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ON GENERALIZED M
∗− GROUPS

Sebahattin Ikikardes and Recep Sahin

Abstract

Let X be a compact bordered Klein surface of algebraic genus p ≥ 2
and let G = Γ∗/Λ be a group of automorphisms of X where Γ∗ is a non-

euclidian chrystalographic group and Λ is a bordered surface group. If the
order of G is 4q

(q−2)
(p−1), for q ≥ 3 a prime number, then the signature of

Γ∗ is (0;+; [−]; {(2, 2, 2, q)}). These groups of automorphisms are called
generalizedM∗-groups. In this paper, we give some results and examples
about generalized M∗-groups. Then, we construct new generalized M∗-
groups from a generalized M∗-group G (or not necessarily generalized
M∗-group).

1 Introduction

A compact bordered Klein surface X of algebraic genus p ≥ 2 has at most
12(p − 1) automorphisms [9]. The groups which are isomorphic to the auto-
morphism group of such a compact bordered Klein surface with this maximal
number of automorphisms are called M∗-groups. M∗-groups were first stud-
ied in [10], and additional results about these groups are in [4, 5, 6, 12]. Also,
the article [3] contains a nice survey of known results about M∗-groups.

The first important result about M∗-groups was that they must have a
certain partial presentation [10]. This was established by considering an M∗-
group as a quotient of an quadrilateral group Γ∗[2, 2, 2, 3]. In [13, p.223,
Proposition 2], this was extended to the quadrilateral groups Γ∗[2, 2, 2, q] where
q ≥ 3 is an integer. By using the quadrilateral groups Γ∗[2, 2, 2, q] for q ≥ 3
prime, Sahin et al. in [15] defined generalized M∗-group similar to M∗-group
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case. In [15], the authors found a relationship between extended Hecke groups
and generalized M∗-groups. The relationship says that a finite group of order
at least 4q is a generalized M∗−group if and only if it is the homomorphic
image of the extended Hecke groups H(λq). In fact, by using known results
about normal subgroups of the extended Hecke groups H(λp) given in [14],
they obtained many results related to generalized M∗−groups. For example,
if G is a generalized M∗-group, then |G : G′| divides 4 and |G′ : G′′| divides
q2. Finally, they proved that if q ≥ 3 prime number and G is a generalized
M∗-group associated to q, then G is supersoluble if and only if |G| = 4 · qr for
some positive integer r.

In this paper, our main goal is to generalize some results related to the M∗-
groups to the generalized M∗-groups. First,we give some results and examples
about generalized M∗-groups. Then, we construct new generalized M∗-groups
from a generalized M∗-group G (or not necessarily generalized M∗-group). To
do these, we shall use the same methods in [3], [5] and [11] for M∗-groups.

2 Preliminaries

We shall assume that all Klein surfaces we are working with are compact and
of algebraic genus p ≥ 2. Let U be the open upper half plane. An Non-
Euclidean crystallographic group, NEC group in short, is a discrete subgroup
Γ of the group PGL(2,R) of all conformal and anti-conformal automorphisms
of U such that the quotient space U/Γ is compact. If Γ lies wholly within the
conformal group PSL(2,R), it is more usually known as a Fuchsian group.
Also, if Γ contains both conformal and anti-conformal automorphisms of U, it
is known as a proper NEC group.

An NEC group is called a bordered surface group if it contains a reflection
but does not contain other elements of finite order. Each compact bordered
Klein surface X of algebraic genus p ≥ 2 can be presented as the orbit space
X = U/Λ for some bordered surface group Λ. Moreover, given a surface X so
represented, a finite group G acts as a group automorphisms of X if and only
if there exists an NEC group Γ∗ and an epimorphism θ : Γ∗ → G such that
ker(θ) = Λ. All groups of automorphisms of bordered Klein surfaces arise in
this way. Such an epimorphism, whose kernel is a bordered surface group, is
called a bordered smooth epimorphism.

In this paper, we shall be mainly concerned with quadrilateral groups
Γ∗[2, 2, 2, q]. A quadrilateral group Γ∗ is an NEC group with signature

(0;+; [−]; {(2, 2, 2, q)}),

where q ≥ 3 prime number [16]. Also Γ∗ is isomorphic to the abstract group
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with the presentation

< c0, c1, c2, c3 | c2i = (c0c1)
2 = (c1c2)

2 = (c2c3)
2 = (c3c0)

q = I > .

It is well-known [13] that large groups of automorphisms of bordered surfaces
are quotients of the quadrilateral groups Γ∗[2, 2, 2, q].

It is clear that Γ∗ has exactly three subgroups of index 2 which contain
c1 (namely Γ1, Γ2, and Γ3) and a unique normal subgroup of index 4 which
contains c1 (namely Γ4). In fact, Γ1 is generated by c0, c1, c2c0c2 and c3; Γ2

is generated by c2c3, c3c0 and c1; Γ3 is generated by c1, c2, c3c0 and c3c1c3;
and Γ4 is generated by c0c3, c2c3c0c2 and c1. Also the signatures of Γ1, Γ2,
Γ3 and Γ4 are (0;+; [−] ; {(2, 2, q, q)}), (0;+; [2, q] ; {(−)}), (0;+; [q] ; {(2, 2)})
and (0;+; [q, q] ; {(−)}), respectively (see, [2, p. 564]).

If Λc1 is the normal subgroup of Γ∗ generated by c1, then Γ
∗

= Γ∗/Λc1 .
Also, if there exist a normal subgroup Φ in Γ∗containing c1, then Γ∗/Φ ∼=

Γ
∗

/Φ. Since Γ∗/Γ4
∼= Z2 ×Z2, Γ

∗

/Γ4 is isomorphic to Z2 ×Z2. It is clear that

the commutator subgroup (Γ
∗

)′ ⊂ Γ4. Notice that the quotient group Γ
∗

/(Γ
∗

)′

is generated by elements of order 2. Also it is easy to see that c0(Γ
∗

)′ and

c3(Γ
∗

)′ commute, as Γ
∗

/(Γ
∗

)′ is abelian. Since c0c3 has order q, c0c3 ∈ (Γ
∗

)′.

Therefore Γ
∗

/(Γ
∗

)′ is generated by two elements of order q. Thus Γ4 = (Γ
∗

)′

and then Γ4 is a free product generated by two elements of order q. This

requires that Γ4/Γ
′

4
∼= Zq × Zq, which yields that Γ

∗

/(Γ
∗

)′′ ∼= Dq ×Dq.
From [3, Theorems 2.2.4 and 2.3.3], if G = Γ∗/Λ satisfies |G| = 4q

(q−2) (p−1),

for some NEC group Γ∗ and for q ≥ 3 prime number, then the signature of
Γ∗ is (0;+; [−]; {(2, 2, 2, q)}) and for each group G, there is a bordered smooth
epimorphism θ : Γ∗ → G which maps c0 → r1, c1 → I, c2 → r2 and c3 → r3.
Thus r1r2 and r1r3 have orders 2 and q respectively and each group G admits
the following partial presentation :

〈r1, r2, r3 | r21 = r22 = r23 = (r1r2)
2 = (r1r3)

q = · · · = I 〉.

Now we need a definition.

Definition 1 ([15]). Let q ≥ 3 be a prime number. A finite group G will
be called a generalized M∗-group if it is generated by three distinct nontrivial
elements r1, r2 and r3 of order 2 such that r1r2 and r1r3 have orders 2 and q
respectively, i.e.,

r21 = r22 = r23 = (r1r2)
2 = (r1r3)

q = I. (1)

The order t of r2r3 is called an index of G and G is said a generalized
M∗ − group with index t. A generalized M∗-group can have more than one
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index. If G is a generalized M∗-group with index t and l is the order of
(r1r2r3), then G is also a generalized M∗-group with index l [15].

From [15], if G = Γ∗/Λ is a generalized M∗-group, then it can have at
most three subgroups of index 2 and one normal subgroup of index 4. A
generalized M∗-group G possesses either zero, one or three subgroups of index
2, G1 =< r1, r3, r2r3r2 >, G2 =< r1r2, r1r3 >, G3 =< r2, r1r3 >, respectively.
A generalized M∗-group G possesses at most one normal subgroup of index
4, G4 =< r1r3, r2r3r1r2 > . Here the subgroups of G corresponding to each of
Γ1, Γ2, Γ3 and Γ4 are G1, G2, G3 and G4, respectively.

3 Generalized M
∗-Groups and Related Results

A finite group G of order 4q
(q−2) (p− 1) is a generalized M∗-group if and only if

G acts on a bordered Klein surface X of genus p ≥ 2. If we take p = (q−2)s+1
where q ≥ 3 prime number and s ∈ Z

+, then we find |G| = 4qs. Thus for
every positive integer p which is of the form (q − 2)s + 1, there are infinitely
many generalized M∗-groups and for every positive integer p which is not of
the form (q − 2)s+ 1, there are no generalized M∗-groups.

Note that if s = 1, then we get p = (q − 2)1 + 1 = q − 1 and |G| = 4q.
Therefore for every q ≥ 3 a prime number, there is a generalized M∗-group G.
Here this result coincides with the ones given in [1, Theorem 2.1]. Also, using
a result of Bujalance [1, Theorem 2.1], it is easy to see that if X a compact
bordered Klein surface of algebraic genus p ≥ 2, p 6= 5, 11 and 29, and the
group G = Aut(X) is isomorphic to

〈

r1, r2, r3 | r21 = r22 = r23 = (r1r2)
2 = (r1r3)

q = I, r2r3r2 = r1(r3r1)
t
〉

for some t such that t2 ≡ 1 mod (q) and 1 ≤ t ≤ q−1 then X is orientable and
has k = gcd(q, t+1) boundary components. Therefore, if q ≥ 3 prime number
then X is orientable and k = q boundary components or k = 1 boundary
component. Thus G acts on a sphere with q holes and a surface of genus
q−1
2 with one hole. Conversely if p ≥ 2 and |G| = 4q then Γ∗ has signature

(0;+; [−] ; {(2, 2, 2, q)}) where Γ∗ is an NEC group.

Remark 1. Generalized M∗-groups are exactly the same as the automorphism
groups of regular maps (regular tilings) of type {q, t} where t is prime. A map
is said to be of type {q, t} if it is composed of q−gons, with exactly t, q−gons
meeting at each vertex. Suppose a generalized M∗-group G acts on the bordered
surface X with index t. Then the surface X corresponds to a regular map M

of type {q, t} on the surface X∗ obtained from X by attaching a disc to each
boundary component. Also G is isomorphic to the automorphism group of the
map M, and the number of boundary components of X is equal to the number
of vertices of M.
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Example 1. Let Gq,n,r be the group with generators A, B and C and defining
relations

Aq = Bn = Cr = (AB)2 = (BC)2 = (CA)2 = (ABC)2 = I.

If we set r1 = BC, r2 = CA, and r3 = BCA, then we obtain the presenta-
tion

r21 = r22 = r23 = (r1r2)
2 = (r1r3)

q = (r2r3)
n = (r1r2r3)

r = I.

Thus G is a quotient of Γ[2, 2, 2, q] by a bordered surface group if and only
if G is a quotient of the group Gq,n,r for some n and r. If q ≥ 3 is a prime
and the group is finite, then we obtain a generalized M∗-group with index n.
Some values of n and r which make the group to be finite are given in [7] and
[8].

Now using of the first and the second commutator subgroups of generalized
M∗-groups, we obtain new generalized M∗-groups.

Theorem 1. Let G be a generalized M∗-group. Then there exist a normal
subgroup N of Dq ×Dq, q ≥ 3 prime, such that we have the following.

(i) G/G′′ ∼= (Dq ×Dq)/N.
(ii) For each N1⊳Dq×Dq with N1 ≤ N , let K = N/N1. Then there exists

a generalized M∗-group Ĝ such that

1 → K → Ĝ → G → 1

is a short exact sequence. Furthermore, Ĝ contains a subgroup isomorphic to
G′′ ×K.

Proof. We will prove our theorem as in the case of the M∗-groups in [5].
(i) Firstly, since G is a generalized M∗-group, it is known that there is a

smooth epimorphism θ : Γ∗ → G, such that c1 ∈ Λ := ker(θ). Then, by using

Lemma 2.1 in [5, p.342] and G ∼= Γ
∗

/Λ, we have G′ ∼= (Γ
∗

)′Λ/Λ and G′′ ∼=

(Γ
∗

)′′Λ/Λ. Therefore, to complete the proof (i), we define N := (Γ
∗

)′′Λ/(Γ
∗

)′′.

Using Γ
∗

/(Γ
∗

)′′ ∼= Dq ×Dq, we get G/G′′ ∼= Γ
∗

/(Γ
∗

)′′Λ ∼= (Dq ×Dq)/N. This
concludes the proof of (i).

(ii) Let N1 be a normal subgroup of Dq ×Dq such that N1 ≤ N. Let K =

N/N1. From (i), we know that N = (Γ
∗

)′′Λ/(Γ
∗

)′′. Then there exist an NEC

group (Γ4)1 ≤ (Γ
∗

)′′Λ such that N1
∼= (Γ4)1/(Γ

∗

)′′. Since (Γ
∗

)′′ ≤ (Γ4)1 ≤

(Γ
∗

)′′Λ we get (Γ
∗

)′′Λ = (Γ4)1Λ and N ∼= (Γ
∗

)′′Λ/(Γ
∗

)′′ = (Γ4)1Λ/(Γ
∗

)′′.

Define Ĝ = Γ
∗

/(Λ ∩ (Γ4)1). Then Ĝ contains the subgroup

Λ

Λ ∩ (Γ4)1
∼=

Λ(Γ4)1

(Γ4)1
∼=

(Γ
∗

)′′Λ/(Γ
∗

)′′

(Γ4)1/(Γ
∗

)′′
∼=

N

N1

∼= K.
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Finally, the subgroups G′′ ∼= (Γ4)1/(Λ ∩ (Γ4)1) and K ∼= Λ/(Λ ∩ (Γ4)1)
are normal in Ĝ. Since the subgroups G′′ and K generate Λ(Γ4)1/(Λ ∩ (Γ4)1)
and have trivial intersection, we obtain Λ(Γ4)1/(Λ ∩ (Γ4)1) ∼= G′′ × K. This
completes the proof (ii).

This theorem provides a way for constructing new families of generalized
M∗-groups and has several interesting consequences. For example, it can be
applied to perfect groups, which are equal to their first commutator subgroup.
Let G be a perfect group. Then G′′ = G. Therefore, the above theorem shows
that if K is a factor group of Dq ×Dq, then there is a generalized M∗-group

Ĝ of order |G| |K| such that Ĝ contains a subgroup isomorphic to G×K. But
the only normal subgroup of Ĝ of order |G| |K| is Ĝ, then Ĝ is isomorphic to
G×K.

Using this, we obtain the following corollary and examples:

Corollary 1. İf G is a perfect generalized M∗-group, then G×Z2, G×Z2×Z2,
G×Dq, G× Z2 ×Dq, and G×Dq ×Dq are generalized M∗-groups.

Example 2. Many finite simple groups H have been shown to be generated
by three involutions, two of which commute, are generalized M∗-groups. Also
for these finite simple groups, H × Z2, H × Z2 × Z2, H ×Dq, H × Z2 ×Dq,
and H ×Dq ×Dq are generalized M∗-groups.

Example 3. For any prime q > 6, all but finitely many alternating groups
An are quotients of the extended (2, 3, q) triangle group, and are therefore
generalized M∗-groups of index 3. For these values we find that An × Z2,
An × Z2 × Z2, An × Dq, An × Z2 × Dq, and An × Dq × Dq are generalized
M∗-groups.

Now, we give some methods for constructing new generalized M∗-groups
from a group (not necessarily generalized M∗-groups) which may arise as a
normal subgroup of index two. These constructions were obtained in [3] and
[11] for M∗-groups.

Theorem 2. Let q ≥ 3 be a prime number. If G is a generalized M∗-group
associated to q with odd index t, then Z2 ×G is a generalized M∗-group with
index 2t.

Proof. Let G be a generalized M∗-group generated by r1, r2 and r3 satisfying
the relations in (2.1) and let G has odd index t. If a generate Z2 then we
set r∗1 = (a, r1), r∗2 = (1, r2), and r∗3 = (a, r3). Therefore, r∗1 , r∗2 , and r∗3
generate the direct product Z2 ×G. Also, they satisfy the relations (2.1) with
o(r∗2r

∗

3) = 2t.
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Notice that if the index t is even, the construction will not work, since
(2, t) 6= 1.

Theorem 3. Let q ≥ 3 be a prime number. Let H be a finite group generated
by two elements x and y, of order 2 and q, respectively. If H admits the
automorphism

γ : x → x−1 = x, y → y−1

then the semidirect product group G = H ⋊γ Z2 is a generalized M∗-group.

Proof. If a generate Z2 then it is easy to see that G = H⋊φZ2 with generators
with r1 = (y, a), r2 = (x, a), and r3 = (1, a) is a generalized M∗-group.

Theorem 4. Let q ≥ 3 be a prime number and let G be a generalized M∗-
group associated to q. If [G :< r1r2, r1r3 >] = 2, and t is not a multiple of 3,
then Z3 ⋊θ G is a generalized M∗-group with odd index 3t.

Proof. Since [G :< r1r2, r1r3 >] = 2, we take the quotient map θ,

θ : G → G/ < r1r2, r1r3 >∼= Z2 = Aut(Z3)

and we construct the semi-direct product Z3 ⋊θ G. If a generate Z3 then we
set r′1 = (x, r1), r

′

2 = (x, r2), and r′3 = (1, r3). Thus r′1, r
′

2, and r′3 generate
Z3⋊θ G and they satisfy the relations (2.1) with o(r′2r

′

3) = 3t and o(r′1r
′

2r
′

3) =
l = o(r1r2r3).
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