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Abstract. We obtain estimates of structural characteristics of 2π -periodic

functions by the best trigonometric approximations in weighted Lorentz spaces,

and show that the order of generalized modulus of smoothness depends not only

on the rate of the best approximation, but also on the metric of the spaces. In

weighted Lorentz spaces Lps , this influence is expressed not only in terms of the

parameter p , but also in terms of the second parameter s .

1. Introduction

The well known Weiersterass theorem on approximation of continuous

functions by trigonometric polynomials and its quantitative refinement

represented by Jackson’s inequality (see, e.g., [21, Section 5.1.2])

(1.1) En(f) ≤ Cω

(
f,

1

n+ 1

)

are the basics of the approximation theory.
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In inequality (1.1), En(f) denotes the best approximation of a 2π -

periodic continuous function f by trigonometric polynomials of degree ≤ n ,

i.e.,

En(f) = inf max
x∈[0,2π]

|f(x)− Tk(x)| ,

where the infimum is taken with respect to all trigonometric polynomials of

degree k ≤ n, and

ω(f, δ) = sup
|h|≤δ

max
x∈[0,2π]

|f(x+ h)− f(x)|

denotes the modulus of continuity of f. The analog of Jackson’s inequality

is valid also for the integral metrics and moduli of continuity of higher orders

(see, e.g., [21, Section 5.3.1]).

Yet by the year 1912, S. Bernstein obtained the estimate inverse to

Jackson’s inequality in the space of continuous functions for some special

cases [3]. Later, Quade [17], brothers A. and M. Timan [22], S. B. Stechkin

[19], M. Timan [20], etc. proved such inverse estimates, including the case of

of the spaces Lp, 1 < p < ∞ . Inequalities of this type played an important

role in the investigation of properties of the conjugate functions [1], in the

study of absolutely convergent Fourier series [18], and in related problems.

In the case of Lebesgue spaces, the inverse inequalities for classical moduli of

smoothness and the best approximation theorems were obtained in papers

[20], [4]. In [10], this result was extended to reflexive Orlicz spaces. For

the study of the approximation problems in weighted Lebesgue and Orlicz

spaces we refer to [7], [13], [9], [12], [23].

The order of the modulus of smoothness, as it has been shown in [20]

and [4], depends not only on the rate of the best approximation but also

on the metric of the spaces. In the present paper we reveal that the similar

influence in weighted Lorentz spaces Lps is expressed not only in terms of

the ”leading” parameter p , but also in terms of the second parameter s .

In the role of structural characteristic we consider the general modulus of

continuity defined by the Steklov means. It is caused by the failure of the

shift operator continuity in the weighted Lebesgue spaces. The generalized

shift operator suits well for the spaces mentioned above.

Let T = [−π, π) and w : T → R
1 be an almost everywhere positive,

integrable function. Let f∗
w(t) be a nondecreasing rearrangement of f :

T → R
1 with respect to the Borel measurew(e) =

∫
e

w(x)dx, i.e.,

f∗
w(t) = inf {τ ≥ 0 : w (x ∈ T : |f(x)| > τ) ≤ t} .
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Let 1 < p, s < ∞ and let Lps
w (T) be a weighted Lorentz space, i.e., the

set of all measurable functions for which

‖f‖Lps
w

=

⎛
⎝∫

T

(f∗∗(t))s t
s
p
dt

t

⎞
⎠

1/s

< ∞,

where f∗∗(t) = 1
t

t∫
0

f∗
w(u)du.

By En(f)Lps
w

we denote the best approximation of f ∈ Lps
w (T) by

trigonometric polynomials of degree ≤ n, i.e.,

En(f)Lps
w

= inf ‖f − Tk‖Lps
w
,

where the infimum is taken with respect to all trigonometric polynomials of

degree k ≤ n.

The generalized modulus of smoothness of a function f ∈ Lps
w (T) is

defined as

Ωl (f, δ)Lps
w

= sup
0<hi<δ

∥∥∥∥ l

Π
i=1

(I −Ahi) f

∥∥∥∥
Lps

w

, δ > 0,

where I is the identity operator and

(Ahif) (x) :=
1

2hi

x+hi∫
x−hi

f(u)du.

The weights w used in the paper are those which belong to the

Muckenhoupt class Ap(T), i.e., they satisfy the condition

sup
1

|I|
∫
I

w(x)dx

⎛
⎝ 1

|I|
∫
I

w1−p′
(x)dx

⎞
⎠

p−1

< ∞, p′ =
p

p− 1

where the supremum is taken with respect to all the intervals I with length

≤ 2π and |I| denotes the length of I.

Whenever w ∈ Ap(T), 1 < p, s < ∞, the Hardy-Littlewood maximal

function of every f ∈ Lps
w (T), and therefore the average Ahif belong

to Lps
w (T) ([5, Theorem 3]). Thus Ωl(f, δ)Lps

w
makes sense for every

w ∈ Ap(T).

We use the convention that c denotes a generic constant, i.e. a constant

whose values can change even between different occurrences in a chain of

inequalities.
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2. Main results

In the present paper we prove the following results.

Theorem 1. Let 1 < p < ∞ and 1 < s ≤ 2 or p > 2 and s ≥ 2. Let

w ∈ Ap(T). Then there exists a positive constant c such that

(2.1) Ωl

(
f,

1

n

)
Lps

w

≤ c

n2l

(
n∑

k=1

k2lγ−1Eγ
k−1(f)Lps

w

)1/γ

for arbitrary f ∈ Lps
w (T) and natural n, where γ = min(s, 2).

Theorem 2. Let 1 < p < 2 < s < ∞ and let w ∈ Ap(T). Then for

arbitrary p0 , 1 < p0 < p , there exists a positive constant c such that

Ωl

(
f,

1

n

)
Lps

w

≤ c

n2l

(
n∑

k=1

k2lp0−1Ep0

k−1(f)Lps
w

)1/p0

for arbitrary f ∈ Lps
w (T) and natural n .

Theorem 3. Let 1 < p < ∞ and 1 < s ≤ 2 or p > 2 and s ≥ 2. Let

w ∈ Ap(T) and f ∈ Lps
w (T). Assume that

(2.2)
∞∑
k=1

krγ−1Eγ
k (f)Lps

w
< ∞

for some natural number r and γ = min(s, 2). Then there exists the

absolutely continuous (r− 1)th order derivative f (r−1)(x) such that f (r) ∈
Lps
w (T) and

(2.3) En(f
(r))Lps

w
≤ c

⎧⎨
⎩nrEn(f)Lps

w
+

( ∞∑
k=n+1

krγ−1Eγ
k (f)Lps

w

)1/γ
⎫⎬
⎭

for arbitrary natural n, where γ = min(s, 2) and the constant c does not

depend on f and n .

Theorem 4. Let 1 < p < ∞ and 1 < s ≤ 2 or p > 2 and s ≥ 2 . Assume

that (2.2) is fulfilled for some natural number r and γ = min(s, 2) . Then
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there exists a positive constant c such that

Ωl

(
f (r),

1

n

)
Lps

w

≤ c

n2l

(
n∑

k=1

k(r+2l)γ−1Eγ
k−1(f)Lps

w

)1/γ

+ c

( ∞∑
k=n+1

krγ−1Eγ
k (f)Lps

w

)1/γ

(2.4)

for arbitrary f ∈ Lps
w (T) and natural n, where γ = min(s, 2).

Corollary. Let 1 < p < ∞ and 1 < s ≤ 2 or p > 2 and s ≥ 2 . Assume

that En(f)Lps
w

= O
(

1
nr+2l

)
for some integer r ≥ 1 and l ≥ 1. Then

(2.5) Ωl

(
f (r),

1

n

)
Lps

w

= O

(
(lnn)1/γ

n2l

)

where γ = min(s, 2).

Let {αn} be a monotonic sequence of positive numbers convergent to zero.

Let Φps
w (αn) be the set of functions f ∈ Lps

w for which c1αn ≤ En(f)Lps
w

≤
c2αn for some constants c1 and c2 independent of f .

When s, p > 2 the sharpness of (2.1) is shown by the following theorem.

Theorem 5. For each αn ↓ 0 there exists f0 ∈ Φps
w (αn) satisfying the

inequality

(2.6) Ω1

(
f0,

1

n

)
Lps

w

≥ c

n2

(
n∑

k=1

k3α2
k−1

)1/2

with a constant c > 0 independent of n.

3. Auxiliary results

In this section we present some known results in weighted Lorentz spaces.

Proposition 3.1. Let 1 < p, s < ∞. Then there exists a positive

constant c such that for arbitrary f ∈ Lps
w

(3.1) c−1 ‖f‖Lps
w

≤ sup

∣∣∣∣∣∣
∫
T

f(x)g(x)w(x)dx

∣∣∣∣∣∣ ≤ c ‖f‖Lps
w
,
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where the supremum is taken with respect to all those functions g for which

‖g‖
Lp′s′

w
≤ 1 (see [5], also [11, Proposition 5.1.2]). Here p′ = p/(p− 1).

Proposition 3.2. Let 1 < p, s < ∞ and let ϕ be a measurable function

of two variables. Then∥∥∥∥∥∥
∫
T

ϕ(x, ·)dx
∥∥∥∥∥∥
Lps

w

≤ c

∫
T

‖ϕ(x, ·)‖Lps
w
dx.

Proof. By proposition 3.1, Fubini’s theorem and the Hölder’s inequality

we obtain∥∥∥∥∥∥
∫
T

ϕ(x, ·)dx
∥∥∥∥∥∥
Lps

w

≤ c sup
‖g‖

L
p′s′
w

≤1

∫
T

⎛
⎝∫

T

|ϕ(x, y)| dx
⎞
⎠ |g(y)|w(y)dy

= c sup
‖g‖

L
p′s′
w

≤1

∫
T

⎛
⎝∫

T

|ϕ(x, y)| |g(y)|w(y)dy
⎞
⎠ dx

≤ c sup
‖g‖

L
p′s′
w

≤1

∫
T

‖ϕ(x, ·)‖Lps
w
‖g‖

Lp′s′
w

dx

≤ c

∫
T

‖ϕ(x, ·)‖Lps
w
dx.

�
Proposition 3.3. Let 1 < p, s < ∞ and let w ∈ Ap(T). The

trigonometric Fourier series of any f ∈ Lps
w (T) converges in the norm

and almost everywhere to f(x).

Proof. The norm convergence follows in the standard way from the

boundedness of conjugate functions in Lps
w with 1 < p, s < ∞ and

w ∈ Ap(T) (see [11, Theorem 6.6.2]).

When f ∈ Lps
w with w ∈ Ap(T) (1 < p, s < ∞), then f ∈ Lp0 for some

p0 > 1. Indeed, from the inclusion Lp1
w ⊂ Lps

w , 1 < p1 < p and the openness

of Ap it follows that there exist p0 and p1 , 1 < p0 < p1 < p such that

f ∈ Lp1
w (T) and w ∈ Ap1/p0

. Thus w
1−

(
p1
p0

)′

∈ A(
p1
p0

)′ and w
1−

(
p1
p0

)′

∈ L1.

By the Hölder inequality we have

∫
T

|f(x)|p0 dx ≤
⎛
⎝∫

T

|f(x)|p1 w(x)dx

⎞
⎠

p0/p1
⎛
⎝∫

T

w
− p0

p1

(
p1
p0

)′

(x)dx

⎞
⎠

p1−p0
p1

.
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But − p0

p1

(
p1

p0

)′
= − p0

p1−p0
= 1 −

(
p1

p0

)′
. Therefore the right-hand side

of the last inequality is finite and f ∈ Lp0(T). Using the Hunt almost

everywhere convergence theorem for the trigonometric Fourier series of

f ∈ Lp0 , 1 < p0 < ∞, (see [8, Theorem 1]) we obtain the desired result. �

Proposition 3.4. Let 1 < p, s < ∞ and let w ∈ Ap(T). Then there

exists a positive constant c such that ‖f − Sn(f)‖Lps
w

≤ cEn(f)Lps
w

for each

f ∈ Lps
w and n ≥ 1, where Sn(f) stands for the n-th partial sum of

trigonometric Fourier series of f.

Proof. The last inequality is obtained in the standard way as a

consequence of the boundedness of the conjugate function in Lps
w (T) with

w ∈ Ap(T) which, (see [24, Chapter VI]) implies that ‖Sn(f)‖Lps
w

≤
c ‖f‖Lps

w
. Indeed, let Tn be a trigonometric polynomial of the best

approximation. Then we have

‖f − Sn(f)‖Lps
w

≤ ‖f − Tn‖Lps
w

+ ‖Tn − Sn(f)‖Lps
w

= ‖f − Tn‖Lps
w

+ ‖Sn(Tn − f)‖Lps
w

≤ cEn(f)Lps
w
.

�
The following theorem is a weighted version of the Littlewood-Paley

decomposition for trigonometric Fourier series (see [16], [24, Chapter XV,

Theorem 4.24]).

Theorem A. Let 1 < p, s < ∞ and let w ∈ Ap(T). Suppose that

f(x) ∼
∞∑
n=0

(an cosnx+ bn sinnx) .

Then there exist positive constants c1 and c2 independent of f such that

c1 ‖f‖Lps
w

≤
∥∥∥∥∥∥
( ∞∑

m=0

Γ2
m(x)

)1/2
∥∥∥∥∥∥

L
ps
w

≤ c2 ‖f‖Lps
w
,

where

Γm(x) =

2m−1∑
n=2m−1

(an cosnx+ bn sinnx) , Γ0 = a0.

One can derive this result by means of interpolation arguments for Lorentz

spaces from its Lp
w -version (see [14],[15]) and openness of Ap . Indeed, let
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w ∈ Ap(T). It is well known that there exists p1 , 1 < p1 < p < ∞ , such

that w ∈ Ap1(T) and w ∈ Ap2(T) for arbitrary p2 > p . According to

Theorem 4.1 in [14], we have

cj ‖f‖Lpj
w

≤
∥∥∥∥∥∥
( ∞∑

m=0

Γ2
m(x)

)1/2
∥∥∥∥∥∥

L
pj
w

≤ cj ‖f‖Lpj
w
, j = 1, 2.

Applying the interpolation theorem for Lorentz spaces (see [2, Theorem

5.5]), we get the desired result.

4. Proofs of the main results

Theorem A is basic for our proofs. We need also some further auxiliary

statements. In the sequel, we say that f ∈ W
(k)
ps,w if the derivative f (k−1)(x)

is absolutely continuous and f (k) ∈ Lps
w (T).

Lemma 4.1. Let f ∈ W
(2l)
ps,w . Then

(4.1) Ωl(f
(2l), δ)Lps

w
≤ cδ2l

∥∥∥f (l)
∥∥∥
Lps

w

,

where the positive constant c is independent of f and δ.

Proof. It is sufficient to prove that Ωl(f, δ) ≤ cδ2Ωl−1(f
′′, δ). Let

β(x) =
l

Π
i=2

(I −Ahi) f(x).

Then

l

Π
i=1

(I −Ahi) f(x) = β(x)− 1

2h1

h1∫
−h1

β(x + t)dt

=
1

2h1

h1∫
−h1

[β(x) − β(x + t)] dt

= − 1

4h1

h1∫
−h1

[β(x+ t)− 2β(x) + β(x − t)] dt

= − 1

8h1

h1∫
0

t∫
0

y∫
−y

β′′(x+ z)dzdydt.
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Applying Proposition 3.2 we obtain

∥∥∥∥ l

Π
i=1

(I − Ahi) f

∥∥∥∥
Lps

w

≤ 1

8h1

h1∫
0

t∫
0

∥∥∥∥∥∥
y∫
−y

β′′(·+ z)dz

∥∥∥∥∥∥
Lps

w

dydt

=
1

8h1

h1∫
0

t∫
0

2y

∥∥∥∥∥∥
1

2y

y∫
−y

β′′(·+ z)dz

∥∥∥∥∥∥
Lps

w

dydt.

Using the uniform boundedness of Ahi(f) in Lps
w with respect to h we get

∥∥∥∥ l

Π
i=1

(I −Ahi) f

∥∥∥∥
Lps

w

≤ c

8h1

h1∫
0

t∫
0

‖Ayβ
′′‖Lps

w
dydt ≤ ch2

1 ‖β′′‖Lps
w
.

From the last inequality we conclude that

Ωl(f, δ)Lps
w

≤ c sup
0<hi<δ
1≤i≤l

h2
1 ‖β′′‖Lps

w

= cδ2 sup
0<hi<δ
2≤i≤l

∥∥∥∥ l

Π
i=2

(I −Ahi) f
′′
∥∥∥∥
Lps

w

= cδ2Ωl−1(f
′′, δ).

�

Lemma 4.2. Let 1 < p < ∞ and 1 < s ≤ 2. Then for an arbitrary

system of functions {ϕj(x)}mj=1 , ϕj ∈ Lps
w we have

(4.2)

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lps

w

≤ c

⎛
⎝ m∑

j=1

‖ϕj‖sLps
w

⎞
⎠

1/s

with a constant c independent of ϕj and m.

Proof. We shall use the following well-known relations (f∗)α = (fα)∗

and (f + g)∗∗ ≤ (f∗∗ + g∗∗) [2, pp. 41 and 54]. By the Hardy inequality

(see [2, pp. 129]), we get

I =

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lps

w
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≤ c

⎛
⎜⎝∫

T

⎛
⎜⎝
⎛
⎜⎝
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
⎞
⎟⎠

∗⎞
⎟⎠

s

(t)t
s
p−1dt

⎞
⎟⎠

1/s

= c

⎛
⎜⎝∫

T

⎛
⎜⎝
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

s/2
⎞
⎟⎠

∗

(t)t
s
p−1dt

⎞
⎟⎠

1/s

≤ c

⎛
⎝∫

T

⎛
⎝ m∑

j=1

ϕj
s

⎞
⎠

∗

(t)t
s
p−1dt

⎞
⎠

1/s

.

Thus

I ≤ c

⎛
⎝∫

T

⎛
⎝ m∑

j=1

ϕj
s

⎞
⎠

∗∗

(t)t
s
p−1dt

⎞
⎠

1/s

≤ c

⎛
⎝∫

T

⎛
⎝ m∑

j=1

(ϕj
s)

∗∗
(t)

⎞
⎠ t

s
p−1dt

⎞
⎠

1/s

= c

⎛
⎝ m∑

j=1

∫
T

(ϕj
s)

∗∗
(t)t

s
p−1dt

⎞
⎠

1/s

.

Applying again the Hardy inequality we have

I ≤ c

⎛
⎝ m∑

j=1

∫
T

(ϕj
s)∗ (t)t

s
p−1dt

⎞
⎠

1/s

≤ c

⎛
⎝ m∑

j=1

∫
T

(ϕj
∗)s (t)t

s
p−1dt

⎞
⎠

1/s

≤ c

⎛
⎝ m∑

j=1

∫
T

(ϕj
∗∗)s (t)t

s
p−1dt

⎞
⎠

1/s

= c

⎛
⎝ m∑

j=1

‖ϕj‖sLps
w

⎞
⎠

1/s

.

�
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Lemma 4.3. Let 2 < p < ∞ and s ≥ 2. For an arbitrary system

{ϕj(x)}mj=1 , ϕj ∈ Lps
w , we have

(4.3)

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lps

w

≤ c

⎛
⎝ m∑

j=1

‖ϕj‖2Lps
w

⎞
⎠

1/2

with a constant c independent of ϕj and m.

Proof. By the definition

I :=

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lps

w

=

⎛
⎜⎝∫

T

⎛
⎜⎝
⎛
⎜⎝
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
⎞
⎟⎠

∗∗

(t)

⎞
⎟⎠

s

t
s
p−1dt

⎞
⎟⎠

1/s

.

According to the Hardy inequality and taking into account that L
p
2

s
2

w is a

normed space in the current situation, we have

I ≤ c

⎛
⎜⎝∫

T

⎛
⎜⎝
⎛
⎜⎝
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
⎞
⎟⎠

∗

(t)

⎞
⎟⎠

s

t
s
p
−1dt

⎞
⎟⎠

1/s

= c

⎛
⎜⎝∫

T

⎛
⎝
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

∗

(t)

⎞
⎠

s/2

t
s
p−1dt

⎞
⎟⎠

1/s

≤ c

⎛
⎝ m∑

j=1

∫
T

((
ϕ2
j

)∗∗
(t)
)s/2

t
s
p−1dt

⎞
⎠

2
s

1
2

.

If we use the Hardy inequality once more inside the sum, we get

I ≤ c

⎛
⎝ m∑

j=1

∫
T

((
ϕ2
j

)∗
(t)
)s/2

t
s
p−1dt

⎞
⎠

2
s

1
2

≤ c

⎛
⎝ m∑

j=1

∫
T

(
ϕ∗
j (t)

)s
t
s
p−1dt

⎞
⎠

2
s

1
2
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≤ c

⎛
⎝ m∑

j=1

∫
T

(
ϕ∗∗
j (t)

)s
t
s
p−1dt

⎞
⎠

2
s

1
2

≤ c

⎛
⎜⎝ m∑

j=1

⎛
⎝∫

T

(
ϕ∗∗
j (t)

)s
t
s
p−1dt

⎞
⎠

2
s

⎞
⎟⎠

1
2

= c

⎛
⎝ m∑

j=1

‖ϕj‖2Lps
w

⎞
⎠

1/2

.

�

Lemma 4.4. Let 1 < p0 < p < 2 < s < ∞ . Then for an arbitrary

system of functions {ϕj(x)}mj=1 , ϕj ∈ Lps
w , we have

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lps

w

≤ c

⎛
⎝ m∑

j=1

‖ϕj‖p0

Lps
w

⎞
⎠

1
p0

with a constant c independent of ϕj and m.

Proof. Using the arguments of the proof of Lemmas 4.2 and 4.3, we

claim that ∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

1
2

∥∥∥∥∥∥∥
Lps

w

=

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

ϕj
2

⎞
⎠

p0
2

1
p0

∥∥∥∥∥∥∥
Lps

w

≤

∥∥∥∥∥∥∥
⎛
⎝ m∑

j=1

|ϕj | p0

⎞
⎠

1
p0

∥∥∥∥∥∥∥
Lps

w

≤ c

∥∥∥∥∥∥
m∑
j=1

|ϕj | p0

∥∥∥∥∥∥
1
p0

L

p
p0

s
p0

w

≤ c

⎛
⎝ m∑

j=1

‖|ϕj |p0 ‖
L

p
p0

s
p0

w

⎞
⎠

1
p0
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≤ c

⎛
⎝ m∑

j=1

‖ϕj‖p0

Lps
w

⎞
⎠

1
p0

.

�
Lemma 4.5. Let 1 < p, s < ∞, f ∈ Lps

w (T ) and w ∈ Ap(T ). If

Bk,μ(x) = ak cos
(
k + μπ

2

)
x +bk sin

(
k + μπ

2

)
x, where ak, bk are Fourier

coefficients of f, then

(4.4)

∥∥∥∥∥∥
2i+1∑

k=2i+1

kμBk,μ

∥∥∥∥∥∥
Lps

w

≤ c2iμE2i(f)Lps
w
,

where the constant c is independent of f and i.

Proof. Let us introduce the notation τj,μ(x) :=
j∑

k=1

Bk,μ(x). By means of

the Abel transformation we obtain

2i+1∑
n=2i+1

kμBk,μ(x) =

2i+1∑
n=2i+1

[kμ − (k + 1)μ]
(
τk,μ(x)− τ2i,μ(x)

)
+2i+1

(
τ2i+1,μ(x)− τ2i,μ(x)

)
.

But by Proposition 3.4 we deduce that∥∥∥∥∥∥
2i+1∑

k=2i+1

kμBk,μ

∥∥∥∥∥∥
Lps

w

≤ c

2i+1∑
k=2i+1

[(k + 1)μ − kμ]E2i(f)Lps
w

+

+c2iμE2i(f)Lps
w

≤ c2iμE2i(f)Lps
w
.

�
Proof of Theorem 1. Let 2m < n ≤ 2m+1 and δ = 1

n . Let Sn(f) be a

partial sum of Fourier series of f. Then we have

(4.5) Ωl(f, δ)Lps
w

≤ Ωl((f − S2m+1(f)) , δ)Lps
w

+Ωl(S2m+1 , δ)Lps
w
.

By the uniform boundedness of the averaging operator Ah in Lps
w we obtain

(4.6) Ωl((f − S2m+1(f)) , δ)Lps
w

≤ c ‖f − S2m+1‖Lps
w

≤ cEn(f)Lps
w
.

Then according to Lemma 4.1 we have

Ωl(S2m+1 , δ)Lps
w

≤ cδ2l
∥∥∥S(2l)

2m+1

∥∥∥
Lps

w

.
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Then

(4.7)

Ωl(S2m+1 , δ)Lps
w

≤ cδ2l

⎧⎨
⎩
∥∥∥S(2l)

1 − S
(2l)
0

∥∥∥
Lps

w

+

∥∥∥∥∥
m∑
i=0

[
S
(2l)

2i+1 − S
(2l)

2i

]∥∥∥∥∥
Lps

w

⎫⎬
⎭ .

For the first term on the right side of (4.7) we have

(4.8)
∥∥∥S(2l)

1 − S
(2l)
0

∥∥∥
Lps

w

≤ c (|a1|+ |b1|) ≤ cE0(f)Lps
w
.

Applying Theorem A to the second term, we get

∥∥∥∥∥
m∑
i=0

[
S
(2l)
2i+1 − S

(2l)
2i

]∥∥∥∥∥
Lps

w

=

∥∥∥∥∥∥
m∑
i=0

2i+1∑
k=2i+1

k2lBk,2l(x)

∥∥∥∥∥∥
Lps

w

≤ c

∥∥∥∥∥∥∥∥

⎛
⎜⎝ m∑

i=0

∣∣∣∣∣∣
2i+1∑

k=2i+1

k2lBk,2l(x)

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥
Lps

w

.

Now with the aid of Lemmas 4.2 and 4.3 we conclude that

∥∥∥∥∥
m∑
i=0

[
S
(2l)
2i+1 − S

(2l)
2i

]∥∥∥∥∥
Lps

w

≤ c

⎛
⎝ m∑

i=1

∥∥∥∥∥∥
2i+1∑

k=2i+1

k2lBk,2l(x)

∥∥∥∥∥∥
γ⎞
⎠

1/γ

,

where γ = min(s, 2). Then by Lemma 4.5 we have

(4.9)

∥∥∥∥∥
m∑
i=0

[
S
(2l)
2i+1 − S

(2l)
2i

]∥∥∥∥∥
Lps

w

≤ c

(
m∑
i=1

22γliEγ
2i(f)Lps

w

)1/γ

.

Thus from (4.5), (4.6), (4.8) and (4.9) we derive the estimate

Ωl(f, δ)Lps
w

≤ cδ2l

⎡
⎣E0(f)Lps

w
+ En(f)Lps

w
+

(
m∑
i=1

22γliEγ
2i(f)Lps

w

)1/γ
⎤
⎦ .

Since Ek(f)Lps
w

is monotonically decreasing, we conclude that

Ωl(f, δ)Lps
w

≤ c

n2l

(
n∑

k=1

k2lγ−1Eγ
k−1(f)Lps

w

)1/γ

.

�
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Proof of Theorem 2. We can repeat the proof of Theorem 1 just using

Lemma 4.4 instead of Lemma 4.3 for a system of functions

ϕj(x) =

2i+1∑
k=2i+1

k2lBk,2l(x).

�

Proof of Theorem 5. Let {αn} be a decreasing sequence convergent to 0.

Define the function f with lacunary Fourier expansion

(4.10) f(x) =

∞∑
n=0

√
α2
2n − α2

2n+1 sin 2
nx.

Then

(I −Ah)f(x) =
∞∑
n=0

√
α2
2n − α2

2n+1

(
1− sin 2nh

2nh

)
sin 2nx.

As it was shown in the proof of Proposition 3.3, there exists p0 > 1 such

that

(4.11) ‖(I −Ah)f‖Lps ≥ c ‖(I −Ah)f‖Lp0 .

Since the series is lacunary (see [24, Vol. 2, pp. 132]), we get

(4.12) ‖(I −Ah)f‖Lp0 ≥ c ‖(I −Ah)f‖L2

and then

‖(I −Ah)f‖2L2 ≥ c

∞∑
k=0

(
α2
2k − α2

2k+1

) (
2kh

)4
.

Take h = 1
n and m such that 2m ≤ n < 2m+1. Then the right-hand side

of (4.12) is not less than

(4.13)

c

n4

m+1∑
k=0

(
α2
2k − α2

2k+1

)
24k =

c

n4

(
α2
1 +

m+1∑
k=1

15

16
24kα2

2k − 24(m+1)α2m+2

)
.

Since 24(m+1)

n4 α2m+2 =
(

2m+1

2

)4
α4n ≤ 24α4n −→ 0 we can write that the

last expression in (4.13) is more than

(4.14)
c

n4

(
α2
1 +

m+1∑
k=1

(
2k
)3

2kα2
2k

)
≥ c

n4

2m+1∑
k=1

k3α2
k ≥ c

n4

n∑
k=1

(
k3α2

k

)
.
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Then inequality (2.6) follows from (4.11)-(4.14). �

Theorem 5 shows that estimation 2.1 cannot be improved when 2 < p,

s < ∞.

In order to prove Theorems 3 and 4 we need several Lemmas.

Lemma 4.6 Let {fn} be a sequence of absolutely continuous functions

and let w ∈ Ap (T) . If {fn} converges to a function f in Lps
w (T) ,

1 < p, s < ∞, and the sequence of first derivatives {f ′
n} converges to a

function g in Lps
w (T) , then f is absolutely continuous and f ′(x) = g(x)

almost everywhere.

Proof. Since ‖fn − f‖Lps
w

→ 0, there exists p0, 1 < p0 < p, such that

‖fn − f‖Lp0 → 0. Thus there exists a subsequence {fnk
} of the sequence

{fn} such that fnk
(x) → f(x) almost everywhere. Let x0 be a point of

convergence. By Hölder’s inequality for Lorentz spaces we get

∣∣∣∣∣∣
x∫
x0

f ′
nk
(t)dt−

x∫
x0

g(t)dt

∣∣∣∣∣∣ ≤
∥∥f ′

nk
− g

∥∥
Lps

w

∥∥w−1
∥∥
Lp′s′

w
.

Since w ∈ Ap(T), we have
∥∥w−1

∥∥
Lp′s′

w
< ∞ (see [5]). Thus we get

lim
k−→∞

∣∣∣∣∣∣
x∫
x0

f ′
nk
(t)dt−

x∫
x0

g(t)dt

∣∣∣∣∣∣ = 0.

Therefore, we obtain

x∫
x0

g(t)dt = lim
n→∞

x∫
x0

f ′
nk
(t)dt = lim

k→∞
(fnk

(x)− fnk
(x0)) = f(x)− f(x0).

This completes the proof. �

Proof of Theorem 3. Let 2m < n < 2m+1. We have

∥∥∥f (r) − Sn(f
(r))

∥∥∥
Lps

w

≤
∥∥∥S2m+2(f (r))− Sn(f

(r))
∥∥∥
Lps

w

+

∞∑
k=m+2

∥∥∥S2k+1(f (r))− S2k(f
(r))

∥∥∥
Lps

w

.(4.15)
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By the weighted version of Bernstein’s inequality (see [6, Theorem 4.1]), we

have ∥∥∥S2m+2(f (r))− Sn(f
(r))

∥∥∥
Lps

w

= ‖Sr
2m+2(f)− Sr

n(f)‖Lps
w

≤ c2(m+2)r ‖S2m+2(f)− Sn(f)‖
≤ c2(m+2)rE2m+2(f)Lps

w

≤ cnrEn(f)Lps
w
.(4.16)

Applying Theorem A and Lemma 4.5, we obtain

∥∥∥∥∥
∞∑

k=m+2

[
S2k+1(f (r))− S2k(f

(r))
]∥∥∥∥∥

Lps
w

≤ c

⎛
⎝ ∞∑

k=m+2

∥∥∥∥∥∥
2k+1∑

μ=2k+1

μrBμ,r(x)

∥∥∥∥∥∥
γ

Lps
w

⎞
⎠

1
γ

≤ c

( ∞∑
k=m+2

2krγEγ
2k−1

(f)Lps
w

) 1
γ

≤ c

( ∞∑
k=n+1

krγ−1Eγ
k (f)Lps

w

) 1
γ

.(4.17)

Gathering formulas (4.15), (4.16) and (4.17), we deduce the desired

inequality. �

Proof of Theorem 4. Let 2m < n ≤ 2m+1 and δ = 1
n . Using Lemma

4.6, we conclude that under condition (2.3) there exists the absolutely

continuous (r − 1)th order derivative f (r−1)(x) and f (r) ∈ Lps
w . Then

(4.18) Ωl(f
(r), δ) ≤ Ωl

((
f (r) − S

(r)
2m+1

)
, δ
)
+Ωl(S

(r)
2m+1 , δ).

But

(4.19)
∥∥∥Ωl

((
f (r) − S

(r)
2m+1

)
, δ
)∥∥∥ ≤ c

∥∥∥f (r) − S
(r)
2m+1

∥∥∥
Lps

w

≤ cEn(f
(r))Lps

w
.

On the other hand

Ωl(S
(r)
2m+1 , δ) ≤ cδ2l

∥∥∥S(r+2l)
2m+1

∥∥∥
Lps

w

≤ cδ2l

⎧⎨
⎩
∥∥∥S(r+2l)

1 − S
(r+2l)
0

∥∥∥
Lps

w

+

∥∥∥∥∥
m∑
i=0

[
S
(r+2l)
2i+1 − S

(r+2l)
2i

]∥∥∥∥∥
Lps

w

⎫⎬
⎭ .

Consequently, applying Theorem A, we have
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Ωl(S
(r)
2m+1 , δ) ≤ cδ2l

⎧⎪⎪⎨
⎪⎪⎩E0(f)Lps

w
+

∥∥∥∥∥∥∥∥

⎛
⎜⎝ m∑

i=0

∣∣∣∣∣∣
2i+1∑

k=2i+1

kr+2lBk,r+2l(x)

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥
Lps

w

⎫⎪⎪⎬
⎪⎪⎭ .

Then by Lemmas 4.2 and 4.3

(4.20)

Ωl(S
(r)
2m+1 , δ) ≤ cδ2l

⎧⎪⎨
⎪⎩E0(f)Lps

w
+

⎛
⎝ m∑

i=0

∥∥∥∥∥∥
2i+1∑

k=2i+1

kr+2lBk,r+2l

∥∥∥∥∥∥
γ

Lps
w

⎞
⎠

1/γ
⎫⎪⎬
⎪⎭ .

Using the arguments of the proof of Theorem 1, according to Lemma 4.5

and Theorem 3, we obtain the assertion from (4.18), (4.19) and (4.20). �
Note that using the standard method of proving inverse inequalities (see

[21, Section 6.1], and [9, Theorem 4]), on the base of Proposition 3.2 and

3.4 and Lemma 4.1, we can establish the following statement.

Proposition 4.1 Let 1 < p, s < ∞ and let w ∈ Ap(T). Then there

exists a positive constant c such that

(4.21) Ωl

(
f,

1

n

)
≤ c

n2l

n∑
k=1

k2l−1Ek−1(f)Lps
w

for an arbitrary f ∈ Lps
w (T) and every natural n.

On the other hand, for arbitrary β, 1 < β < ∞, natural number μ and

sequence αn ↓ 0 the inequality

(
n∑

k=1

kβμ−1αβ
k−1

)1/β

≤ c

(
n∑

k=1

kμ−1αk−1

)

holds, where the constant c does not depend on αk and n (see, for example,

[20]). Thus Theorems 1 and 2 improve the estimation (4.21).
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