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ABSTRACT

We study locally and globally <t>-quasiconformally symmetric Sasakian manifolds. We show that a

globally <t>-quasiconformally symmetric Sasakian manifold is globally <t>-symmetric. Some observations

for a 3-dimensional locally <t>-symmetric Sasakian manifold are given. We also give an example of a
3-dimensionallocally <t>-quasiconformally symmetric Sasakian manifold.

I. INTRODUCTION

Let (M, g), n ~ 3, be a Riemannian manifold. The notion of the quasi-conformal
curvature tensor was introduced by Yano and Sawaki [10). According to them a
quasiconformal curvature tensor is defined by

(1.1) C*(X, Y)Z = aR(X, Y)Z

+ b[S(Y, Z)X - SeX, Z)Y + g(Y, Z)QX - g(X, Z)QY]

-~[_a_ + 2b][g(y, Z)X - g(X, Z)Y],
n n-l
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where a and b are constants, S is the Ricci tensor, Q is the Ricci operator defined
by S(X. Y) = g(QX, Y) and r is the scalar curvature of the manifold Mil. If a = J
and b = -1l~2' then (1.1) takes the form

J
C*(X, Y)Z = R(X, Y)Z --­

n-2

x [S(Y, Z)X - SeX, Z)Y + g(Y, Z)QX - g(X, Z)QY]
r+ [g(Y, Z)X - g(X, Z)Y]

(n-J)(n-2)

= C(X, Y)Z,

where C is the conformal curvature tensor [9]. In [3], De and Matsuyama studied
a quasiconformally flat Riemannian manifold satisfying a certain condition on the
Ricci tensor. From Theorem 5 of [3], it can be proved that a 4-dimensional quasi­
conformally flat semi-Riemannian manifold is the Robertson-Walker space-time,

Robertson-Walker space-time is the warped product I x f M*, where M* is a space
of constant curvature and I is an open interval [6]. From (1.1), we obtain

(1.2) (VwC*)(X, Y)Z = a(Vw R)(X, Y)Z

+ b[(VwS)(Y, Z)X - (VwS)(X, Z)Y

+ g(Y, Z)(VwQ)(X) - g(X, Z)(VwQ)(y)]

_ dreW) [_a_ +2b][g(y, Z)X _ g(X, Z)Y).
n n-l

If the condition

VR=O

holds on M, then M is called locally symmetric, where V denotes the Levi-Civita
connection on M. It is known that for a locally symmetric Sasakian manifold,
the manifold is a space of constant curvature [5]. This fact means that a locally
symmetric space condition is too strong for a Sasakian manifold. In [7], Takahashi
introduced a weaker condition for a Sasakian manifold that satisfies the condi­
tion

(1.3) q/((VxR)(Y, Z, W») =0,

where X, Y, Z and Ware horizontal vector fields which means that it is horizontal
with respect to the connection form 1] of the local fibering; namely, a horizontal
vector is nothing but a vector which is orthogonal to s, A Sasakian locally
¢-symmetric space is an analogous notion of Hermitian symmetric space [7]. In
[7], it was shown that a Sasakian manifold is a locally ¢-symmetric space if and
only if each Kaehlerian manifold, which is a base space of a local fibering, is a
Hermitian locally symmetric space. Later in [2], Blair, Koufogiorgos and Sharma
studied locally ¢-symmetric contact metric manifolds.
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In (1.3), if X, Y, Z and Ware not horizontal vectors then we call the manifold
globally 4>-symmetric.

In this paper, we define locally 4>-quasiconformally symmetric and globally 4>­
quasiconformally symmetric contact metric manifolds. A contact metric manifold
(M, g) is called locally 4>-quasiconfi)rmally symmetric if the condition

holds on M, where X, Y, Z and Ware horizontal vectors. If X, Y,Z and W

are arbitrary vectors then the manifold is called globally 4>-quasiconformally
symmetric.

In the present paper, we study locally and globally 4>-quasiconformally sym­
metric Sasakian manifolds. Some observations for 3-dimensional locally 4>­
quasiconformally symmetric Sasakian manifolds are also given.

The paper is organized as follows. In Section 2, we give a brief account of
Sasakian manifolds. In Section 3, we study globally 4>-quasiconformally sym­
metric Sasakian manifolds. We prove that if a Sasakian manifold is globally
4>-quasiconformally symmetric, then the manifold is an Einstein manifold. We also
show that a globally 4>-quasiconformally symmetric Sasakian manifold is globally
4>-symmetric. In Section 4, we study 3-dimensional locally 4>-quasiconformally
symmetric Sasakian manifolds. We prove that a 3-dimensional Sasakian manifold
is locally 4>-quasiconformally symmetric if and only if it is locally 4>-symmetric.
We also give an example of a 3-dimensionallocally 4>-quasiconformally symmetric
Sasakian manifold.

2. SASAKI AN MANIFOLDS

Let (M", g), n = 2m + I, be a contact Riemannian manifold with contact form 1],

the associated vector field ~, (I, I )-tensor field 4> and the associated Riemannian
metric g. If ~ is a Killing vector field then M" is called a K -contact Riemannian
manifold [1]. If in such a manifold the relation

(2.1) ('Vx4»Y = g(X, Y)~ - 1)(Y)X

holds, where yo denotes the Levi-Civita connection of g, then M" is called a
Sasakian manifold.

Let R, Q, r denote the curvature tensor of type (1,3), Ricci operator and scalar
curvature of M"; respectively. It is known that in a contact manifold M" the
Riemannian metric may be so chosen that the following relations hold [1,9]:

(2.2)

(2.3)

(2.4)

(2.5)

(a) ¢~ = 0, (b) 1)(~) = 1,

4>2 X = -X + 1](X)~,

g(X,O = 1)(X),

g(¢X, ¢y) = g(X, Y) -1](X)1](Y)

(c) 1]04>=0;
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for any vector fields X. Y. If Mil is a Sasakian manifold, then besides (2.2)-(2.5),
the following relations hold [1,9]:

(2.6) Vx~ = -¢JX, (VXry)Y = g(X, ¢JY).

(2.7) ct>(X, Y) = (VXry)Y,

(2.8) ct>(X, Y) = -ct>(Y, X).

(2.9) ct>(X,O = 0,

(2.10) R(X, Y)~ = ry(Y)X -ry(X)Y,

(2.11) R(~, X)Y = (Vx¢J)Y,

(2.12) S(X,~) = (n - l)ry(X).

3. GLOBALLY rjJ-QUASICONFORMALL Y SYMMETRIC SASAKIAN MANIFOLDS

Definition 1. A Sasakian manifold M is said to be globally ¢J-quasiconformaUy
symmetric if the quasiconformal curvature tensor C* satisfies

(3.1) ¢J2((VXC*)(Y, Z, W») = 0,

for all vector fields X, Y, Z E X(M).

It is well known that if the Ricci tensor S ofthe manifold is ofthe form S(X, Y) =
Ag(X, Y), where A is a constant and X, Y E X(M), then the manifold is called an
Einstein manifold.

Let us suppose that M is a globally ¢J-quasiconformally symmetric Sasakian
manifold. Then by definition

Using (2.3) we have

-(VwC*)(X, Y)Z + ry((VwC*)(X, Y)ZH = o.

From (1.2) it follows that

-ag((Vw R)(X, Y)Z, U) - bg(X, U)(VwS)(Y, Z)

+ bg(Y, U)(VwS)(X, Z)

- bg(Y, Z)g(VwQ)X, U) +bg(X, Z)g(VwQ)Y, U)

+ ~dr(W)[_a- + 2b](g(y, Z)g(X, U) - g(X, Z)g(Y, U»)
n n-l

+ a17((Vw R)(X, Y)Z)17(U) +b(VwS)(Y, Z)17(U)17(X)

- b(VwS)(X, Z)17(U)17(Y)

+ bg(Y, Z)17((Vw Q)X)71(U) - bg(X, Z)17((Vw Q)Y)17(U)

- ~dr(W) [_a_ + 2b] (g(Y, Z)ry(X) - g(X, Z)17(Y) )ry(U) =o.
n n-l
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Putting X = U = e., where {e.}, i = 1,2, ... , n, is an orthonormal basis of the
tangent space at each point of the manifold, and taking summation over i , we get

-(a + nb - 2b)(V'wS)(Y. Z)

{
n-I (a )- bg(cV'WQ)ei.ei) - -dreW) - +2b

n n - I

- bl7((V'wQ)ei )17(eil + ~dr(W) (_a_ + 2b) }g(y, Z)
n n-1

+ bg(cV'w Q)Y, z)
+ al7( (V'wR)(ei, y)Z)I7(ei) - b(V'wS)(~, Z)I7(Y)

- bl7(V'wQ)Yh(Z)

I (a )+ -dreW) -- + 2b I7(Y)I7(Z) =o.
11 n-I

Putting Z = ~, we obtain

(3.2) -(0 + I1b - 2b)(V'wS)(Y.~)

-17(Y){bdr(W) - 11 - I dr(W)(-O- + 2b)
11 11-1

- bl7(V'wQ)edl7(ei) + ~dr(W)(I1: I +2b)}

+01J(V'wR)(ei, Y)~)1J(ed

- b(V'wS)(~, ~)1J(Y) + ~dr(W)(_O_. + 2b)ry(y) = O.
n n-I

Now

(3.3) 1J((V'w Q)ei )1J(ei) = g((V'w Q)ei, ~h(ei)

= 1J((V'wQ)~) = g(Q¢X, 0

= S(¢X,~) =O.

(3.4) 1J«V'wR)(ei, Y)~)I7(ei)= g(CV'w R)(ei, Y)~, ~)g(ei, ~).

g(V'wR)(ei, Y)~,~) = g(V'wR(ei' Y)~,~) - g(R(V'Wei' Y)~,~)

- g(R(ei, V'wY)~,~) - g(R(ei, Y)V'w~, ~).

Since {ed is an orthonormal basis V'Xei =0 and using (2.10) we find

g(R(ei, V'wY)~,~) = g(ry(ei)V'w Y - ry(V'WY)ei, 0
=l7(ei)ry(V'w Y) - 17(V'W Y)ry(ei)

=0.

195



(3.6)

As

we have

Using this we get

(3.5) g((Y'wR)(e;, Y)~,~) =0.

By the use of(3.3)-(3.5), from (3.2) we obtain

1
(Y'wS)(Y,~) = -dr(W)T/(Y),

n

since a + (n - 2)b :j:. O. Because if a + (n - 2)b = 0 then from (Ll), it follows
that C* = aC. So we can not take a + (n - 2)b = O. Putting Y = ~ in (3.6) we get
dreW) = O. This implies r is constant. So from (3.6), we have

(Y'wS)(Y,~) =O.

Using (2.6), this implies

(n -l)g(W,</>Y) + S(Y,</>W) = o.

Changing W with </>W and using (2.3), we obtain

S(Y, W) =Ag(Y, W),

where x = n - 1. Hence we can state the following theorem:

Theorem 1. If a Sasaldan manifold is globally ¢-quasiconformally symmetric,
then the manifold is an Einstein manifold.

Next suppose SeX, Y) = Ag(X, Y), i.e. QX = AX. Then from (Ll) we have

(3.7) C*(X, Y)Z =aR(X, Y)Z

+ [2bA - ~ (n: 1 +2b) }g(y, Z)X - g(X, Z)Y],

which gives us

(Y'wC*)(X, Y)Z =a(Y'w R)(X, Y)Z.

Applying </>2 on both sides of the above equation we have

Hence we can state the following theorem.
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Theorem 2. A globally ¢-quasiconformally symmetric Sasakian manifold is glob­

ally ¢-symmetric.

Remark 1. Since a globally ¢-symmetric Sasakian manifold is always a globally
¢-quasiconformally symmetric manifold, from Theorem 2, we conclude that on a
Sasakian manifold, globally ¢-symmetry and globally ¢-quasiconformally symme­
try are equivalent.

4. 3-DIMENSIONAL LOCALL Y <!>-QUASICONFORMALLY SYMMETRIC SASAKI AN
MANIFOLDS

In a 3-dimensional Riemannian manifold, since C = 0 we have

(4.1) R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY +S(Y, Z)X - SeX, Z)Y
r+ 2[g(X, Z)Y - g(Y, Z)Xl

Now putting Z =~ in (4.1) and using (2.12) and (2.10) we get

(4.2) (I - ~)[1](Y)X -1](X)Y] = 1/(X)QY -1](Y)QX.

Putting Y = ~ in (4.2), we find

(4.3) QX = (~ - I)X + (3 - ~)1](X)~.

Therefore it follows from (4.3) that

(4.4) SeX, Y) = (~ - I)g(X, y) + (3 - ~)1](X)1](Y).

Thus from (4.3) and (4.4), we get

(4.5) R(X, Y)Z = (~ - 2)[g(y, Z)X - g(X, Z)Y]

+ (3 - ~)[g(y, Z)1](X)~ - g(X, Z)1](Y)~

+ 1](Y)1](Z)X -1](X)I/(Z)Y].

Putting (4.3), (4.4) and (4.5) into (1.1) we have

(4.6) C*(X, Y)Z = [(a ~ b)r - 2(a + b)Jrg(y, Z)X - g(X, Z)Y]

+ (3 - ~) (b + l)[g(Y, Z)1](X)~ - g(X, Z)1](Y)~

+1](Y)1](Z)X -1](X)1](Z)Y].
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Taking the covariant differentiation to the both sides of the equation (4.6), we have

(4.7)
dreW)

(V'wC*)(X. Y)Z = -3-10 + bllg(Y. Z)X - g(X. Z)Yj

dreW)
- -2-(b + I )[g(Y. Z)I)(X)~ - g(X. Z)I)(Y)~

+ I)(Y)I)(Z)X - l](X)l](Z)Yj

+(3-~}b+l)
x [g(Y. Z)(V'wl])(X)~ + g(Y. Z)l](X)Vw~

- g(X. Z)(VW1J)(Y)~ - g(X, Z)1J(Y)Vw~

+ g(Y, V'w01J(Z)X

+ g(Z, VW~)l](Y)X - g(X, VW~)1J(Z)Y

- g(Z, VW~)l](X)Y].

Now assume that X, Y and Z are horizontal vector fields. So equation (4.7) becomes

(4.8)
dreW)

(V'wC*)(X, Y)Z = -3-[a +b][g(Y, Z)X - g(X, Z)Y]

+(3-~)(b+1)

x [g(Y, Z)(VWl])(X)~ - g(X. Z)(VWl])(Y)~].

Since X, Y and Z are horizontal vector fields, using (2.3) equation (4.8) gives us

(4.9) q}(VwC*)(X, Y)Z = dr;W) [a +b](-g(Y, Z)X + g(X, Z)Y).

Assume that f/J2(VWC*)(X, Y)Z =0. Ifa +b = othen putting a = -b into (l.I) we
find

C*(X, Y)Z = aC(X, Y)Z,

where C is the Weyl conformal curvature tensor. But for a 3-dimensional Rie­
mannian manifold since C =0, we obtain C* =O. Therefore a + b =1= O. Then the
equation (4.9) implies dreW) = O. Hence we conclude the following theorem:

Theorem 3. A 3-dimensional Sasakian manifold is locally dr-quasiconformally

symmetric ifand only if the scalar curvature r is constant.

In [8], Watanabe proved this corollary.

Corollary 1. A 's-dimensional Sasakian manifold is locally f/J-symmetric if and
only if the scalar curvature r is constant.
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Using Corollary 1, we state the following theorem:

Theorem 4. A 3-dimensional Sasakian manifold is locally dr-quasiconformally
symmetric if and only ifit is locally ¢-.~ymmetric.

Example 1. We consider the three-dimensional manifold M = {(x, y, z) E JR.3},
where (x , v, z) are the standard coordinates in JR.3. The vector fields

a
el=-,

ax
a a a

eJ = - -x- +x-- ay ax ilz'

are linearly independent at each point of M. Let g be the Riemannian metric defined
by

g(e" C3) = g(C2, C3) = g(CI, C2) = 0,

g(CI, CI) = g(C2, C2) = g(C3, C3) = I.

Let 'I be the I-form defined by TJ(Z) = g(Z, e3) for any Z E X(M). Let ¢ be the

(1, 1) tensor field defined by ¢(el) = ei. ¢(C2) = -CI, ¢(C3) = O. Then using the
linearity of ¢ and g we have

TJ(C3) = I, ¢2 Z = -Z + TJ(Z)C3,

g(¢Z, ¢W) = g(Z, W) - TJ(Z)TJ(W),

for any Z, W E X(M). Thus for C3 =~, (¢,~, 'I, g) defines an almost contact metric
structure on M.

Let 'V be the Levi-Civita connection with respect to the metric g. Then we have

[e2,e3] =O.

The Riemannian connection 'V of the metric g is given by

2g('VxY, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y)

- g(X, lY, ZJ) - g(Y, lX, ZD +g(Z, lX, YD,

which is known as Koszul's formula.
Koszul's formula yields

1
'Vezel = "2e1 - e3,

'Ve3el = r ei.

From the above expressions it is easy to see that equations (2.1) and (2.6) hold.
Hence the manifold is Sasakian.
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With the help of the above results we can verify the following results:

and

9
R(el, e2)el = "2ez,

13 1
R(ej, e2)e2 = -4el + "2e3,

Rie», e2)e3 =0,

1
R(ez, e3)ej = "2ez,

R(el, e3)e3 =el

1
Rtei ; e3)e1 = -e3 - "2el,

1
ec«; e3)e2 = "2e2,

15
r=-4'

Thus the scalar curvature r is constant. Hence from Corollary 1 and Theorem 4,
M is a locally ¢-quasiconformally symmetric Sasakian manifold.
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