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a b s t r a c t

The main goal of this paper is to define Gröbner–Shirshov bases for some monoids.
Therefore, after giving some preliminarymaterial, we first give Gröbner–Shirshov bases for
graphs and Schützenberger products of monoids in separate sections. In the final section,
we further present a Gröbner–Shirshov basis for a Rees matrix semigroup.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Gröbner basis theory for commutative algebras was introduced by Buchberger [12] and provides a solution to the
reduction problem for commutative algebras. In [1], Bergman generalized the Gröbner basis theory to associative algebras
by proving the Diamond Lemma. On the other hand, the parallel theory of Gröbner bases was developed for Lie algebras by
Shirshov [25]. The key ingredient of the theory is the so-called Composition Lemma which characterizes the leading terms
of elements in the given ideal. In [2], Bokut noticed that Shirshov’s method also works for associative algebras. Hence, for
this reason, Shirshov’s theory for Lie algebras and their universal enveloping algebras is called the Gröbner–Shirshov basis
theory. Gröbner–Shirshov bases for finite dimensional simple Lie algebras were constructed explicitly in a series of papers
by Bokut and Klein [8–10]. Moreover, in [11], Bokut et al. defined the Gröbner–Shirshov basis for some braid groups. In [16],
Gröbner–Shirshov bases for HNN-extensions of groups and for alternating groups were considered. Furthermore, in [15,14],
Gröbner–Shirshov bases for Schreier extensions of groups and for the Chinese monoid were defined, separately. Some other
recent papers about Gröbner–Shirshov bases are, for instance, [3,4,7,6,22].

It is well known that the graph product is an operator which is mixing direct and free products. In fact the graph product
between two monoids whether free or direct can be determined by a simplicial graph (a graph with no loops). Considering
a monoid attached to each vertex of the graph, the associated graph product is the monoid generated by each of the vertex
monoids with the added relations that elements of adjacent vertex monoids commute. For more details on it, we may refer
to, for instance, [17,18].

One of themost useful tools for studying the concatenation product is the Schützenberger product ofmonoidswhichwas
originally defined by Schützenberger [24] for two monoids, and extended by Straubing [26] for any number of monoids.
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The other most useful and important construction is Rees matrix semigroups. After Rees matrix semigroups were
introduced by Rees [23], they became a very important family of semigroups, especially in the study of structure theory
of completely (0)-simple semigroups (see for example [19]).

In this paper, we find Gröbner–Shirshov bases for monoids and semigroups that are mentioned in above paragraphs.
In the light of this aim, sections are organized by including details and Gröbner–Shirshov bases of these types of monoids
and semigroups as follows. First of all, we provide some background material about the Gröbner–Shirshov basis and the
Composition–Diamond Lemma. Then in Sections 3–5, we study Gröbner–Shirshov bases for graphs and Schützenberger
products of monoids, and for Rees matrix semigroups, respectively.

Throughout this paper, p1 ∩ p2 denotes the intersection compositions of p1 and p2 polynomials. Additionally also ui and
ui denote the words which do not have the last generator and the first generator of the word ui, respectively.

2. Gröbner–Shirshov bases and the Composition–Diamond Lemma

Let K be a field and K⟨X⟩ be the free associative algebra over K generated by X . Denote X∗ the free monoid generated by
X , where the empty word is the identity which is denoted by 1. For a word w ∈ X∗, we denote the length of w by |w|. Let
X∗ be a well ordered set. Then every nonzero polynomial f ∈ K⟨X⟩ has the leading word f . If the coefficient of f in f is equal
to 1, then f is called monic.

Definition 1. Let f and g be two monic polynomials in K⟨X⟩. Then, there are two kinds of compositions.
1. If w is a word such that w = f b = ag for some a, b ∈ X∗ with |f | + |g| > |w|, then the polynomial (f , g)w = fb − ag is

called the intersection composition of f and g with respect to w. The word w is called an ambiguity of the intersection.
2. If w = f = agb for some a, b ∈ X∗, then the polynomial (f , g)w = f − agb is called the inclusion composition of f and g

with respect to w. The word w is called an ambiguity of inclusion.

Definition 2. If g is monic, f = agb and α is the coefficient of the leading term f , then transformation f → f − αagb is
called an elimination of the leading word (ELW) of g in f .

Definition 3. Let S ⊆ K⟨X⟩ with each s ∈ S monic. Then the composition (f , g)w is called a trivial modulo (S, w) if
(f , g)w =

∑
αaisibi, where each αi ∈ K , ai, bi ∈ X∗, si ∈ S and aisibi < w. If this is the case, then we write

(f , g)w ≡ 0 mod(S, w).

In general, for p, q ∈ K⟨X⟩, we write

p ≡ q mod(S, w)

which means that p − q =
∑

αaisibi, where each αi ∈ K , ai, bi ∈ X∗, si ∈ S and aisibi < w.

Definition 4. We call the set S endowedwith the well ordering < a Gröbner–Shirshov basis for K⟨X | S⟩ if any composition
(f , g)w of polynomials in S is trivial in modulo S and the corresponding w.

A well ordered < on X∗ is monomial if for u, v ∈ X∗, we have
u < v ⇒ w1uw2 < w1vw2,

for all w1, w2 ∈ X∗.
The following lemma was proved by Shirshov [25] for free Lie algebras (with deg-lex ordering) in 1962 (see also [5]).

In 1976, Bokut [2] specialized the Shirshov’s approach to associative algebras (see also [1]). Meanwhile, for commutative
polynomials, this lemma is known as the Buchberger’s Theorem (see [12,13]).

Lemma 5 (Composition–Diamond Lemma). Let K be a field,

A = K⟨X | S⟩ = K⟨X⟩/Id(S)

and < a monomial ordering on X∗, where Id(S) is the ideal of K⟨X⟩ generated by S.Then the following statements are equivalent:
1. S is a Gröbner–Shirshov basis.
2. f ∈ Id(S) ⇒ f = asb for some s ∈ S and a, b ∈ X∗.
3. Irr(S) = {u ∈ X∗

| u ≠ asb, s ∈ S, a, b ∈ X∗
} is a basis of the algebra A = K⟨X | S⟩.

If a subset S of K⟨X⟩ is not a Gröbner–Shirshov basis, then we can add to S all nontrivial compositions of polynomials of
S, and by continuing this process (maybe infinitely) many times, we eventually obtain a Gröbner–Shirshov basis Scomp. Such
a process is called the Shirshov algorithm.

If S is a set of ‘‘semigroup relations’’ (that is, the polynomials of the form u − v, where u, v ∈ X∗), then any nontrivial
composition will have the same form. As a result, the set Scomp also consists of semigroup relations.

Let M = sgp⟨X | S⟩ be a semigroup presentation. Then S is a subset of K⟨X⟩ and hence one can find a Gröbner–Shirshov
basis Scomp. The last set does not depend on K , and as mentioned before, it consists of semigroup relations. We will call Scomp

a Gröbner–Shirshov basis of M . This is the same as a Gröbner–Shirshov basis of the semigroup algebra KM = K⟨X | S⟩. If S
is a Gröbner–Shirshov basis of the semigroupM = sgp⟨X | S⟩, then Irr(S) is a normal form forM .
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3. Gröbner–Shirshov basis for the graph product of monoids

LetM1,M2, . . . ,Mj (j ≥ 4) be monoids presented by generators and relations

℘M1 = ⟨X1 | R1⟩, ℘M2 = ⟨X2 | R2⟩, . . . , ℘Mj = ⟨Xj | Rj⟩,

respectively, where R1, R2, . . . , Rj are Gröbner–Shirshov bases for M1,M2, . . . ,Mj with the deg-lex orders <Mi on X∗

i
(1 ≤ i ≤ j). Here, we assume that the sets X1, X2, . . . , Xj are disjoint and each Xi is a well-ordered set.

Let

R1 = {u11 = v11 , u12 = v12 , . . . , u1m1
= v1m1

},

R2 = {u21 = v21 , u22 = v22 , . . . , u2m2
= v2m2

},

· · ·

Rj = {uj1 = vj1 , uj2 = vj2 , . . . , ujmj
= vjmj

},

where m1,m2, . . . ,mj are positive integers and uir (i ≤ j and r ≤ mi) are the leading terms of polynomials fuir = uir − vir
in k⟨Xi⟩.

Then we have the graph product of monoidsMi (1 ≤ i ≤ j), say M , presented by

℘M = ⟨X1, X2, . . . , Xj | R1, R2, . . . , Rj, S ′
⟩, (1)

where S ′
= {xixi+1 − xi+1xi, x1xj − xjx1} (1 ≤ i < j), and Mi,Mi+1 are adjacent vertices of Γ , which is a simplicial graph

(a graph with no loops) with vertices labeledM1,M2, . . . ,Mj (see [17]).
Now let us order the set (X1 ∪ X2 ∪ · · · ∪ Xj)

∗ with degree lexicographically by using the order

• xi > xk if i < k (xi ∈ Xi, xk ∈ Xk).

Now we give the main result of this section.

Theorem 6. A Gröbner–Shirshov basis for M consists of the following relations:

uir = vir (1 ≤ i ≤ j), (2)

xixi+1 = xi+1xi, x1xj = xjx1 (1 ≤ i ≤ j − 1), (3)

xiwi+2xi+1 = xi+1xiwi+2 (1 ≤ i ≤ j − 2), (4)

where wi+2 ∈ X∗

i+2.

Sketch of the proof. We need to prove that all compositions of relations (2)–(4) are trivial. To do that we must check all the
ambiguities in S, where S is the set of relations at ℘M (see (1)), by considering the following cases;

1. Ambiguities which are from the leading words of polynomials in Ri and Rk for 1 ≤ i, k ≤ j and i ≠ k,
2. Ambiguities which are from the leading words of polynomials in S ′, by this process we get the relation (4),
3. Ambiguities which are from the leading words of polynomials in S ′ and Ri for 1 ≤ i ≤ j.

Proof. 1. If we check leading words from Ri and Rk for 1 ≤ i, k ≤ j and i ≠ k, then we see that there are no any ambiguities
since the generator sets of these relation sets are different from each other. So we do not need to check the ambiguities
obtained by intersection compositions of leadings terms of polynomilas in Ri and Rk.

2. We examine the intersection compositions of polynomials in the set S ′ with each other. To do that, let

g1 = xixi+1 − xi+1xi and g2 = xi+1xi+2 − xi+2xi+1 ∈ S ′.

Then we have the ambiguity w = xixi+1xi+2. Here a = xi and b = xi+2. Then we get

(g1, g2)w = g1b − ag2
= (xixi+1 − xi+1xi)xi+2 − xi(xi+1xi+2 − xi+2xi+1)

= xixi+1xi+2 − xi+1xixi+2 − xixi+1xi+2 + xixi+2xi+1

= xixi+2xi+1 − xi+1xixi+2

which is not trivial modulo S.
Now let h1 = xixi+2xi+1−xi+1xixi+2. If we consider the intersection composition of h1 with g2, thenwe get the polynomial

h2 = xix2i+2xi+1 − xi+1xix2i+2. By continuing this procedure, we obtain the following non-trivial polynomial

h = xiwi+2xi+1 − xi+1xiwi+2 (i ∈ {1, 2, . . . , (j − 2)}),
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where wi+2 ∈ X∗

i+2. Now let us consider the intersection composition of h with itself. Hence we obtain the ambiguity
w = xiwi+2xi+1wi+3xi+2 and thus we get

(h, h)w = (xiwi+2xi+1 − xi+1xiwi+2)wi+3xi+2 − xiwi+2(xi+1wi+3xi+2 − xi+2xi+1wi+3)

= xiwi+2xi+1wi+3xi+2 − xi+1xiwi+2wi+3xi+2 − xiwi+2xi+1wi+3xi+2 + xiwi+2xi+2xi+1wi+3

= xiwi+2xi+2xi+1wi+3 − xi+1xiwi+2wi+3xi+2

= xi+1xiwi+2xi+2wi+3 − xi+1xiwi+2wi+3xi+2

= xi+1xiwi+2wi+3xi+2 − xi+1xiwi+2wi+3xi+2 ≡ 0.

At this stage, it remains to check intersection composition of g1 with h, fuir with h and hwith fuir .

g1 ∩ h : w = xixi+1wi+3xi+2,

(g1, h)w = (xixi+1 − xi+1xi)wi+3xi+2 − xi(xi+1wi+3xi+2 − xi+2xi+1wi+3)
= xixi+1wi+3xi+2 − xi+1xiwi+3xi+2 − xixi+1wi+3xi+2 + xixi+2xi+1wi+3
= xixi+2xi+1wi+3 − xi+1xiwi+3xi+2 = xi+1xixi+2wi+3 − xi+1xiwi+3xi+2
= xi+1xiwi+3xi+2 − xi+1xiwi+3xi+2 ≡ 0.

fuir ∩ h : w = uir xiwi+2xi+1,

(fuir , h)w = (uir − vir )wi+2xi+1 − uir (xiwi+2xi+1 − xi+1xiwi+2)

= uir wi+2xi+1 − vir wi+2xi+1 − uir wi+2xi+1 + uir xi+1xiwi+2
= uir xi+1xiwi+2 − vir wi+2xi+1 = xi+1 uir xiwi+2 − vir wi+2xi+1
= xi+1uir wi+2 − vir wi+2xi+1 = xi+1vir wi+2 − xi+1vir wi+2 ≡ 0.

h ∩ fuir : w = xiwi+2xi+1ui+1r

(h, fuir )w = (xiwi+1xi+1 − xi+1xiwi+2)ui+1r − xiwi+2(ui+1r − vi+1r )

= xiwi+1xi+1ui+1r − xi+1xiwi+2ui+1r − xiwi+2ui+1r + xiwi+2vi+1r

= xiwi+2vi+1r − xi+1xiwi+2ui+1r = vi+1r xiwi+2 − xi+1ui+1r xiwi+2

= vi+1r xiwi+2 − vi+1r xiwi+2 ≡ 0.

3. In this part of the proof we check the ambiguities obtained by intersection compositions of leading terms of polynomials
in S ′ and Ri (1 ≤ i ≤ j). To do that let us suppose that g = xixi+1 − xi+1xi ∈ S ′ and fuir = uir − vir ∈ Ri, (1 ≤ i ≤ j). So the
ambiguity obtained by the intersection composition of fuir with g is w = uir xixi+1. Then we get

(fuir , g)w = (uir − vir )xi+1 − uir (xixi+1 − xi+1xi)
= uir xi+1 − vir xi+1 − uiqxixi+1 + uiqxi+1xi
= uir xi+1 − vir xi+1 − uir xi+1 + uir xi+1xi
= uir xi+1xi − vir xi+1

= xi+1 uir xi − xi+1vir

= xi+1uir − xi+1vir ≡ 0.

Similarly, by checking the intersection composition of g by fuir , we obtain the triviality again.
The above procedure shows that there are no new polynomials by considering the relations Rj and S ′ to obtain a

Gröbner–Shirshov basis for the graph product of monoids.
Finally, it remains to check compositions of including of polynomials (2)–(4). But it is clear.
Hence the proof. �

Remark 7. At the beginning of the Section 3, we take j ≥ 4. The reason for this is that for the graph product of less than
four monoids, we get a direct product of monoids. So one can find a Gröbner–Shirshov basis for this monoid consists of the
relations (2) and (3).

By using the Composition–Diamond Lemma, the normal form for the graph product of monoids can be given by the
following result.

Corollary 8 ([21]). Every element w of M has one of the normal forms w1w2 · · · wn where each of wi is an element of some
vertex monoid Mk (1 ≤ k ≤ j). Here we have the following:

1. Remove wi = 1.
2. Replace consecutive elements wi and wi+1 in the same vertex monoid Mk with the single element wiwi+1.
3. For consecutive elements wi ∈ Mi, wi+1 ∈ Mi+1 and w1 ∈ M1, wj ∈ Mj such that Mi, Mi+1 and M1, Mj are adjacent monoids,

exchange wi, wi+1 and w1, wj.
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4. Gröbner–Shirshov basis for the Schützenberger product of monoids

Let A and B be monoids. For P ⊆ A × B, a ∈ A, b ∈ B, we define

aP = {(ac, d) | (c, d) ∈ P}, Pb = {(c, db) | (c, d) ∈ P}.

The Schützenberger product ofA andB, denoted byA�B, is the setA×P (A×B)×Bwithmultiplication (a1, P1, b1)(a2, P2, b2) =

(a1a2, P1b2 ∪ a1P2, b1b2).
Let M1 and M2 be monoids presented by ℘M1 = ⟨X1 | R1⟩ and ℘M2 = ⟨X2 | R2⟩, respectively, where R1 and R2 are

Gröbner–Shirshov bases forM1 and M2 with the deg-lex order <Mi on X∗

i (i = 1, 2).
The Schützenberger product ofM1 and M2 is presented by

℘M1�M2 = ⟨Z | R1, R2, z2w1,w2
= zw1,w2 , zw1,w2zw′

1,w
′
2

= zw′
1,w

′
2
zw1,w2 ,

x1zw1,w2 = zx1w1,w2x1, zw1,w2x2 = x2zw1,w2x2 , x1x2 = x2x1⟩,

where xi ∈ Xi, wi, w
′

i ∈ Mi (i ∈ {1, 2}) and Z = X1 ∪ X2 ∪ {zw1,w2 | w1 ∈ M1, w2 ∈ M2} (see [20]).
Now we order the set Z∗ with degree lexicographically by using the following orders:

• x1 > x2 by the order <Mi , xi ∈ Xi (1 ≤ i ≤ 2),
• x1 > zw1,w2 > x2 for all wi ∈ Mi (1 ≤ i ≤ 2),
• (w1, w2) > (w′

1, w
′

2) if w1 > w′

1 or w1 = w′

1 and w2 > w′

2,
• zw1,w2 > zw′

1,w
′
2
if (w1, w2) > (w′

1, w
′

2), wi, w
′

i ∈ Mi (1 ≤ i ≤ 2).

Now we can give the following theorem as another main result of this paper.

Theorem 9. A Gröbner–Shirshov basis for M1 � M2 consists of the following polynomials:

1. u1 − v1, 2. u2 − v2,

3. z2w1,w2
− zw1,w2 , 4. zw1,w2zw′

1,w
′
2
− zw′

1,w
′
2
zw1,w2 ,

5. x1zw1,w2 − zx1w1,w2x1, 6. zw1,w2x2 − x2zw1,w2x2 ,

7. x1x2 − x2x1,

where ui − vi ∈ Ri (1 ≤ i ≤ 2).

Proof. Let us consider all intersection compositions of 1–7 with each other. We need to prove that all these compositions
are trivial. These compositions are summarized in the following table.

i ∩ j w: ambiguity i ∩ j w: ambiguity
1 ∩ 5 u1x1zw1,w2 4 ∩ 6 zw1,w2zw′

1,w
′
2
x2

1 ∩ 7 u1x1x2 5 ∩ 3 x1z2w1,w2

3 ∩ 4 z2w1,w2
zw′

1,w
′
2

5 ∩ 4 x1zw1,w2zw′
1,w

′
2

3 ∩ 6 z2w1,w2
x2 5 ∩ 6 x1zw1,w2x2

4 ∩ 3 zw1,w2z
2
w′
1,w

′
2

6 ∩ 2 zw1,w2x2u2

4 ∩ 4 zw1,w2zw′
1,w

′
2
zw′′

1 ,w′′
2

7 ∩ 2 x1x2u2

It is seen that these compositions are trivial. Let us check one of them as follows.

1 ∩ 5 : w = u1x1zw1,w2 ,

(f , g)w = (u1 − v1)zw1,w2 − u1(x1zw1,w2 − zx1w1,w2x1)
= u1zw1,w2 − v1zw1,w2 − u1x1zw1,w2 + u1zx1w1,w2x1
= u1zx1w1,w2x1 − v1zw1,w2 = zu1x1w1,w2 u1x1 − zv1w1,w2v1
= zu1w1,w2u1 − zv1w1,w2v1 ≡ 0.

Finally, it remains to check compositions of including of polynomials 1–7. But it is clear that there are no any compositions
of this type.

Hence the result. �

So under the relations which are actually Gröbner–Shirshov bases for the Schützenberger product of monoids, we give a
normal form of words as follows:

Corollary 10 ([20]). Every element w of M1 � M2 has a unique representation u2zm1,m2u1, where zm1,m2 ∈ {zw1,w2 | w1 ∈

M1, w2 ∈ M2}
∗, u2 ∈ X∗

2 and u1 ∈ X∗

1 are irreducible words.
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5. Gröbner–Shirshov basis for Rees matrix semigroup

Let A be amonoid, 0 be an element not belonging to A, and let I andΛ be index sets. Also let P = (pλi)λ∈Λ,i∈I be a |Λ|× |I|
matrix with entries from the set Λ ∪ {0}. Then the Rees matrix semigroup M0

[A; I, Λ; P] is the set (I × A× Λ)∪ {0} with the
multiplication

(i1, a1, λ1)(i2, a2, λ2) =


(i1, a1pλ1i2a2, λ2) if pλ1i2 ≠ 0
0 if pλ1i2 = 0

such that

0(i, a, λ) = (i, a, λ)0 = 00 = 0.

Wemay refer the reader to [20] for more details about Rees matrix semigroups.

Theorem 11 ([20]). For amonoid A, let S = M0
[A; I, Λ; P] be a Rees matrix semigroup, where P is a |Λ|×|I|matrix with entries

from A and p11 = 1A. Also let ⟨X |R⟩ be a semigroup presentation for A, e ∈ X∗ be a non-empty word representing the identity 1A
of A, and let Y = X ∪ {yi : i ∈ I − {1}} ∪ {zλ : λ ∈ Λ − {1}}. Then the presentation

⟨Y | R, yie = yi, eyi = p1i, zλe = pλ1, ezλ = zλ, zλyi = pλi(i ∈ I − {1}, λ ∈ Λ − {1})⟩ (5)

defines S as a semigroup with zero.

We remark that, for the following result, we will assume |pλ1| = |pλ′1| = |p1i| = |p1j| = 1 and |pλi|, |pλ′i| ≤ 2, where
i, j ∈ I − {1}, λ, λ′

∈ Λ − {1}. Additionally we will suppose that R is a Gröbner–Shirshov basis for Awith the deg-lex order
<A on X∗. We will order the set Y ∗ with degree lexicographically by using the orders zλ, zλ′ > x and yi, yj > x (x ∈ X).

Theorem 12. A Gröbner–Shirshov basis for S = M0
[A; I, Λ; P] consists of the relations given in the presentation (5) and the

following relations:

yiyj = yip1j, zλzλ′ = pλ1zλ′ , p1ie = p1i, epλ1 = pλ1, (6)
zλp1i = pλ1yi, epλi = pλi, pλie = pλi, p1iyj = p1ip1j, (7)
zλpλ′1 = pλ1pλ′1, zλpλ′i = pλ1pλ′i, pλiyj = pλip1j. (8)

Proof. As a usual way, we need to show that all compositions of relations in presentation (5) and equations from (6)–(8)
are trivial. To do that let us consider the following polynomials:

1. u − v, 2. yie − yi, 3. eyi − p1i,
4. zλe − pλ1, 5. ezλ − zλ, 6. zλyi − pλi,

where u = v ∈ R. Nowwe can check intersection compositions of these polynomials by the following table. In this table we
get new polynomials which are not trivial.

i ∩ j w: ambiguity New polynomial i ∩ j w: ambiguity New polynomial
2 ∩ 3 yieyj 7. yiyj − yip1j 4 ∩ 5 zλezλ′ 10. zλzλ′ − pλ1zλ′

2 ∩ 5 yiezλ trivial 5 ∩ 4 ezλe 11. epλ1 − pλ1

3 ∩ 2 eyie 8. p1ie − p1i 5 ∩ 6 ezλyi 12. epλi − pλi

4 ∩ 3 zλeyi 9. zλp1i − pλ1yi 6 ∩ 2 zλyie 13. pλie − pλi

Let us check one of the above compositions:

2 ∩ 3 : w = yieyj,
(f , g)w = (yie − yi)yj − yi(eyj − p1j)

= yieyj − yiyj − yieyj + yip1j = yip1j − yiyj.

Since we have the order yj > x (x ∈ X) we get the polynomial yiyj − yip1j.
Now we check intersection compositions of polynomials 7–13 with each other and 7–13 with 1–6. These compositions

which are trivial are summarized in the following tables, respectively.
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i ∩ j w: ambiguity i ∩ j w: ambiguity
7 ∩ 7 yiyjyj′ 10 ∩ 9 zλzλ′p1i
8∩11 p1iepλ1 12∩13 epλie
8∩12 p1iepλi′ 13∩11 pλiepλ′1

9 ∩ 8 zλp1ie 13∩12 pλiepλ′i′

7 ∩ 2 yiyje 11 ∩ 1 epλ1u
8 ∩ 3 p1ieyj 12 ∩ 1 epλiu
8 ∩ 5 p1iezλ 13 ∩ 3 pλieyj
9 ∩ 1 zλp1iu 13 ∩ 5 pλiezλ′

10∩4 zλzλ′e 10 ∩ 6 zλzλ′yi

Let us check any two of these above compositions:

8 ∩ 11 : w = p1iepλ1,

(f , g)w = (p1ie − p1i)pλ1 − p1i(epλ1 − pλ1)
= p1iepλ1 − p1ipλ1 − p1iepλ1 + p1ipλ1 ≡ 0

13 ∩ 5 : w = pλiezλ′ ,

(f , g)w = (pλie − pλi)zλ′ − pλi(ezλ′ − zλ′)
= pλiezλ′ − pλizλ′ − pλiezλ′ + pλizλ′ ≡ 0.

Now we check intersection compositions of 1–6 with 7–13 with the following table.

i ∩ j w: ambiguity New polynomial i ∩ j w: ambiguity New polynomial
1 ∩ 8 up1ie trivial 4∩ 12 zλepλ′i 16. zλpλ′ i − pλ1pλ′ i

2∩ 11 yiepλ1 trivial 5 ∩ 9 ezλp1i trivial
2∩ 12 yiepλi′ trivial 5∩ 10 ezλzλ′ trivial
3 ∩ 7 eyiyj 14. p1iyj − p1ip1j 6 ∩ 7 zλyiyj 17. pλiyj − pλip1j
4∩ 11 zλepλ′1 15. zλpλ′1−pλ1pλ′1 1∩ 13 upλie trivial

Let us check one of the compositions given above:

4 ∩ 11 : w = zλepλ′1,

(f , g)w = (zλe − pλ1)pλ′1 − zλ(epλ′1 − pλ′1)
= zλepλ′1 − pλ1pλ′1 − zλepλ′1 + zλpλ′1 = zλpλ′1 − pλ1pλ′1.

Now let us consider the polynomials 14–17 given in the above table and check their intersection compositions with each
other, with the polynomials 7–13 and with the polynomials 1–6. Among these compositions those which are trivial are
summarized in the following table.

i ∩ j w: ambiguity i ∩ j w: ambiguity
1 ∩ 14 up1iyj 14 ∩ 7 p1iyjyj′
1 ∩ 17 upλiyj 15 ∩ 1 zλpλ′1u
5 ∩ 15 ezλpλ′1 16 ∩ 1 zλpλ′iu
5 ∩ 16 ezλpλ′ i 14 ∩ 2 p1iyje
9 ∩ 14 zλp1iyj 16∩13 zλpλ′ie
10∩15 zλzλ′pλ′′1 16∩17 zλpλ′iyj
10∩16 zλzλ′pλ′′ i 17 ∩ 2 pλiyje
12∩17 epλiyj 17 ∩ 7 pλiyjyj′

Let us check one of the above compositions:

1 ∩ 14 : w =up1iyj,
(f , g)w = (u − v)yj −u(p1iyj − p1ip1j)

= uyj − vyj −up1iyj +up1ip1j =up1ip1j − vyj
= up1j − vyj = vp1j − vp1j ≡ 0.

Finally, it remains to check compositions of including of polynomials (5)–(8). But it is clear since there are no compositions
of this type.

Hence the result. �
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In Theorem 12, we assumed that |pλ1| = |pλ′1| = |p1i| = |p1j| = 1 and |pλi|, |pλ′ i| ≤ 2. But, if we extend the inequalities
given for the lengths of the words pλi, pλ′ i, then we obtain a similar result (such that the its proof can be made quite similar
to the proof of Theorem 12) for a Gröbner–Shirshov basis of S = M0

[A; I, Λ; P] as in the following.

Theorem 13. Let S = M0
[A; I, Λ; P] be a Rees matrix semigroup, where A is a monoid, P is a |Λ| × |I| matrix with entries

from A (as given in Theorem 11). Let |pλ1| = |pλ′1| = |p1i| = |p1j| = 1 and |pλi|, |pλ′ i| > 2. Then a Gröbner–Shirshov basis of
S = M0

[A; I, Λ; P] consists of the relations given in the presentation (5) and the relations:

yiyj = yip1j, zλzλ′ = pλ1zλ′ , p1ie = p1i, epλ1 = pλ1,

zλp1i = pλ1yi, p1iyj = p1ip1j, zλpλ′1 = pλ1pλ′1, pλiyj = pλip1j.
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