of 0.892

and 0.099, respectively. The developed model also possessed
promising predictive ability, as discerned by the testing on the
external test set, and could be useful to elucidate the relationship
between compound structures and biological activities and to facil-
itate the design of more potent human serum inhibitors. The plots
of predicted activities versus experimental values of predicted
activity are shown for the training (74 compounds) and test set
(13 compounds) in Figure 4.

Based on the data set and parameters as in the model 1, in
which compounds were represented by ensemble of conformers
as fourth dimension (4D-QSAR), a new model (model 2) was con-
structed and optimized using only one conformer of each com-
pound (3D-QSAR). As seen in Table 3, model 2 had lower values
of non-cross validated and cross validated regression coefficients
(R2

training = 0.774, SEtraining = 0.056, R2
test = 0.840, SEtest = 0.121, q2 =

0.514, q2
ext1 = 0.641 and q2

ext2 = 0.570) than model 1 for both training
and test sets. These statistical parameters of the model 1 for 13
parameters were given in Table 3. Model 1 yielded satisfactory sta-
tistical results with the cross-validated q2 value and the non-cross-
validated R2 value. Moreover, our present results also showed that
external validation values for model 1 (q2

ext1 = 0.777 and q2
ext2 =

0.733) were significantly higher than model 2 obtained for the
same dataset, indicating that models were statistically significant.
Figure 4. The plots of predicted versus experimental activities are shown by
Based on the above results, model 1 which has a better predictive
ability than model 2 can be accurately used in the design of more
potent penicillins.

In this study, the effect of using only the pharmacophore
parameters (atomic charges, interatomic distances and bond or-
ders values) was also evaluated for the penicillin series by genetic
algorithm optimization method. The resulted models were vali-
dated by leave-one out cross-validation procedure to check their
predictability and robustness. The model for 74 training com-
pounds of penicillins obtained by pharmacophore parameters gave
unsatisfactory statistical results. When the training compounds
were decreased, the obtained statistical results had insignificant
increase for training and test set. Bersuker calculated the relation-
ship only between the pharmacophore parameters and activity
without considering another descriptor, and he found high q2 val-
ues for 17 most active compounds out of 51 training set com-
pounds. But regression results for the 51 training compounds
using only the pharmacophore parameters were not reported.18,22

To estimate the individual influence of each of the twelve
molecular descriptors on activity, the E statistics technique57,58

was applied to the derived EC–GA model. Each descriptor was ne-
glected once and its influence was evaluated with the remaining
eleven descriptors. To see which descriptor contributed the most
in a given component, we considered the E, R2

training; R2
test, q2, q2

ext1

and q2
ext2 values which are displayed in Table 5. The following for-

mula was employed (Eq. 7):20

E ¼ PRESSN

PRESSN�1
ð7Þ

PRESSN�1 ¼
XN�1

n¼1

Aexp
n � Apred

n

���
���

2
ð8Þ

where Apred
n represents the predicted and Aexp

n the experimental
activities in the LOO cross-validation model, with N parameters
being used (in this case N = 12).

It can be seen from the table that the q2 values for a(11) (O3-D
distance), a(7) (Fukui atomic nucleophilic reactivity index of S1
Atom), a(5) (log P) and a(10) (C6-D distance) are the lowest; there-
fore, these four parametres are the most influential. This is sup-
ported by the relatively large drop of the q2 value experiences
(from 0.702 to 0.336, 0.399, 0.440, 0.488, respectively). From Table
4, we can conclude that the most significant descriptor, according
to the E-statistic result, is O3-D distance (Table 4) which is the
most relevant descriptor in the equation. The interatomic distances
the squared correlation coefficient for training and test sets in model 1.
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of both C6-D and O3-D that define the relative spatial dispositions
of three significant atoms (the farthest atom of R group, carbonyl
carbon, C6, and oxygen, O3, of the lactam ring) may indicate a lipo-
philic cavity in human serum proteins. In the resulting model in
which a(11) is the most influential parameter, the a(1) (softness)
parameter can be eliminated without significant loss of accuracy
(i.e., with a reduction of q2 from 0.702 to 0.694).

4. Conclusion

A series of 87 penicillin derivatives were studied to determine
the pharmacophore (Pha) and to predict antibacterial activity by
means of an original approach called the electron conforma-
tional–genetic algorithm method (EC–GA) as a 4D-QSAR. Elec-
tron-conformational matrices were effectively used in the
search for a system of pharmacophores capable of effective sepa-
ration of compounds from the examination set into groups of ac-
tive and low active compounds. Pharmacophores were calculated
as sub-matrices containing important spatial and quantum chem-
istry characteristics. Penicillin activity was controlled by a phar-
macophore containing seven atoms with certain electronic and
geometrical characteristics corresponding to N1, C6, C3, O1, H1,
O3 and O4. Flexibility of molecules was also taken into consider-
ation when searching the fragments of activity (the values of
parameters can vary in some limits). In this study, we verified
the effectiveness of genetic algorithms as a fast and efficient
method to select significant variables to manage complex sys-
tems, even when large amounts of descriptors are used as input
variables. The model 1 represented by ensemble of conformers
also possessed more promising predictive ability than model 2
as discerned by the testing on the external test set, and could
be useful to elucidate the relationship between compound struc-
tures and biological activities and to facilitate the design of more
potent b-lactams binding against human serum protein inhibitors.
The predictive ability of the models was validated using a struc-
turally diversified test set of 13 compounds that had not been in-
cluded in a preliminary training set of 74 compounds. The
performances of the model were compared using several statisti-
cal measures, including R2, q2, and the SE. In this work, a refer-
ence compound in a defined conformation was chosen, and all
structures in the data set were aligned with a reference within
the lowest tolerance values. The 4D-QSAR approach used in this
study was a geometric one as the alignment was based on the rel-
ative positions of common atoms in space. We presented compre-
hensive pharmacophore identification, molecular descriptor and
activity calculation by a new program (EMRE) which runs on per-
sonal computers. This program was developed mainly for com-
puter-aided drug design using four-dimensional quantitative
structure–activity relationship methods.

Acknowledgments

This project was financially supported by the Scientific Techni-
cal Research Council of Turkey (TUBITAK, Grant No. 107T385). The
authors would like to thank Mustafa Yıldırım and Serkan S�ahin for
their valuable suggestions.

Supplementary data

Supplementary data (additional material related to activity cal-
culation of penicillin derivatives (compounds 1, 42, 80 and 87) and
expansion of Eq. (2) for these compounds were given as an exam-
ple using the jj values in model 1 and corresponding parameters)
associated with this article can be found, in the online version, at
doi:10.1016/j.bmc.2011.02.035.
References and notes

1. Rolinson, G. N.; Sutherland, R. Br. J. Pharmacol. 1965, 25, 638.
2. Bird, A. E.; Marshall, A. C. Biochem. Pharmacol. 1967, 16, 2275.
3. Perez, M. I. B.; Rodriguez, L. C.; Cruces-Blanco, C. J. Pharm. Biomed. Anal. 2007,

43, 746.
4. Shahid, M.; Sobia, F.; Singh, A.; Malik, A.; Khan, H. M.; Jonas, D.; Hawkey, P. M.

Crit. Rev. Microbiol. 2009, 35, 81.
5. Kiralj, R.; Ferreira, M. M. C. J. Mol. Graphics Modell. 2006, 25, 126.
6. Hall, L. M.; Hall, L. H.; Kier, L. B. J. Comput. Aided Mol. Des. 2003, 17, 103.
7. Karelson, M. Molecular Descriptors in QSAR/QSPR; John Wiley and Sons: New

York, 2000.
8. Bernazzani, L.; Duce, C.; Micheli, A.; Mollica, V.; Sperduti, A.; Starita, A.; Tine, M.

R. J. Chem. Inf. Model. 2006, 46, 2030.
9. Sikora, R.; Piramuthu, S. Eur. J. Oper. Res. 2007, 180, 723.

10. Hasegawa, K.; Arakawa, M.; Funatsu, K. Chemom. Intell. Lab. Syst. 1999, 47, 33.
11. Pandey, G.; Saxena, A. K. J. Chem. Inf. Model. 2006, 46, 2579.
12. Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.;

Duraiswami, C. J. Am. Chem. Soc. 1997, 119, 10509.
13. Duca, J. S.; Hopfinger, A. J. J. Chem. Inf. Comput. Sci. 2001, 41, 1367.
14. Andrade, C. H.; Pasqualoto, K. F. M.; Ferreira, E. I.; Hopfinger, A. J. Molecules

2010, 15, 3281.
15. Bersuker, I. B. Curr. Pharm. Des. 2003, 9, 1575.
16. Bersuker, I. B.; Bahceci, S.; Boggs, J. E.; Pearlman, R. S. SAR QSAR Environ. Res.

1998, 10, 157.
17. Bersuker, I. B.; Bahceci, S.; Boggs, J. E.; Pearlman, R. S. J. Comput. Aided Mol. Des.

1999, 13, 419.
18. Bersuker, I. B.; Bahceci, S.; Boggs, J. E. J. Chem. Inf. Comput. Sci. 2000, 40, 1363.
19. Rosines, E.; Bersuker, I. B.; Boggs, J. E. Quant. Struct.-Act. Relat. 2001, 20, 327.
20. Makkouk, Al. H.; Bersuker, I. B.; Boggs, J. E. Int. J. Pharm. Med. 2004, 18, 81.
21. Marenich, A. V.; Yong, P. H.; Bersuker, I. B.; Boggs, J. E. J. Chem. Inf. Model. 2008,

48, 556.
22. Bersuker, I. B. J. Comput. Aided. Mol. Des. 2008, 22, 423.
23. Holland, J. H. Adaptation in Artificial and Natural Systems; MIT Press: Cambridge,

USA, 1992.
24. Hasegawa, K.; Miyashita, Y.; Funatsu, K. J. Chem. Inf. Comput. Sci. 1997, 37, 306.
25. Cho, S. J.; Hermsmeier, M. A. J. Chem. Inf. Comput. Sci. 2002, 42, 927.
26. Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Mol. Divers. 2010.

doi:10.1007/s11030-010-9234-9.
27. Sarıpınar, E.; Geçen, N.; Sahin, K.; Yanmaz, E. Eur. J. Med. Chem. 2010, 45, 4157.
28. Sahin, K.; Sarıpınar, E.; Yanmaz, E.; Geçen, N. SAR and QSAR Environ. Res. in

press
29. Bersuker, I. B.; Dimoglo, A. S. In The Electron-Topological Approach to the QSAR

Problem, Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.;
Wiley-VCH: USA, 1991; p 423.

30. Dimoglo, A. S.; Vlad, P. F.; Shvets, N. M.; Coltsa, M. N.; Güzel, Y.; Saracoglu, M.;
Sarıpınar, E.; Patat, S�. New J. Chem. 1995, 19, 1217.

31. Saripinar, E.; Guzel, Y.; Patat, S�.; Yildirim, I.; Akcamur, Y.; Dimoglo, A. S.
Arzneim-Forsch/Drug Res. 1996, 46, 824.

32. Güzel, Y.; Saripinar, E.; Yildirim, I. J. Mol. Struc.-Theochem. 1997, 418, 83.
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