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TENSOR PRODUCT SURFACES WITH

POINTWISE 1-TYPE GAUSS MAP

Kadri Arslan, Betül Bulca, Bengü Kılıç, Young Ho Kim,
Cengizhan Murathan, and Günay Öztürk

Abstract. Tensor product immersions of a given Riemannian manifold

was initiated by B.-Y. Chen. In the present article we study the tensor
product surfaces of two Euclidean plane curves. We show that a tensor
product surfaceM of a plane circle c1 centered at origin with an Euclidean
planar curve c2 has harmonic Gauss map if and only if M is a part of a

plane. Further, we give necessary and sufficient conditions for a tensor
product surface M of a plane circle c1 centered at origin with an Euclidean
planar curve c2 to have pointwise 1-type Gauss map.

1. Introduction

Since the late 1970’s, the study of submanifolds of Euclidean space or pseudo-
Euclidean space with the notion of finite type immersion has been extensively
carried out. An isometric immersion x : M → Em of a submanifold M in
Euclideanm-space Em is said to be of finite type if x identified with the position
vector field of M in Em can be expressed as a finite sum of eigenvectors of the

Laplacian ∆ of M , that is; x = x0 +
∑k

i=1 xi where x0 is a constant map
x1, x2, . . . , xk non-constant maps such that ∆x = λixi, λi ∈ R, 1 ≤ i ≤ k. If
λ1, λ2, . . . , λk are different, then M is said to be of k-type. Similarly, a smooth
map ϕ of an n-dimensional Riemannian manifold M of Em is said to be of finite
type if ϕ is a finite sum of Em-valued eigenfunctions of ∆ ([5], [6]). Granted,
this notion of finite type immersion is naturally extended to the Gauss map G
on M in Euclidean space ([9]). Thus, if a submanifold M of Euclidean space
has 1-type Gauss map G, then G satisfies ∆G = λ(G+C) for some λ ∈ R and
some constant vector C ([1], [2], [3], [14]). However, the Laplacian of the Gauss
map of some typical well-known surfaces such as a helicoid, a catenoid and a
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right cone in Euclidean 3-space E3 take a somewhat different form; namely,
∆G = f(G+C) for some non-constant function f and some constant vector C.
Therefore, it is worth studying the class of solution surfaces satisfying such an
equation. A submanifold M of a Euclidean space Em is said to have pointwise
1-type Gauss map if its Gauss map G satisfies

(1) ∆G = f(G+ C)

for some non-zero smooth function f on M and a constant vector C. A point-
wise 1-type Gauss map is called proper if the function f defined by (1) is
non-constant. A submanifold with pointwise 1-type Gauss map is said to be
of the first kind if the vector C in (1) is zero vector. Otherwise, the pointwise
1-type Gauss map is said to be of the second kind ([8], [10], [15], [16]). In
[10], two of the present authors characterized the minimal helicoid in terms of
pointwise 1-type Gauss map of the first kind. Also, together with B.-Y. Chen,
they proved that surfaces of revolution with pointwise 1-type Gauss map of the
first kind coincides with surfaces of revolution with constant mean curvature.
Moreover, they characterized the rational surfaces of revolution with pointwise
1-type Gauss map [8]. In [18] D. W. Yoon study with Vraneanu rotation sur-
faces in Euclidean 4-space E4. He obtain the complete classification theorems
for the flat Vraneanu rotation surfaces with 1-type Gauss map and an equation
in terms of the mean curvature vector. For more detail see also [17].

The study of tensor product immersion of two immersions of a given Rie-
mannian manifold was introduced by B.-Y. Chen (See, [7]). Further, product
immersions of two plane curves were studied in [13] as a surface in E4. In this
article we investigate a tensor product surface with pointwise 1- type Gauss
map in Euclidean 4-space E4. First, we consider the tensor product immersions
with harmonic Gauss map. Further we investigate tensor product immersions
of two plane curves with pointwise 1-type Gauss map in Euclidean 4-space E4.

2. Preliminaries

In the present section we recall definitions and results of [4]. Let x : M →
Em be an immersion from an n-dimensional connected Riemannian manifold
M into an m-dimensional Euclidean space Em. We denote by g the metric

tensor of Em as well as the induced metric on M . Let ∇̃ be the Levi-Civita
connection of Em and ∇ the induced connection on M . Then the Gaussian
and Weingarten formulas are given respectively by

(2) ∇̃XY = ∇XY + h(X,Y ),

(3) ∇̃Xξ = −AξX +DXξ,

where X,Y are vector fields tangent to M and ξ normal to M. Moreover, h
is the second fundamental form, D is the linear connection induced in the
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normal bundle T⊥M , called normal connection and Aξ the shape operator in
the direction of ξ that is related with h by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩.

If we define a covariant differentiation ∇h of the second fundamental form
h on the direct sum of the tangent bundle and the normal bundle TM ⊕T⊥M
of M by

(∇Xh)(Y,Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

for any vector fields X, Y and Z tangent to M . Then we have the Codazzi
equation

(4) (∇Xh)(Y,Z) = (∇Y h)(X,Z).

We denote R, the curvature tensor associated with ∇;

(5) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The equations Gauss and Ricci are given respectively by

⟨R(X,Y )Z,W ⟩ = ⟨h(X,W ), h(Y, Z)⟩ − ⟨h(X,Z)h(Y,W )⟩,(6)

⟨[Aξ, Aη]X,Y ⟩ = 0(7)

for vectors X,Y, Z,W tangent to M and ξ, η normal to M .

For an n-dimensional submanifold M in Em. The mean curvature vector
−→
H

is given by

−→
H =

1

n
traceh.

A submanifold M is said to be minimal (respectively, totally geodesic) if
−→
H ≡ 0 (respectively, h ≡ 0).

Let us now define the Gauss map G of a submanifold M into G(n,m) in
∧nEm, where G(n,m) is the Grassmannian manifold consisting of all oriented
n-planes through the origin of Em and ∧nEm is the vector space obtained by
the exterior product of n vectors in Em. In a natural way, we can identify ∧nEm

with some Euclidean space EN where N = (mn ) . Let e1, . . . , en, en+1, . . . , em
be an adapted local orthonormal frame field in Em such that e1, e2, . . . , en, are
tangent to M and en+1, . . . , en+2, . . . , em normal to M. The map G : M →
G(n,m) defined by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) is called the Gauss map of M
that is a smooth map which carries a point p in M into the oriented n-plane
in Em obtained from the parallel translation of the tangent space of M at p in
Em.

For any real function f on M the Laplacian of f is defined by

(8) ∆f = −
∑
i

(∇̃ei∇̃eif − ∇̃∇ei
eif).
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3. Tensor product surfaces with finite type Gauss map

In the following sections, we will consider the tensor product immersions,
actually surfaces in E4, which are obtained from two Euclidean plane curves.
Let c1 : R → E2 and c2 : R → E2 be two Euclidean curves. Put c1(t) =
(γ(t), δ(t)) and c2(s) = (α(s), β(s)). Then their tensor product surface is given
by

f = c1 ⊗ c2 : R2 → E4,

(9) f(t, s) = (α(s)γ(t), β(s)γ(t), α(s)δ(t), β(s)δ(t))

(See [11] and [13]). If we take c1 as a unit plane circle centered at 0 and
c2(s) = (α(s), β(s)) is a unit speed Euclidean plane curve, then the surface
patch becomes

(10) M : f(t, s) = (α(s) cos t, β(s) cos t, α(s) sin t, β(s) sin t).

An orthonormal frame tangent to M is given by

(11) e1 =
1

∥c2∥
∂f

∂t
,

(12) e2 =
∂f

∂s
.

The normal space of M is spanned by

(13) n1 = (−β′(s) cos t, β′(s) cot s, α′(s) sin t,−α′(s) sin t),

(14) n2 =
1

∥c2∥
(−β(s) sin t, β(s) sin t, α(s) cos t,−α(s) cos t).

By covariant differentiation with respect to e1 and e2 a straightforward cal-
culation gives

∇̃e1e1 = −a(s)e2 + b(s)n1,

∇̃e2e2 = c(s)n1,(15)

∇̃e2e1 = −b(s)n2,

∇̃e1e2 = a(s)e1 − b(s)n2,

and

∇̃e1n1 = −b(s)e1 − a(s)n2,

∇̃e1n2 = b(s)e2 + a(s)n1,(16)

∇̃e2n1 = −c(s)e2,

∇̃e2n2 = −b(s)e1,

where

a(s) =
α(s)α′(s) + β(s)β′(s)

∥c2(s)∥2
,(17)
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b(s) =
α(s)β′(s)− β(s)α′(s)

∥c2(s)∥2
,(18)

c(s) = α′(s)β′′(s)− α′′(s)β′(s).(19)

are the differentiable functions.
By the use of (16) with (3) we get the following result.

Lemma 3.1. Let f = c1 ⊗ c2 be a tensor product immersion of a plane circle
c1 centered at the origin with any Euclidean planar curve c2(s) = (α(s), β(s)).
Then

(20) An1
=

[
b(s) 0
0 c(s)

]
, An2

=

[
0 −b(s)
−b(s) 0

]
.

By using (8), (15), (16) and straight-forward computation the Laplacian ∆G
of the Gauss map can be expressed as

−∆G = (−2a(s)b(s) + c′(s) + a(s)c(s)) e1 ∧ e3

+(2a(s)b(s) + b′(s) + a(s)b(s))e2 ∧ e4(21)

+
(
3b2(s) + c2(s)

)
e2 ∧ e1 +

(
2b(s)c(s)− 2b2(s)

)
e3 ∧ e4.

First, we suppose that the Gauss map of M is harmonic, i.e., ∆G =
−→
0 .

From (21) we get

3b2(s) + c2(s) = 0,

b(s)c(s)− b2(s) = 0,(22)

−2a(s)b(s) + c′(s) + a(s)c(s) = 0,

2a(s)b(s) + b′(s) + a(s)b(s) = 0.

Then, the first equation of (22) implies that b = 0 and c = 0. So, by (20), M
is a totally geodesic surface in E4.

Thus we have:

Theorem 3.2. Let M be a tensor product surface of a plane circle c1 centered
at the origin with a Euclidean planar curve c2(s) = (α(s), β(s)). If the Gauss
map of M is harmonic, then it is a part of a plane.

Now, we suppose that the rotation surface M is of pointwise 1-type Gauss
map in E4. From (1) and (21)

f + f⟨C, e1 ∧ e2⟩ = −3b2(s)− c2(s),

f⟨C, e1 ∧ e3⟩ = −2a(s)b(s) + c′(s) + a(s)c(s),(23)

f⟨C, e2 ∧ e4⟩ = 2a(s)b(s) + b′(s) + a(s)b(s),

f⟨C, e3 ∧ e4⟩ = 2b(s)c(s)− 2b2(s),

where f is a smooth non-zero function. Then we obtain from (21)

(24)
f⟨C, e1 ∧ e4⟩ = 0,

f⟨C, e2 ∧ e3⟩ = 0.
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Further, by using the equations of Gauss, Codazzi and Ricci after some
computation we get

a′(s) + a2(s) = b2(s)− b(s)c(s),(25)

b′(s) = −2a(s)b(s) + a(s)c(s),(26)

and

(27) b(s) (b(s)− c(s)) = 0,

respectively.
Consider the open subset U = {s ∈ domc2 | b(s) ̸= c(s)}. Suppose U ̸= ∅.

Then, b(s) = 0 on U by (27). (26) with it implies a(s)c(s) = 0. If a(s0) ̸= 0
for some s0 ∈ U, then c(s0) = 0, a contradiction. Thus, a(s) = 0 on U.
Hence, (17) and (18) show that c2(s) = (α(s), β(s) is a constant vector on U,
a contradiction. Therefore, b(s) = c(s) for all s. Hence, from (25) one can get
a Bernoulli differential equation

a′(s) + a2(s) = 0.

Thus, one can have a trivial solution

a(s) ≡ 0

or a non-trivial solution

(28) a(s) =
1

s+ s0

for some constant s0.
Suppose a ≡ 0. By (26), b is a constant and so is c. By (23) with b(s) =

c(s) = const., the constant vector C reduces to

C = ⟨C,G⟩G
and thus ⟨C,G⟩G is constant. Therefore, the Gauss map G is eventually a
constant vector. In this case, M is part of a plane.

Let us consider the case that a has a non-trivial solution. Combining (28)
with (17), we obtain a differential equation

(α2(s) + β2(s))′

2(α2(s) + β2(s))
=

1

s+ s0

which has a solution

α2(s) + β2(s) = µ(s+ s0)
2

for some non-zero constant µ.
Since c2(s) = (α(s), β(s)) is of unit speed, we may put

(29) α′(s) = cos θ(s), β′(s) = sin θ(s)

for some function θ(s) and using (19) we get

c(s) = α′(s)β′′(s)− α′′(s)β′(s)

= θ′(s).
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Furthermore, substituting c(s) = b(s) into (26) and using (28) we obtain

b′(s) = − b(s)

s+ s0
,

which has the solution

(30) b(s) =
λ

s+ s0
, λ = const.

Combining (30), (29) and using c(s) = b(s), we get

θ(s) = λ ln |s+ s0| .
So, substituting this into (29) we get

(31)

α(s) =

∫
cos(λ ln |s+ µ|)ds,

β(s) =

∫
sin(λ ln |s+ µ|)ds,

The converse also holds.
Thus, summing up the following theorem is proved.

Theorem 3.3. Let M be a tensor product surface of a plane circle c1 cen-
tered at the origin with a Euclidean planar curve c2(s) = (α(s), β(s)). Then M
has pointwise 1-type Gauss map if and only if M is either totally geodesic or
parameterized by

α(s) =

∫
cos(λ ln |s+ µ|)ds,

β(s) =

∫
sin(λ ln |s+ µ|)ds.

Remark. Part of plane can be considered as a surface of a Euclidean space with
pointwise 1-type Gauss map of the second kind.
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