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SIMULTANEOUS AND CONVERSE APPROXIMATION

THEOREMS IN WEIGHTED LEBESGUE SPACES

YUNUS E. YILDIRIR AND DANIYAL M. ISRAFILOV

(Communicated by J. Marshall Ash)

Abstract. In this paper we deal with the simultaneous and converse approximation by trigono-
metric polynomials of the functions in the Lebesgue spaces with weights satisfying so called
Muckenhoupt’s Ap condition.

1. Introduction and the main results

Let T :=[−π ,π ]. A positive almost everywhere (a.e.), integrable function w : T→
[0,∞] is called as a weight function. With any given weight w we associate the w-
weighted Lebesgue space Lp

w(T) consisting of all measurable functions f on T such
that

‖ f‖Lp
w(T) = ‖ f w‖Lp(T) < ∞.

Let 1 < p < ∞ and 1/p+1/q = 1. A weight function w belongs to the Mucken-
houpt class Ap(T) if

⎛
⎝ 1
|I|
∫
I

wp(x)dx

⎞
⎠

1/p⎛
⎝ 1
|I|
∫
I

w−q(x)dx

⎞
⎠

1/q

� c

with a finite constant c independent of I, where I is any subinterval of T and |I|
denotes the length of I .

For formulation of the new results we will begin with some required informations.
Let

f (x) ∼
∞

∑
k=−∞

cke
ikx =

a0

2
+

∞

∑
k=1

(ak coskx+bk sinkx) (1)

and

f̃ (x) ∼
∞

∑
k=1

(ak sinkx−bk coskx)
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360 Y. E. YILDIRIR AND D. M. ISRAFILOV

be the Fourier and the conjugate Fourier series of f ∈ L1(T) , respectively. In addition,
we put

Sn(x, f ) :=
n

∑
k=−n

cke
ikx =

a0

2
+

n

∑
k=1

(ak coskx+bk sinkx), n = 1,2, ....

By L1
0(T) we denote the class of L1(T) functions f for which the constant term

c0 in (1) equals zero. If α > 0, then α -th integral of f ∈ L1
0(T) is defined as

Iα(x, f ) := ∑
k∈Z∗

ck(ik)−αeikx,

where (ik)−α := |k|−α e(−1/2)π iα sign k and Z
∗ := {±1,±2,±3, ...}.

For α ∈ (0,1) let

f (α)(x) :=
d
dx

I1−α(x, f ),

f (α+r)(x) :=
(

f (α)(x)
)(r)

=
dr+1

dxr+1 I1−α(x, f )

if the right hand sides exist, where r ∈ Z
+ := {1,2,3, ...} [14, p. 347] .

By c, c(α, ...) we denote the absolute constants or the constants whose values
depend only on the parameters given in their brackets.

Let x, t ∈ R := (−∞,∞), r ∈ R
+ := (0,∞) and let

�r
t f (x) :=

∞

∑
k=0

(−1)k[Cr
k] f (x+(r− k)t), f ∈ L1(T), (2)

where [Cr
k] := r(r−1)...(r−k+1)

k! for k > 1, [Cr
k] := r for k = 1 and [Cr

k] := 1 for k = 0.

Since [14, p. 14]

|[Cr
k]| =

∣∣∣∣ r(r−1)...(r− k+1)
k!

∣∣∣∣� c(r)
kr+1 , k ∈ Z

+

we have

C(r) :=
∞

∑
k=0

|[Cr
k]| < ∞,

and therefore �r
t f (x) is defined a.e. on R. Furthermore, the series in (2) converges

absolutely a.e. and �r
t f (x) is measurable [16].

If r ∈ Z
+, then the fractional difference �r

t f (x) coincides with usual forward
difference.

Now let

σ r
δ f (x) :=

1
δ

δ∫
0

|�r
t f (x)|dt, 1 < p < ∞
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for f ∈ Lp
w(T), w ∈ Ap(T). Since the series in (2) converges absolutely a.e., we have

σ r
δ f (x) < ∞ a.e. and using boundedness of the Hardy-Littlewood Maximal function

[13] in Lp
w(T), w ∈ Ap(T), we get∥∥σ r

δ f (x)
∥∥

Lp
w

� c(p,r)‖ f‖Lp
w

< ∞. (3)

Hence, if r ∈R
+ and w∈Ap(T), 1 < p <∞, we can define the r-th mean modulus

of smoothness of a function f ∈ Lp
w(T) as

Ωr( f ,h)Lp
w

:= sup
|δ |�h

∥∥σ r
δ f (x)

∥∥
Lp

w
.

If r ∈ Z
+, then Ωr( f ,h)Lp

w
coincides with Ky’s mean modulus of smoothness,

defined in [9].

REMARK 1. Let f , f1, f2 ∈ Lp
w(T), w ∈ Ap(T) , 1 < p < ∞ . The r -th mean

modulus of smoothness Ωr( f ,h)Lp
w
, r ∈ R

+, has the following properties:
( i) Ωr( f ,h)Lp

w
is non-negative and non-decreasing function of h � 0.

( ii) Ωr( f1 + f2, ·)Lp
w

� Ωr( f1, ·)Lp
w
+Ωr( f2, ·)Lp

w
.

( iii) lim
h→0

Ωr( f ,h)Lp
w

= 0.

The best approximation of f ∈ Lp
w(T) in the class Πn of trigonometric polynomi-

als of degree not exceeding n is defined by

En( f )Lp
w

= inf
{
‖ f −Tn‖Lp

w
: Tn ∈Πn

}
.

A polynomial Tn(x, f ) := Tn(x) of degree n is said to be a near best approximant
of f if

‖ f −Tn‖Lp
w

� c(p)En( f )Lp
w
, n = 0,1,2, ....

Let Wα
p,w(T), α > 0, be the class of functions f ∈ Lp

w(T) such that f (α) ∈ Lp
w(T).

Wα
p,w(T), 1 < p < ∞, α > 0, becomes a Banach space with the norm

‖ f‖Wα
p,w(T) := ‖ f‖Lp

w
+
∥∥∥ f (α)

∥∥∥
Lp

w
.

In this paper we deal with the simultaneous and converse approximation by trigono-
metric polynomials of the functions in the Lebesgue spaces with weights satisfying
Muckenhoupt’s Ap condition.

Our new results are the following.

THEOREM 1. Let f ∈Wα
p,w(T), α ∈ R

+
0 := [0,∞], 1 < p < ∞, and w ∈ Ap(T).

If Tn ∈Πn is a near best approximant of f , then∥∥∥ f (α)−T (α)
n

∥∥∥
Lp

w
� cEn( f (α))Lp

w
, n = 0,1,2, ....
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with a constant c = c(p,α) > 0.

This simultaneous approximation theorem in case of α ∈ Z
+ for Lebesgue spaces

Lp(T), 1 � p � ∞, was proved in [3]. Detailed information on simultaneous weighted
approximation can be found in the book [4].

THEOREM 2. If f ∈Wr
p,w(T), r ∈ R

+, 1 < p < ∞, and w ∈ Ap(T), then

Ωr( f ,h)Lp
w

� chr
∥∥∥ f (r)

∥∥∥
Lp

w
, 0 < h � π

with a constant c = c(p,r) > 0.

In case of r ∈ Z
+, for the usual nonweighted modulus of smoothness defined in

the Lebesgue spaces Lp(T), 1 � p � ∞, this inequality was proved in [11] and for the
general case r ∈ R

+ was obtained in [2] (See also [16]). In case of r ∈ Z
+, w ∈ Ap(T),

1 < p < ∞, this inequality in the weighted Lebesgue spaces Lp
w(T) was proved in [9].

THEOREM 3. Let f ∈ Lp
w(T), 1 < p < ∞, and w ∈ Ap(T). Then for a given

r ∈ R
+, and γ = min{2, p}

Ωr( f ,π/(n+1))Lp
w

� c
(n+1)r

(
n

∑
k=0

(k+1)rγ−1Eγ
k ( f )Lp

w

)1/γ

with a constant c independent of n and f .

In the space Lp(T), 1 � p � ∞, this inequality was proved in [16] without γ . In
case of r ∈ Z

+ in the spaces Lp
w(T), w ∈ Ap(T), 1 < p < ∞, this theorem was proved

in [9] without γ. For the positive and even integer r this theorem in spaces Lp
w(T),

w ∈ Ap(T), by using Butzer-Wehrens’s type modulus of smoothness was obtained in
[5]. The analogues of some classical theorems for best polynomial approximation in
weighted spaces with doubling weights were proved in [12].

THEOREM 4. Let f ∈ Lp
w(T), 1 < p < ∞, and w ∈ Ap(T). If

∞

∑
k=1

kαγ−1Eγ
k ( f )Lp

w
< ∞

for α ∈ (0,∞) and γ = min{2, p} , then f ∈Wα
p,w(T) and the estimate

En( f (α))Lp
w

� c

⎧⎨
⎩nαEn( f )Lp

w
+

(
∞

∑
k=n+1

kαγ−1Eγ
k ( f )Lp

w

)1/γ
⎫⎬
⎭ (4)

holds with a constant c independent of n and f .

In the space Lp(T), 1 � p � ∞, this inequality for α ∈ Z
+ was proved without γ

in [15]. In case of α ∈ Z
+ , in Lp

w(T), w ∈ Ap(T), 1 < p < ∞, an inequality of type
(4) was proved in [7].
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COROLLARY 1. Let f ∈ Lp
w(T), 1 < p < ∞, and w ∈ Ap(T) and r > 0. If

∞

∑
k=1

kαγ−1Eγ
k ( f )Lp

w
< ∞

for α ∈ (0,∞) and γ = min{2, p} , then f ∈Wα
p,w and for n = 0,1,2, ...

Ωr( f (α),π/(n+1))Lp
w

� c
(n+1)r

⎧⎨
⎩
(

n

∑
k=1

k(α+r)γ−1Eγ
k−1( f )Lp

w

)1/γ

+

(
∞

∑
k=n+1

kαγ−1Eγ
k ( f )Lp

w

)1/γ
⎫⎬
⎭

with a constant c independent of n and f .

In cases of α, r ∈ Z
+ and α, r ∈ R

+ , this corollary in the spaces Lp(T), 1 �
p � ∞, was proved without γ in [18] (See also [15]) and in [17], respectively. For
the weighted Lebesgue spaces Lp

w(T), 1 < p < ∞, when w ∈ Ap(T), and α, r ∈ Z
+,

similar type inequality was obtained using generalized modulus of continuity for the
derivatives of f ∈ Lp

w(T) in [7].

2. Auxiliary results

LEMMA 1. Let w ∈ Ap(T) and r ∈ R
+ , 1 < p <∞. If Tn ∈Πn, n � 1, then there

exists a constant c > 0 depends only on r and p such that

Ωr(Tn,h)Lp
w

� chr
∥∥∥T (r)

n

∥∥∥
Lp

w
, 0 < h � π/n.

Proof. Since

�r
t Tn

(
x− [r]

2
t

)
= ∑

ν∈Z∗
n

(
2isin

t
2
ν
)r

cνe
iνx,

�[r]
t T (r−[r])

n

(
x− [r]

2
t

)
= ∑

ν∈Z∗
n

(
2isin

t
2
ν
)[r]

(iν)r−[r] cνe
iνx

with Z
∗
n := {±1,±2,±3, ...}, [r] ≡ integer part of r, putting

ϕ(z) :=
(
2isin

t
2
z
)[r]

(iz)r−[r] , g(z) :=
(

2
z

sin
t
2
z

)r−[r]

, −n � z � n, g(0) := tr−[r],

we get

�[r]
t T (r−[r])

n

(
x− [r]

2
t

)
= ∑

ν∈Z∗
n

ϕ(ν)cνeiνx, �r
t Tn

(
x− [r]

2
t

)
= ∑

ν∈Z∗
n

ϕ(ν)g(ν)cνeiνx.
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Taking into account the fact that [16]

g(z) =
∞

∑
k=−∞

dke
ikπz/n

uniformly in [−n,n] , with d0 > 0, (−1)k+1 dk � 0, d−k = dk (k = 1,2, ...) , we have

�r
t Tn(·) =

∞

∑
k=−∞

dk�[r]
t T (r−[r])

n

(
·+ kπ

n
+

r− [r]
2

t

)
.

Consequently we get∥∥∥∥∥∥
1
δ

δ∫
0

|�r
t Tn(·)|dt

∥∥∥∥∥∥
Lp

w

=

∥∥∥∥∥∥
1
δ

δ∫
0

∣∣∣∣∣
∞

∑
k=−∞

dk�[r]
t T (r−[r])

n

(
·+ kπ

n
+

r− [r]
2

t

)∣∣∣∣∣dt

∥∥∥∥∥∥
Lp

w

�
∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1
δ

δ∫
0

∣∣∣∣�[r]
t T (r−[r])

n

(
·+ kπ

n
+

r− [r]
2

t

)∣∣∣∣dt

∥∥∥∥∥∥
Lp

w

and since [19, p. 103]

�[r]
t T (r−[r])

n (·) =
t∫
0

...

t∫
0

T (r)
n (·+ t1 + ...t[r])dt1...dt[r]

we find

Ωr(Tn,h)Lp
w

� sup
|δ |�h

∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1
δ

δ∫
0

∣∣∣∣�[r]
t T (r−[r])

n

(
·+ kπ

n
+

r− [r]
2

t

)∣∣∣∣dt

∥∥∥∥∥∥
Lp

w

= sup
|δ |�h

∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1
δ

δ∫
0

∣∣∣∣∣∣
t∫
0

...

t∫
0

T (r)
n

(
·+ kπ

n
+

r− [r]
2

t + t1 + ...t[r]

)
dt1...dt[r]

∣∣∣∣∣∣dt

∥∥∥∥∥∥
Lp

w

�h[r] sup
|δ |�h

∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1
δ

δ∫
0

1

δ [r]

δ∫
0

...

δ∫
0

∣∣∣∣T (r)
n

(
·+ kπ

n
+

r− [r]
2

t + t1 + ...t[r]

)∣∣∣∣dt1...dt[r]dt

∥∥∥∥∥∥
Lp

w

�h[r] sup
|δ |�h

∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1

δ [r]

δ∫
0

...

δ∫
0

⎧⎨
⎩ 1
δ

δ∫
0

∣∣∣∣T (r)
n

(
·+kπ

n
+

r− [r]
2

t+t1+...t[r]

)∣∣∣∣dt

⎫⎬
⎭dt1...dt[r]

∥∥∥∥∥∥
Lp

w

�c(p,r)h[r] sup
|δ |�h

∞

∑
k=−∞

|dk|
∥∥∥∥∥∥

1
δ

δ∫
0

∣∣∣∣T (r)
n

(
·+ kπ

n
+

r− [r]
2

t

)∣∣∣∣dt

∥∥∥∥∥∥
Lp

w

�c(p,r)h[r] sup
|δ |�h

∞

∑
k=−∞

|dk|

∥∥∥∥∥∥∥
1

r−[r]
2 δ

·+ kπ
n + r−[r]

2 δ∫
·+ kπ

n

∣∣∣T (r)
n (u)

∣∣∣du

∥∥∥∥∥∥∥
Lp

w

.
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On the other hand [16]

∞

∑
k=−∞

|dk| < 2g(0) = 2tr−[r], 0 < t � π/n

and for 0 < t < δ < h � π/n we have

∞

∑
k=−∞

|dk| < 2g(0) = 2hr−[r].

Therefore the boundedness of Hardy-Littlewood maximal function in Lp
w(T) implies

that
Ωr(Tn,h)Lp

w
� c(p,r)hr

∥∥∥T (r)
n

∥∥∥
Lp

w
.

By similar way for 0 < −h � π/n, the same inequality also holds and the proof of
Lemma 1 is completed. �

3. Proof of the main results

Proof of Theorem 1. We set

Wn( f ) := Wn(x, f ) :=
1

n+1

2n

∑
ν=n

Sν(x, f ), n = 0,1,2, ....

Since
Wn(·, f (α)) = W (α)

n (·, f ),

we have∥∥∥ f (α)(·)−T (α)
n (·, f )

∥∥∥
Lp

w
�
∥∥∥ f (α)(·)−Wn(·, f (α))

∥∥∥
Lp

w
+
∥∥∥T (α)

n (·,Wn ( f ))−T (α)
n (·, f )

∥∥∥
Lp

w

+
∥∥∥W (α)

n (·, f )−T (α)
n (·,Wn ( f ))

∥∥∥
Lp

w
=: I1 + I2 + I3.

We denote by T ∗
n (x, f ) the best approximating polynomial of degree at most n to f in

Lp
w(T). In this case, from the boundedness of in Lp

w(T) we have

I1 �
∥∥∥ f (α)(·)−T∗

n (·, f (α))
∥∥∥

Lp
w
+
∥∥∥T ∗

n (·, f (α))−Wn(·, f (α))
∥∥∥

Lp
w

� c(p)En( f (α))Lp
w
+
∥∥∥Wn(·,T ∗

n ( f (α))− f (α))
∥∥∥

Lp
w

� c(p,α)En( f (α))Lp
w
.

By [10, Theorem 1]

I2 � c(p,α)nα ‖Tn(·,Wn ( f ))−Tn(·, f )‖Lp
w
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and

I3 � c(p,α)(2n)α ‖Wn(·, f )−Tn(·,Wn ( f ))‖Lp
w

� c(p,α)(2n)αEn(Wn( f ))Lp
w
.

Now we have

‖Tn(·,Wn ( f ))−Tn(·, f )‖Lp
w

� ‖Tn(·,Wn ( f ))−Wn(·, f )‖Lp
w
+‖Wn(·, f )− f (·)‖Lp

w
+‖ f (·)−Tn(·, f )‖Lp

w

� c(p)En(Wn( f ))Lp
w
+ c(p)En( f )Lp

w
+ c(p)En( f )Lp

w
.

Since
En(Wn( f ))Lp

w
� c(p)En( f )Lp

w
,

we get ∥∥∥ f (α)(·)−T (α)
n (·, f )

∥∥∥
Lp

w

� c(p,α)En( f (α))Lp
w
+ c(p)nαEn(Wn( f ))Lp

w
+ c(p)nαEn( f )Lp

w

+c(p,α)(2n)αEn(Wn( f ))Lp
w

� c(p,α)En( f (α))Lp
w
+ c(p,α)nαEn( f )Lp

w
.

Since [1]

En( f )Lp
w

� c(p,α)
(n+1)α

En( f (α))Lp
w
, (5)

we obtain ∥∥∥ f (α)(·)−T (α)
n (·)

∥∥∥
Lp

w
� cEn( f (α))Lp

w

and the proof is completed. �

Proof of Theorem 2. Let Tn ∈ Πn be the trigonometric polynomial of the best
approximation of f in Lp

w(T) metric. By Remark 1 ( ii), Lemma 1 and (3) we get

Ωr( f ,h)Lp
w

� Ωr(Tn,h)Lp
w
+Ωr( f −Tn,h)Lp

w

� c(p,r)hr
∥∥∥T (r)

n

∥∥∥
Lp

w
+ c(p,r)En( f )Lp

w
, 0 < h < π/n.

Using (5), the direct inequality in [9, Theorem 2] and the inequality

Ωl( f ,h)Lp
w

� chl
∥∥∥ f (l)

∥∥∥
Lp

w
, f ∈Wl

p,w(T), l = 1,2,3, ...,

given in [9, Theorem 1], we have

En( f )Lp
w

� c(p,r)

(n+1)r−[r] En( f (r−[r]))Lp
w

� c(p,r)

(n+1)r−[r]Ω[r]

(
f (r−[r]),

2π
n+1

)
Lp

w

� c(p,r)

(n+1)r−[r]

(
2π

n+1

)[r] ∥∥∥ f (r)
∥∥∥

Lp
w
.
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On the other hand, by Theorem 1 we find∥∥∥T (r)
n

∥∥∥
Lp

w
�
∥∥∥T (r)

n − f (r)
∥∥∥

Lp
w
+
∥∥∥ f (r)

∥∥∥
Lp

w

� c(p,r)En( f (r))Lp
w
+
∥∥∥ f (r)

∥∥∥
Lp

w
� c(p,r)

∥∥∥ f (r)
∥∥∥

Lp
w
.

Choosing h with π/(n+1) < h � π/n, (n = 1,2,3, ...) , we obtain

Ωr( f ,h)Lp
w

� c(p,r)hr
∥∥∥ f (r)

∥∥∥
Lp

w

and we are done. �

Proof of Theorem 3. Let Sn be the n− th partial sum of the Fourier series of
f ∈ Lp

w(T), w∈ Ap(T) and let m∈Z
+. Thanks to the Theorem of Hunt-Muckenhoupt-

Wheeden [6], we obtain that the best approximation by trigonometric polynomials in
Lp

w(T) with w∈Ap(T) has the same order as deviation by the partial sum of the Fourier
series. It means that for ϕ ∈ Lp

w

‖ϕ−Sn(ϕ)‖Lp
w

� cEn(ϕ)Lp
w

with a positive constant c independent on ϕ and n.
By Remark 1 ( ii) and (3)

Ωr( f ,π/(n+1))Lp
w

� Ωr( f −S2m ,π/(n+1))Lp
w
+Ωr(S2m ,π/(n+1))Lp

w

� c(p,r)E2m( f )Lp
w
+Ωr(S2m ,π/(n+1))Lp

w

and by Lemma 1,

Ωr(S2m ,π/(n+1))Lp
w

� c(p,r)
(

π
n+1

)r ∥∥∥S(r)
2m

∥∥∥
Lp

w
, n+1 � 2m.

Since

S(r)
2m (x) = S(r)

1 (x)+
m−1

∑
ν=0

{
S(r)

2ν+1(x)−S(r)
2ν (x)

}
,

we have

Ωr(S2m ,π/(n+1))Lp
w

� c(p,r)
(

π
n+1

)r
⎧⎨
⎩
∥∥∥S(r)

1

∥∥∥
Lp

w
+

∥∥∥∥∥
m−1

∑
ν=0

[
S(r)

2ν+1 −S(r)
2ν

]∥∥∥∥∥
Lp

w

⎫⎬
⎭ . (6)

Applying the weighted version of Littlewood-Paley’s theorem [8] and following the
method used in [7], we obtain for 1 < p � 2∥∥∥∥∥

m−1

∑
ν=0

[
S(r)

2ν+1(x)−S(r)
2ν (x)

]∥∥∥∥∥
Lp

w

=

∥∥∥∥∥
m−1

∑
ν=0

2ν+1

∑
k=2ν+1

Bk,r(x)

∥∥∥∥∥
Lp

w

� c

⎛
⎝m−1

∑
ν=0

∣∣∣∣∣
2ν+1

∑
k=2ν+1

krBk,r(x)

∣∣∣∣∣
2

Lp
w

⎞
⎠

1
2
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� c

⎛
⎝m−1

∑
ν=0

∥∥∥∥∥
2ν+1

∑
k=2ν+1

krBk,r(x)

∥∥∥∥∥
p

Lp
w

⎞
⎠

1
p

= c

(
m−1

∑
ν=0

∥∥∥S(r)
2ν+1(x)−S(r)

2ν (x)
∥∥∥p

Lp
w

) 1
p

where Bk,r(x) is the r− th derivative of (ak coskx+bk sinkx), and for p > 2∥∥∥∥∥
m−1

∑
ν=0

[
S(r)

2ν+1(x)−S(r)
2ν (x)

]∥∥∥∥∥
Lp

w

=

∥∥∥∥∥
m−1

∑
ν=0

2ν+1

∑
k=2ν+1

krBk,r(x)

∥∥∥∥∥
Lp

w

� c

⎛
⎝m−1

∑
ν=0

∣∣∣∣∣
2ν+1

∑
k=2ν+1

krBk,r(x)

∣∣∣∣∣
2

Lp
w

⎞
⎠

1
2

� c

⎛
⎝m−1

∑
ν=0

∥∥∥∥∥
2ν+1

∑
k=2ν+1

krBk,r(x)

∥∥∥∥∥
2

Lp
w

⎞
⎠

1
2

= c

(
m−1

∑
ν=0

∥∥∥S(r)
2ν+1(x)−S(r)

2ν (x)
∥∥∥2

Lp
w

) 1
2

.

Consequently, we have

∥∥∥∥∥
m−1

∑
ν=0

[
S(r)

2ν+1(x)−S(r)
2ν (x)

]∥∥∥∥∥
Lp

w

� c

(
m−1

∑
ν=0

∥∥∥S(r)
2ν+1(x)−S(r)

2ν (x)
∥∥∥γ

Lp
w

) 1
γ

, γ = min{p,2}.

Hence, by [10, Theorem 1], we get∥∥∥S(r)
2ν+1(x)−S(r)

2ν (x)
∥∥∥

Lp
w

� c(p,r)2νr ‖S2ν+1(x)−S2ν (x)‖Lp
w

� c(p,r)2νr+1E2ν ( f )Lp
w

and ∥∥∥S(r)
1

∥∥∥
Lp

w
=
∥∥∥S(r)

1 −S(r)
0

∥∥∥
Lp

w
� c(p,r)E0( f )Lp

w
.

Then from (6) we have

Ωr(S2m ,π/(n+1))Lp
w

� c(p,r)
(

π
n+1

)r
⎧⎨
⎩E0( f )Lp

w
+

(
m−1

∑
ν=0

2(ν+1)rγEγ
2ν ( f )Lp

w

) 1
γ
⎫⎬
⎭ .

It is easily seen that

2(ν+1)rγEγ
2ν ( f )Lp

w
� c(r)

2ν

∑
μ=2ν−1+1

μγr−1Eγ
μ( f )Lp

w
, ν = 1,2,3, .... (7)
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Therefore,

Ωr(S2m ,π/(n+1))Lp
w

� c(p,r)
(

π
n+1

)r

⎧⎪⎨
⎪⎩E0( f )Lp

w
+2rE1( f )Lp

w
+ c(r)

⎛
⎝m−1

∑
ν=0

2ν

∑
μ=2ν−1+1

μγr−1Eγ
μ( f )Lp

w

⎞
⎠

1
γ
⎫⎪⎬
⎪⎭

� c(p,r)
(

π
n+1

)r
⎧⎨
⎩E0( f )Lp

w
+

(
2m

∑
μ=1

μγr−1Eγ
μ( f )Lp

w

) 1
γ
⎫⎬
⎭

� c(p,r)
(

π
n+1

)r
(

2m−1

∑
ν=0

(ν +1)γr−1Eγ
ν( f )Lp

w

) 1
γ

.

If we choose 2m � n+1 � 2m+1, then

Ωr(S2m ,π/(n+1))Lp
w

� c(p,r)
(n+1)r

(
n

∑
ν=0

(ν +1)γr−1Eγ
ν( f )Lp

w

) 1
γ

.

Taking also the relation

E2m( f )Lp
w

� E2m−1( f )Lp
w

� c(p,r)
(n+1)r

(
n

∑
ν=0

(ν +1)γr−1Eγ
ν( f )Lp

w

) 1
γ

into account we obtain the required inequality of Theorem 3. �

Proof of Theorem 4. If Tn is the best approximating polynomial of f , then by [10,
Theorem 1] ∥∥∥T (α)

2m+1 −T (α)
2m

∥∥∥
Lp

w
� c(p,α)2(m+1)αE2m( f )Lp

w

and hence by this inequality, (7) and hypothesis of Theorem 4 we have

∞

∑
m=1

‖T2m+1 −T2m‖Wα
p,w(T) =

∞

∑
m=1

‖T2m+1 −T2m‖Lp
w
+

∞

∑
m=1

∥∥∥T (α)
2m+1 −T (α)

2m

∥∥∥
Lp

w

� c(p,α)
∞

∑
m=1

2(m+1)αE2m( f )Lp
w

� c(p,α)
∞

∑
m=1

2m

∑
j=2m−1+1

jα−1Ej( f )Lp
w

� c(p,α)
∞

∑
j=2

jα−1Ej( f )Lp
w

< ∞.
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Therefore
∞

∑
m=1

‖T2m+1 −T2m‖Wα
p,w(T) < ∞,

which implies that {T2m} is a Cauchy sequence in Wα
p,w(T). Since T2m → f in the

Banach space Lp
w(T ), we have f ∈Wα

p,w(T).
It is clear that

En( f (α))Lp
w

�
∥∥∥ f (α) −Sn f (α)

∥∥∥
Lp

w

�
∥∥∥S2m+2 f (α)−Sn f (α)

∥∥∥
Lp

w
+

∥∥∥∥∥
∞

∑
k=m+2

[
S2k+1 f (α) −S2k f (α)

]∥∥∥∥∥
Lp

w

.

By [10, Theorem 1]

∥∥∥S2m+2 f (α) −Sn f (α)
∥∥∥

Lp
w

� c(p,α)2(m+2)αEn( f )Lp
w

� c(p,α)(n+1)αEn( f )Lp
w

for 2m < n < 2m+1.

On the other hand, following the method given in the proof of Theorem 3, we get

∥∥∥∥∥
∞

∑
k=m+2

[
S2k+1 f (α)−S2k f (α)

]∥∥∥∥∥
Lp

w

� c

(
∞

∑
k=m+2

∥∥∥S(α)
2k+1(x)−S(α)

2k (x)
∥∥∥γ

Lp
w

) 1
γ

, γ = min{p,2}

Since by [10, Theorem 1]

∥∥∥S(α)
2k+1(x)−S(α)

2k (x)
∥∥∥

Lp
w

� c(p,α)2kα ‖S2k+1(x)−S2k(x)‖Lp
w

� c(p,α)2kα+1E2k( f )Lp
w
,

we get

∥∥∥∥∥
∞

∑
k=m+2

[
S2k+1 f (α) −S2k f (α)

]∥∥∥∥∥
Lp

w

� c

(
∞

∑
k=m+2

2γkα+1Eγ
2k( f )Lp

w

) 1
γ

.

Therefore, we have

∥∥∥∥∥
∞

∑
k=m+2

[
S2k+1 f (α) −S2k f (α)

]∥∥∥∥∥
Lp

w

� c

(
∞

∑
k=n+1

kγα−1Eγ
k ( f )Lp

w

) 1
γ

for 2m < n < 2m+1. This completes the proof. �
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sives par un polynome trigonometrique et par ses dérivées succesives, Acta Math., 99 (1958), 33–51.
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