
Commun Nonlinear Sci Numer Simulat 16 (2011) 4698–4703
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Complex valued neural network with Möbius activation function

Necati Özdemir ⇑, Beyza B. _Iskender, Nihal Yılmaz Özgür
Department of Mathematics, Faculty of Science and Arts, Balıkesir University, Cagis Campus, 10145 Balıkesir, Turkey
a r t i c l e i n f o

Article history:
Available online 21 March 2011

Keywords:
Complex valued neural networks
Möbius transformation
Reflection in a circle
Lyapunov stability
1007-5704/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.cnsns.2011.03.005

⇑ Corresponding author. Tel.: +90 26661 121000x
E-mail addresses: nozdemir@balikesir.edu.tr (N.
a b s t r a c t

In this work, we propose a new type of activation function for a complex valued neural net-
work (CVNN). This activation function is a special Möbius transformation classified as
reflection. It is bounded outside of the unit disk and has partial continuous derivatives
but not differentiable since it does not satisfy the Cauchy–Riemann equalities. However,
the fixed points set of this function is a circle. Therefore, we employ this function to a spe-
cific complex valued Hopfield neural network (CVHNN) and increase the number of fixed
points of the CVHNN. Using of this activation function leads us also to guarantee the exis-
tence of fixed points of the CVHNN. It is shown that the fixed points are all asymptotically
stable states of the CVHNN which indicates that the information capacity is enlarged.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A complex valued neural network (CVNN) is a neural network that processes information in the complex plane C [1]. It
becomes very attractive field at the end of the 1980s and applicable to optoelectronics, imaging, remote sensing, quantum
neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information pro-
cessing, see [2].

For CVNNs, the main task is to find a suitable activation function in a variety of complex functions. Despite the activation
function of real valued neural networks (RVNNs) is chosen to be smooth and bounded generally as a sigmoid function, in the
complex plane these properties are not convenient for the nature of neural networks. Because of Liouville’s theorem; the
analytic and bounded functions on entire complex plane are constant.

There are several complex activation functions proposed in the literature. The basic ones of them are given below.
The sigmoid function was also used for CVNNs by Leung and Haykin [3]
f ðzÞ ¼ 1
1þ e�z

;

but this function has singular points at every z ¼ ð2nþ 1Þip; n 2 Z: They avoided this problem by scaling the input data to
some region of the complex plane. Later on, the sigmoid function was adapted to CVNNs as
f ðzÞ ¼ 1
1þ e�Rez

þ i
1

1þ e�Imz
by Birx and Pipenberg [4]; Benvenuto and Piazza [5]. Also, tanh function which has singular points at every
z ¼ ðnþ 1

2Þip; n 2 Z was adapted to CVNNs as real-imaginary type activation function
f ðzÞ ¼ tanhðRezÞ þ i tanh ðImzÞ
. All rights reserved.
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by Kechriotis and Monalakos [6]; Kinouchi and Hagiwara [7], and as amplitude-phase type activation function
f ðzÞ ¼ tanh ðjzjÞ exp ði argðzÞÞ
by Hirose [8].
The other activation functions are given below:
f ðzÞ ¼ z
jzj
by Noest [9],
f ðzÞ ¼ z
c þ 1

r jzj
by Georgiou and Koutsougeras [10],
f ðzÞ ¼ Rez
c þ 1

r jRezj
þ i

Imz
c þ 1

r jImzj
or
f ðzÞ ¼ jzj
c þ 1

r jzj
exp i arg z� 1

2n sinð2n arg zÞ
� �� �
by Kuroe and Taniguchi [11], in which c and 1
r are positive constants and �p < argz < p. Detailed comparison for these types

of activation functions can be found in [12]. In addition, Kim and Adali [13] presented a set of elementary transcendental
functions whose components are bounded almost everywhere and analytic functions to employ backpropagation. The tanh
function is one of them and the singularities of the function was avoided by restricting the domain of interest to a circle of
radius p

2 :

Another approach to chose activation functions of CVNNs using conformal mappings was proposed by Clarke [14]. He
emphasized that the elegant theory of conformal mappings can be applied to find other activation functions. He gave the
following activation function
f ðzÞ ¼ ðcos hþ i sin hÞðz� aÞ
1� �az

;

where h is a rotation angle, a is a complex constant with jaj < 1 and �a denotes complex conjugate of a. This function is the
general conformal mapping that transform unit disk in the complex plane onto itself and also a Möbius transformation. Fur-
thermore, Möbius transformations were used in RVNNs by Mandic [15]. He showed that sigmoidal or tanh types of activation
functions for a RVNN satisfy the conditions of a Möbius transformation. To base on the observation of ‘‘fixed points of a neu-
ral network are determined by fixed points of the employed activation function’’ he deduced ‘‘the existence for fixed points
of the activation function are guaranteed by the Möbius transformation’’.

In this work, we consider a new complex activation function known as reflection type Möbius transformation whose de-
tails are given in Section 2. Our motivation to chose this function is to enlarge information capacity of CVNNs. As it is known,
information in a neural network is stored as asymptotically stable states [16]. The proposed function has infinite number of
fixed points which lie on a circle and corresponds to fixed points of the considering CVNN in Section 3. We investigate sta-
bility of the fixed points in Section 4 by using Lyapunov stability approach and show that the fixed points are all asymptot-
ically stable states of the CVNN under the assumptions of Theorem 2.

2. Möbius transformation as activation function

A Möbius transformation is defined as
f ðzÞ ¼ azþ b
czþ d

; ð1Þ
where a; b; c; d 2 C and ad � bc = 1. It is a conformal mapping of the complex plane and also known as linear fractional or
bilinear transformation. Such a Möbius transformation has at most two fixed points if it is not identity transformation f(z) = z.
Detailed information could be found in [17,18].

Möbius transformations with real coefficients can be classified into
G1 ¼ f : f ðzÞ ¼ azþ b
czþ d

; a; b; c;d 2 R; ad� bc ¼ 1
� �

ð2Þ
and
G2 ¼ g : gðzÞ ¼ a�zþ b
c�zþ d

; a; b; c;d 2 R; ad� bc ¼ �1
� �

: ð3Þ
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The transformations belong to the components of G = G1 [ G2 are bijective transformations of extended complex plane. The
transformations in G1 are conformal mappings and have at most two fixed points. Any transformation belongs to G2 is anti-
conformal mapping and can be classified according to the value of a + d. If a + d – 0, the transformation is called as a glide-
reflection and has two fixed points on the real axis. If a + d = 0, the transformation is called as a reflection and has infinite
number of fixed points on a circle centered at a

c and of radius 1
jcj. To utilize the infinite number of fixed points, we use reflec-

tion type Möbius transformation as an activation function. We begin to analyse these types of activation functions by choos-
ing a simple reflection transformation
f ðzÞ ¼ 1
�z
: ð4Þ
This transformation maps unit circle onto itself, outside of the unit circle to its inside and inside of the unit circle to its out-
side. It is not differentiable since it does not satisfy the Cauchy–Riemann equalities and has a singularity at z = 0. This trans-
formation is bounded only for the points at the outside of the unit circle, see Fig. 1. Therefore, we restrict the domain of
interest to the set of
B ¼ fz : jzjP 1g: ð5Þ
Remark 1. Let c be the circle centered at p and of radius r. Then it is known that the reflection transformation in the circle c
is denoted by Ic(z) and defined as follows:
IcðzÞ ¼
r2

�z� �p
þ p: ð6Þ
This indicates that any circle in the complex plane can be represented by a unique Möbius transformation, see [19]. When
the circle is centered on real axis, the transformation is to be a reflection. Indeed, we have
IcðzÞ ¼
p�zþ r2 � jpj2

�z� �p
:

Now, we divide the numerator and the denominator of this transformation with r, then we have ad � bc = � 1 and
aþ d ¼ p

r �
�p
r ¼ 0 since p 2 R. It means that we have the advantage of determining the fixed point circle in the complex plane.

In this paper, we analyse the CVNN whose fixed points set is chosen as the circle centered at the origin with radius r = 1. The
analysis is also valid for the circles that is centered at the origin and with any value of radius. From Eq. (6) the reflection
transformation of a circle centered at the origin and of radius r is
f ðzÞ ¼ r2

�z
: ð7Þ
This transformation is bounded in the following set
B ¼ fz : jzjP rg
and maps outside of the circle with radius r to inside of the circle with radius r. Thus, we can deduce that the domain of
interest and the fixed points circle can be adjusted.

In the following section, we give a CVNN model to analyse the advantages of the new type activation function.
Fig. 1. Geometric interpretation of the reflection transformation given by Eq. (4).
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3. Complex valued Hopfield neural network

Hopfield neural network can be considered as a class of nonlinear and autonomous system, see [20,21]. We consider this
class of system in the complex plane in order to interest complex valued Hopfield neural network (CVHNN) given by
_zðtÞ ¼ �HðzðtÞÞð�TzðtÞ þ FðzðtÞÞ � UÞ;
where T 2 Cn�n; U 2 Cn are matrices, zðtÞ 2 Cn is state vector, HðzÞ : Cn ! Cn�n is a nonlinear function and
FðzÞ ¼ ðf1ðz1Þ; f2ðz2Þ; . . . ; fnðznÞÞT : Cn ! Cn is an activation function. The activation function is chosen as in Eq. (4):
fjðzjÞ ¼
1
�zj
; j ¼ 1;2; . . . ; n: ð8Þ
To obtain correspondence between fixed points of the activation function and fixed points of the network, we select T 2 Rn�n

and U = 0. Hence, we interest the CVHNN with the form of
_zðtÞ ¼ �HðzðtÞÞð�TzðtÞ þ FðzðtÞÞÞ: ð9Þ
Fixed points of the Eq. (9) are calculated by the following equation:
�HðzÞð�Tzþ FðzÞÞ ¼ 0:
Assume that H(z) is a nonsingular matrix then the fixed points are
FðzÞ ¼ Tz
which correspond to the fixed points of the activation function.
4. Stability of fixed points

As mentioned in Section 3, information are stored in a neural network as asymptotically stable states. A stable state is a
fixed point of the neural network and also known as equilibrium point. Therefore, it is important to increase the number of
stable states in a neural network. By using the activation function in Eq. (8), we increase the number of fixed points, but now
we must know whether the fixed points are stable or not. We investigate stability of the fixed points by using Lyapunov
stability.

Definition 1. E(z) is a Lyapunov function of the CVHNN if E(z) is a mapping E : Cn ! R and the derivative of E along the
trajectory of CVHNN satisfies Ė(z) 6 0. Furthermore, Ė(z) = 0 if and only if _z = 0.

If all equilibrium points of the network are isolated and CVHNN given by Eq. (9) has a Lyapunov function, then no
nontrivial periodic solution exists and each solution of the network converges to an equilibrium point as t ?1, see [22].

An equilibrium point is isolated if it has no other equilibrium points in its vicinity, or there could be a continuum
(compact and connected set) of equilibrium points, [23]. The fixed points of the CVHNN are isolated since they are
on a circle. Therefore, the following theorem gives the stability of the fixed points. Here, we use the inner product de-
fined on Cn as
hz1; z2i ¼ z�2z1;
where z1; z2 2 Cn and (�)⁄ denotes the conjugate transpose.

Theorem 2. If the matrix T 2 Rn�n is symmetric and the matrix Re[H(z)] is positive definite, then the function
EðzÞ ¼ �1
2

z�Tzþ Re
Xn

j¼1

Z �zj

0

�f jðsÞds

" #
ð10Þ
is a Lyapunov function of the CVHNN given by Eq. (9).
Proof. We can write Eq. (10) in the component wise form as
EðzÞ ¼ �1
2

Xn

j¼1

Xn

k¼1

�zjTjkzk þ Re
Xn

j¼1

Z �zj

0

�f jðsÞds

" #
:

To show the monotonic decreasing of E with time t we compute Ė(z). Differentiating the first term of E gives
�1
2

Xn

j¼1

Xn

k¼1

d�zj

dt
Tjkzk þ

dzj

dt
Tjk�zk þ

d�zk

dt
Tjkzj þ

dzk

dt
Tjk�zj

� �
:
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By using the symmetry property of the T matrix, this term can be arranged as follow
�Re
Xn

j¼1

Xn

k¼1

Tjkzk
d�zj

dt

� �" #
:

Therefore,
_EðzÞ ¼ �Re
Xn

j¼1

Xn

k¼1

Tjkzk
d�zj

dt

� �" #
þ Re

Xn

j¼1

�f jð�zjÞ
d�zj

dt

" #
:

Using the property of �f jð�zjÞ ¼ fjðzjÞ; this equation can be written in the matrix form as
_EðzÞ ¼ �Re½ðTz� FðzÞÞ _z��: ð11Þ
Substituting _z⁄ into the Eq. (11) gives
_EðzÞ ¼ �Re½ðTz� FðzÞÞðTz� FðzÞÞ�HðzÞ��
¼ �Re½ðTz� FðzÞÞ�2Re½HðzÞ��
which is negative for positive definite Re[H(z)] matrix and also equal to zero if and only if _z(t) = 0. h

Theorem 2 shows that the proposed activation function leads to infinite number of stable states. Consequently, number of
the stored information is increased.

5. Conclusions

This paper is constructed on the idea of interesting geometric properties of Möbius transformations which are conformal
mappings of the complex plane. Because of a special class of Möbius transformation defined in Eq. (3)
gðzÞ ¼ a�zþ b
c�zþ d

; a; b; c; d 2 R; ad� bc ¼ �1
has infinite number of fixed points if a + d = 0, we think to combine this property with complex valued neural network
(CVNN) and aim to increase the number of stored information in a CVNN. Thus, we have used a simple Möbius transforma-
tion in the type of reflection f ðzÞ ¼ 1

�z that maps the unit circle onto itself, its inside to its outside and vice versa. Since this
function has singularity at the origin and unbounded in the unit circle, we have restricted the domain of interest of the CVNN
to the outside of the unit circle. Therefore, we have guaranteed the boundedness of the function which is an important fea-
ture for neural networks. We have employed this activation function to a specific complex valued Hopfield neural network
(CVHNN) and showed that the fixed points of the activation function are the fixed points of the CVHNN. Finally, we have
proved that the fixed points are stable states for positive real valued function Re[H(z)] > 0 which indicates that the informa-
tion capacity is enlarged. In addition, it has been pointed out that the analysis is also valid for the activation functions in the
form of
f ðzÞ ¼ r2

�z
; r 2 R; ð12Þ
whose fixed points are on a circle with radius of r. This gives the opportunity of adjusting the domain of interest and the fixed
points circle of the neural network.
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